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Abstract: This paper considers the formation stabilization problem of dynamically coupled
nonlinear systems with parametric uncertainties and additive disturbances. We develop a
distributed min–max model predictive control (MPC) framework, in which each subsystem
adopts the local optimal control action by solving the constrained optimization problem.
As a main contribution of this paper, a self-triggered strategy is presented within the
proposed framework for resource-constrained coupled systems. By implementing the distributed
self-triggered scheduler, the communication burden is significantly alleviated while ensuring
comparable control performance. In addition, for each subsystem the latest information is
transmitted to its neighbors asynchronously at the local triggering time instants. Moreover, the
resulting distributed self-triggered min–max MPC framework ensures the constraints satisfaction
and the closed-loop stability. Finally, the numerical experiments are performed to verify the
theoretical results.
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1. INTRODUCTION

Recent years have witnessed a growing trend to develop
distributed model predictive control (DMPC) for large-
scale systems and multi-agent systems (MAS), such as
autonomous vehicles, power systems and process systems
(Maestre et al. (2014)). The problem of interest in this
work is to propose a distributed controller for the large-
scale dynamically coupled nonlinear perturbed systems
which are driven to stabilization in a cooperative fashion.
The DMPC scheme is advocated here, because of com-
putational savings and also its excellent ability to han-
dle various constraints, such as actuator limits and state
constraint (Dunbar and Murray (2006)). Some interesting
results on DMPC for large-scale nonlinear systems have
been developed for decoupled nonlinear systems (Dun-
bar and Murray (2006); Wang and Ding (2014)) and for
dynamically coupled nonlinear systems (Dunbar (2007)).
In practice, the systems are inevitably subject to distur-
bances. Different robust DMPC methods are proposed to
accommodate external disturbances, for example, tube-
based DMPC (Trodden and Richards (2010)), DMPC with
robustness constraint (Li and Shi (2013)). It is worth
noting that the above-mentioned robust DMPC methods
only consider the additive disturbances instead of the para-
metric uncertainties. How to guarantee the robustness of
coupled systems with parametric uncertainties and exter-
nal disturbances remains challenging. Motivated by these
facts, we aim to propose a min–max DMPC strategy for
dynamically coupled nonlinear systems with parametric
uncertainties and additive disturbances.

The aforementioned DMPC approaches have in common
that the system state measurement, the calculated control
inputs and information exchanged among subsystems are
operated periodically. However, this may lead to bursts of
communication and a nontrivial consumption in term of
energy. Moreover, the subsystems may have limited band-
width communication networks. To address this challeng-
ing issue, triggered control is proposed to reduce the com-
munication burden of MASs, see (Heemels et al. (2012))
and the papers listed there. Triggered MPC aims to reduce
the communication burden while achieve a desired level
of control performance of MASs with control and state
constraint. It makes a balance between the control per-
formance and the communication cost. Some interesting
results for the single agent have been reported in (Gom-
mans and Heemels (2015); Gommans et al. (2014); Yao
et al. (2018)). For MASs, a self-triggered distributed model
predictive consensus approach is proposed in (Zhan et al.
(2019)), where the control input and the triggering interval
are jointly optimized. (Zou et al. (2019)) develops an
event-triggered DMPC, where the neighbors information
involved event-triggered condition is based on the novel
robustness constraint. Motivated by these observations,
in order to reduce the communication burden, the self-
triggered robust DMPC is proposed for the dynamically
coupled systems, where the states are aperiodically sam-
pled and asynchronously broadcast.

In this work, we propose a distributed self-triggered min–
max MPC scheme for large-scale dynamically coupled non-
linear systems with parametric uncertainties and distur-
bances. The main contributions of this work are as follows:
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(1) A distributed self-triggered min–max MPC scheme is
proposed to achieve comparable control performance
as the periodic MPC method and decrease the com-
munication burden. Under this framework, each sub-
system asynchronously broadcasts its aperiodically
updated state information to its neighbors.

(2) The conventional tube-based MPC method is difficult
to deal with nonlinear systems with the parametric
uncertainties (Mayne et al. (2011)). The min–max
MPC considers the worst case of all possible additive
disturbances and parametric uncertainties, ensuring
the robustness of coupled systems.

(3) The proposed algorithm is proved to be recursively
feasible. The closed-loop stability of the overall sys-
tem is input-to-state practically stable (ISpS) (Jiang
et al. (1994); Jiang and Wang (2001)) at triggering
time instants in its region of attraction.

The paper is organized as follows: Section II formulates
the control problem. In Section III, the main results are
presented including the distributed min-max MPC design,
the self-triggered scheduler, the algorithm. Section IV
gives the theoretical analysis of the feasibility and the
closed-loop stability. Section V presents the simulation
results. Finally, the conclusion is given in Section VI.

2. PROBLEM FORMULATION

We make use of the following notation. The set I≥0 denotes
the nonnegative integers and Im:n denotes integers in the
interval [m,n] satisfying m ≤ n. For any vector x ∈ Rn,

the Euclidean norm is ‖x‖. ‖x‖2P denotes the weighted
Euclidean norm xTPx, and P is a positive definite matrix.
The superscript ‘T’ denotes the transposition.

The systems includes a group of M discrete-time per-
turbed nonlinear interconnected subsystems which are dy-
namically coupled. Agent i, i ∈ M,M := {1, . . . ,M}, is
characterized by

Si : xi(tk+1) = fi(xi(tk), x−i(tk), ui(tk), di(tk)), (1)

where xi(tk) ∈ Xi ⊆ Rn, x−i(tk), ui(tk) ∈ Ui ⊆ Rm
and di(tk) = col(wi(tk), vi(tk)) ∈ Di ⊆ Rd are the local
state, neighboring states, control input and time-varying
uncertainty,respectively. wi(tk) ∈Wi ⊆ Rw represents the
additive disturbance and vi(tk) ∈ Vi ⊆ Rv denotes the
parametric uncertainty, where Wi and Vi are compact
sets and contain the origin in their interiors. Each sub-
system is assumed to have the same sampling period, i.e.,
tk+1 = tk + 1. The directed graph G = (V, E) is deployed
to describe the systems and the information exchange
between subsystems, where V = {S1, · · · , SM} is the set
of nodes and E = {(Si, Sj) ⊂ V × V} is the set of all
directed edges that characterize the information from the
node i to the node j. Each subsystem i, corresponding
to the node i of the G, has local control input ui and
local state xi. Let Ni := {j|(Si, Sj) ∈ E} denote the
set of indices of subsystem i’s neighbors. Here the graph
G is assumed to be strongly connected. To distinguish
different trajectories, we denote the following trajecto-
ries: xi(s; tk), s ∈ I[0,N ] is the predictive state trajectory,
x−i(s; tk) concatenates the state trajectories of j, j ∈ Ni,
i.e., x−i(s; tk) = (. . . , xj(s; tk), . . . ); x∗i (s; tk) is the opti-
mal state trajectory; xbi (s; tk) is the newest broadcasting

state of subsystem i. Similarly, ui(s; tk) is the predictive
control input, u∗i (s; tk) is the optimal control input.

Definition 1. A set Ω ⊆ Rn is a robust positive invariant
(RPI) of system, ∀x ∈ Ω, f(x,D) ⊆ Ω.

Lemma 2. (Limón et al. (2006), Theorem 1). For the
system x(tk+1) = f(x(tk), d(tk)) with an RPI set Ω, ∀x ∈
Ω, d ∈ D, a positive definite function V (·) : Rn → R satisfy
α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + c1; V (f(x, d)) − V (x) ≤
−α3(x) + γ(‖w‖) + c2, with c1, c2 ≥ 0, α1(·), α2(·), α3(·)
being K∞ function and γ(·) being K function, then the
system is ISpS in Ω with respect to w.

Our goal in this paper is to propose a distributed robust
self-triggered MPC strategy for coupled systems with
parametric uncertainty and external disturbances, such
that the subsystems are cooperatively stabilized toward
the origin,

ui(t) = hi(xi(tk), x̂−i(tk), t− tk), t ∈ [tk, tk+1), (2)

where hi denotes the control input generated by solv-
ing the distributed min–max MPC optimization problem,
x̂−i(tk) represents a collection of the latest state informa-
tion of subsystem j, j ∈ Ni, which will be discussed later.

For subsystem i, i ∈ M, {tiki} is an independent sam-
pling/triggering instant sequence that is determined by
using its local self-triggered scheduler, i.e.,

tiki+1 = tiki +Hi(xi(t
i
ki)), H

i(xi(t
i
ki)) ∈ I≥1. (3)

For a given fixed prediction horizon N ∈ I>1, subsystem
i broadcasts its newest state information to its neighbors
at tiki , t

i
ki
∈ I≥0. {t−ik−i

} is a collection of the triggering

instant sequence of neighbors tjkij , j ∈ Ni. At tiki , ki ∈ I≥0,

its neighboring newest triggering instant tjkij is defined as

tjkij := arg mintj
kj

{tiki − t
j
kj
| s.t. tjkj ≤ t

i
ki
}, where kj ∈ I≥0.

For subsystem i, i ∈M, the cost function at its triggering
instant tiki is defined as

JH
i

i,N (xi(t
i
ki), ui(s; t

i
ki))

=

Hi−1∑
s=0

1

~i
Li(xi(s; t

i
ki), ui(s; t

i
ki))

+

N−1∑
s=Hi

Li(xi(s; t
i
ki), ui(s; t

i
ki)) + Fi(xi(N ; tiki))

(4)

where s ∈ I[0,N), ~i ≥ 1 is a fixed constant. The local stage
cost for the subsystem i is defined as

Li(xi(s; t
i
ki), ui(s; t

i
ki))

=‖xi(s; tiki)‖
2
Qi

+ ‖xi(s; tiki)− x
b
i (s+Hi∗(tiki−1); tiki−1)‖2Q′

i

+ ‖ui(s; tiki)‖
2
Ri

where Qi = QT
i � 0, Q′i = Q′Ti � 0, and Ri = RT

i �
0, xbi (s; t

i
ki

) is the broadcasting state sequence at last
triggering time instant and the stage cost is assumed to be
continuous with Li(0, 0) = 0. Similarly, the local terminal
cost is continuous with Fi(0) = 0 and can be defined as

Fi(xi(N ; tiki)) = ‖xi(N ; tiki)‖
2
Pi
,

where Pi = PT
i � 0 is the weighting matrix.

Remark 3. Different from the consistency constraint in
Zhan et al. (2019); Zheng et al. (2016), the local stage
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cost term ‖xi(s; tiki)−x
b
i (s+Hi∗(tiki−1); tiki−1)‖2Q′

i
enforces

a degree of consistency between what subsystem i plans to
do and what neighbors believe subsystem i will do. In this
way, the constraint is transformed into a soft constraint,
and the feasible solution is easy to construct.

3. SELF-TRIGGERED MIN–MAX DMPC

In this section, the distributed robust MPC optimization
problem for the dynamically coupled systems is defined.
Then, we give the self-triggered asynchronous communi-
cation mechanism and the distributed self-triggered min–
max MPC algorithm. Finally, the recursive feasibility and
the closed-loop stability are analyzed.

3.1 Distributed min–max optimization problem

The local min–max optimization problem Pi for each
subsystem i, i ∈M at the triggering instant tiki is defined
in the following

min
ui(s;tiki

)

{
max

di(s;tiki
)

{
JH

i

i,N (xi(t
i
ki), ui(s; t

i
ki))}, such that

xi(H
i; tiki) ∈ Xi,N−Hi(Ωi),∀di(s; tiki) ∈ Di

}
s.t. xi(s+ 1; tiki) = fi(xi(s; t

i
ki), x̂−i(t

−i
k−i

),

ui(s; t
i
ki), di(s; t

i
ki)) (5a)

xi(0; tiki) = xi(t
i
ki) (5b)

ui(s; t
i
ki) ∈ Ui (5c)

xi(s; t
i
ki) ∈ Xi (5d)

where s ∈ I[0,Hi), J
Hi

i,N (xi(s; t
i
ki

), ui(s; t
i
ki

)) =
∑Hi−1
s=0

1
~i
Li

(xi(s; t
i
ki

), ui(s; t
i
ki

)) + Vi,N−Hi(xi(H
i; tiki)), Xl(Ωi) is l-

step robust stabilizable set, i.e., any x ∈ Xl can be robustly

steered into Ωi within l steps. V H
i

i,N (x∗i (s; t
i
ki

)) denotes the
optimal value of Pi, and

Vi,l(xi(l; t
i
ki)) = min

µi(l;tiki
)

{
max
di(l;tiki

)

{
L(xi(l; t

i
ki), µi(l; t

i
ki))

+ Vi,l−1(xi(l − 1; tiki))
}
, such that

fi(xi(l; t
i
ki), x̂−i(l; t

−i
k−i

), µi(l; t
i
ki),Di) ⊆ Xi,l−1(Ωi)

}
,

where l = N − s ∈ I[1,N−Hi) denotes steps to go and the

boundary condition is Vi,0(xi(N ; tiki)) := F (xi(N ; tiki)).
Besides, the optimal predictive control input is denoted as
u∗i (t

i
ki

) = (u∗i (0; tiki), . . . , u
∗
i (H

i∗− 1; tiki), µi(H
i∗; tiki), . . . ,

µi(N − 1; tiki)), where u∗i (·; tiki) is the open-loop optimal

control action and µi(·; tiki) is the feedback control law.

3.2 Distributed self-triggered scheduler

Consider the distributed self-triggered scheduler of subsys-
tem i, i ∈M at the triggering instant tiki ,

tiki+1 = tiki +Hi∗(tiki), (6a)

Hi∗(tiki) = max
{
Hi ∈ I[1,H̄]|

V H
i

i,N (x∗i (s; t
i
ki)) ≤ V

1
i,N (x∗i (s; t

i
ki))
}
, (6b)

where Hi∗(tiki) is the optimal triggering interval and

V 1
i,N (x∗i (s; t

i
ki

)) denotes the optimal value of Pi at tiki + 1.

H̄ is the maximum triggering interval. The control input
is defined as

umpc
i (tiki) := u∗i (s; t

i
ki), s ∈ I[0,Hi∗(ti

ki
)), (7)

which is generated by solving the problem Pi.
As shown in Fig. 1, three subsystems are included in the
coupled system. The asynchronous broadcasting communi-
cation mechanism is built on the distributed self-triggered
scheduler. The sequence of triggering instants of subsystem
i is denoted as ti0i

, ti1i
, ti2i

, · · · . For example, the controller
of subsystem i, i ∈M calculates the optimal control input
and its next triggering instant ti1i

at instant ti0i
based on

its local state xi(t
i
0i

) and its neighboring systems’ assumed

state x̂−i(t
−i
0−i

), and broadcasts the newest updated state

xbi (s; t
i
0i

), s ∈ I[0,N+Hi(ti0i
)] to its neighbors, applies the

control input umpc
i (ti0i

) to the subsystem i and then it
re-computes its optimal control input immediately at the
next triggering instant ti1i

. The newest broadcasting state

sequence of subsystem i at tiki is constructed as

xbi (s; t
i
ki) =

{
x∗i (s; t

i
ki) s ∈ I[0,N ],

x̃i(s; t
i
ki) s ∈ I(N,Hi∗(ti

ki
)+N ],

(8)

where x̃i(s + 1; tiki) is the feasible system state under the

local controller κi(x̃i(s; t
i
ki

)).

S3

S2

S1

𝑡"#

𝑡"$

𝑡"%

𝑡$# 𝑡%# 𝑡##

𝑡$% 𝑡%% 𝑡#% 𝑡&%

𝑡$$ 𝑡%$ 𝑡#$ 𝑡&$

𝑡" 𝑡$ 𝑡% 𝑡'

𝐻#∗(𝑡"#) 𝐻#∗(𝑡$#) 𝐻#∗(𝑡%#)

𝐻%∗(𝑡"%) 𝐻%∗(𝑡$%) 𝐻%∗(𝑡%%) 𝐻%∗(𝑡#%)

𝐻$∗(𝑡"$) 𝐻$∗(𝑡$$) 𝐻$∗(𝑡#$)𝐻$∗(𝑡%$)

𝑡&𝑡# 𝑡,

Fig. 1. An example of the asynchronous communication
mechanism. The dots denote the triggering time in-
stants. The bottom line is the global time sequence.

With the asynchronous broadcasting communication, the
assumed latest neighboring state information received by
subsystem i can be constructed as follows, x̂−i(t

i
ki

) =

col
(
. . . , x̂j(t

i
ki

), . . .
)
, j ∈ Ni and

x̂j(t
i
ki) = [xbj(0; tiki), x

b
j(1; tiki), · · · , x

b
j(N ; tiki)]. (9)

3.3 Distributed self-triggered min–max MPC algorithm

The proposed distributed self-triggered min–max MPC
algorithm for subsystem i, i ∈ M is specified as follows.

3.4 Theoretical analysis

Before introducing the main results, the following assump-
tion and lemma are given.

Assumption 4. (Robust stability assumption) For subsys-
tem i, i ∈M, the local decoupled terminal region Ωi ⊆ Xi
is an RPI set for the system in (1) with a local feedback
controller κi(xi(t

i
ki

)) ∈ Ui at time instant tiki . There exist
K∞ functions αL, αF and ᾱF and a non-negative con-
stant ε such that: 1). αL(‖xi(tiki)‖) ≤ Li(xi(t

i
ki

), ui(t
i
ki

))),
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Algorithm 1 Distributed self-triggered min–max MPC

1: Initialization: For each subsystem i, i ∈M, give the
initial states xi(t

i
ki

), xj(t
i
ki

), the initial feasible control

ũi(·, tiki) and other design parameters. Set ki = 0.

2: If xi(t
i
ki

) ∈ Ωi, apply umpc
i (tiki) = κi(xi(t

i
ki

)), else go
to Step 3:

3: Samples system state xi(t
i
ki

) and receives the
newest broadcasting information of its neighbors
xbj(s; t

j
kj

), s ∈ I[0,N ], j ∈ Ni;
4: Solves the optimization problem Pi and (6b), gener-

ating u∗i (t
i
ki

) and Hi∗(tiki), and broadcasts the newest

states xbi (s; t
i
ki

), s ∈ I[0,N+Hi∗(ti
ki

)] to its neighbors;

5: Applies the control input sequence umpc
i (tiki);

6: ki = ki + 1, tiki = tiki + Hi∗(tiki) and go to Step 2; if
t = Tsim, stop.

∀xi(tik) ∈ Xi, ∀ui(tiki) ∈ Ui; 2). αF (‖xi(tiki)‖) ≤
Fi(xi(t

i
ki

)) ≤ ᾱF (‖xi(tiki)‖), ∀xi(t
i
k) ∈ Ωi; 3). Fi(xi(t

i
ki

+

1)) − Fi(xi(t
i
ki

)) ≤ −Li(xi(tiki), κi(xi(t
i
ki

))) + ε, where

∀xi(tiki) ∈ Xi and ε := maxdi{Li(xi(tiki), κi(xi(t
i
ki

))) +

Fi(xi(t
i
ki

+ 1))− Fi(xi(tiki))}.
Lemma 5. Suppose that Assumption 5 holds. Then, Vi,l+1

(xi(t
i
ki

))− Vi,l(xi(tiki)) ≤ Vi,l(xi(t
i
ki

+ 1))− Vi,l−1(xi(t
i
ki

+

1)), xi(t
i
ki

) ∈ Xi,l(Ωi). Also Vi,l(xi(t
i
ki

))−Vi,l−1(xi(t
i
ki

)) ≤
ε and Vi,l(xi(t

i
ki

)) ≤ Vi,0(xi(t
i
ki

)) + lε, where xi(t
i
ki

) ∈ Ωi.

Proof. For xi(t
i
ki

) ∈ Ωi, by Assumption 5 , and hence

Vi,1(xi(t
i
ki))− Vi,0(xi(t

i
ki))

= min
ui(tiki

)
max
di(tiki

)
{−Vi,0(xi(t

i
ki)) + Li(xi(t

i
ki), ui(t

i
ki))

+ Vi,0(xi(t
i
ki + 1))}

≤ε.

(10)

For xi(t
i
ki

) ∈ Xi,l(Ωi), the control action ui(t
i
ki

) =

h(x(tiki)) is assumed to be a feasible solution to the

optimization problem Pi, hence we have xi(t
i
ki

+ 1) =

f(xi(t
i
ki

), x̂−i(t
i
ki

), h(xi(t
i
ki

)), di(t
i
ki

)). Moreover,

Vi,l+1(xi(t
i
ki))− Vi,l(xi(t

i
ki))

≤ max
di(tiki

)

{
Li(xi(t

i
ki), h(xi(t

i
ki)))

+ Vi,l(f(xi(t
i
ki), x̂−i(t

i
ki), h(xi(t

i
ki)), di(t

i
ki)))

}
− max
di(tiki

)

{
Li(xi(t

i
ki), h(xi(t

i
ki)))

+ Vi,l−1(f(xi(t
i
ki), x̂−i(t

i
ki), h(xi(t

i
ki)), di(t

i
ki)))

}
≤ max
di(tiki

)

{
Vi,l(xi(t

i
ki + 1))− Vi,l−1(xi(t

i
ki + 1)))

}
≤ε.

(11)

From (10) and (11), it follows that Vi,l(xi(t
i
ki

)) ≤
Vi,0(xi(N ; tiki)) + lε, ∀xi(tiki) ∈ Ωi. This is the mono-
tonicity property of the value function for the constrained
distributed min–max MPC optimization problem.

Theorem 6. For the dynamically coupled perturbed non-
linear systems with asynchronous communication graph G,
suppose that xi(t

i
ki

) ∈ Xi and Assumption 5 and Lemma
6 are satisfied. Then, Problem Pi of Algorithm 1 is re-

cursively feasible. Furthermore, the closed-loop perturbed
system in (1) with the distributed self-triggered min–max
MPC strategy is ISpS with respect to the set Ωi.

Proof. Part I: Recursive Feasibility: We first establish the
recursive feasibility of Algorithm 1. Assume that there
exists a feasible solution for problem Pi at ti0i

and recursive
feasibility for all subsequent triggering instants is proven
by induction. The optimal control sequence obtained at
tiki is denoted as u∗i (t

i
ki

) = (u∗i (0; tiki), . . . , u
∗
i (H

i∗ −
1; tiki), µi(H

i∗; tiki), . . . , µi(N−1; tiki)). The first Hi∗ open-
loop control actions are applied to the system i. At the
next triggering time instant tiki+1 = tiki + Hi∗(tiki), a

candidate control ũi(s; t
i
ki+1) can be constructed as

ũi(s; t
i
ki+1) =

{
µi(H

i∗ + s; tiki) s ∈ I[0,N−Hi∗)

κi(x̃i(H
i∗ + s; tiki)) s ∈ I[N−Hi∗,N).

where Hi∗(tiki) is abbreviated as Hi∗. By Assumption 5 ,

it follows that ũi(s; t
i
ki+1) ∈ Ui, s ∈ I[Hi∗(ti

ki
),Hi∗(ti

ki
)+N),

the control input constraint (5c) is satisfied. Hence, we
only need to prove the state constraint is fulfilled at next
triggering instant tiki+1. For s ∈ I[Hi∗(ti

ki
),N), we have

x̃i(s; t
i
ki+1) = x∗i (s; t

i
ki

) ∈ Xi; then, for s ∈ I[N,Hi∗(ti
ki

)+N),

under the local controller κi(x̃i(s; t
i
ki+1)), the subsystem

states always belong to the robust invariant set Ωi. Hence,
the subsystem state constraint (5d) is satisfied.

Part II: Stability: Now the stability of the closed-loop
system i is analyzed. Follow the idea in (Liu et al. (2018)),
we give the upper bound of the value function. As As-
sumption 5 holds, then the candidate ISpS-type Lya-

punov function for subsystem i, i ∈ M, V H
i

i,N (xi(t
i
ki

)) ≥
L(xi(t

i
ki

), ui(t
i
ki

)) ≥ αL(‖xi(tiki)‖). Define a set Bi,r =

{xi(tiki) ∈ Rn|‖xi(tiki)‖ ≤ ri} ⊆ Ωi. Due to the compact-
ness of Xi and Ui, the optimal value of the min–max MPC

cost function is upper bounded, i.e., V H
i

i,N (xi(t
i
ki

)) ≤ V̄i,N .

If xi(t
i
ki

) ∈ Ωi, according to Assumption 5 , we have

Fi(xi(t
i
ki + 1))− Fi(xi(tiki)) ≤ −Li(xi(t

i
ki), κi(xi(t

i
ki))) + ε.

(12)
By summing up (12) from s = 0 to N , we get

Fi(xi(N ; tiki)) +

N−1∑
s=0

Li(xi(s; t
i
ki), κi(xi(s; t

i
ki)))

≤Fi(xi(0; tiki)) +Nε.

(13)

As the self-triggered condition (6b) is satisfied, i.e.,

V H
i

i,N (xi(t
i
ki

)) ≤ V 1
i,N (xi(t

i
ki

)). From (13) follows that,

V H
i

i,N (xi(t
i
ki)) ≤Vi,N (xi(t

i
ki)) ≤ ᾱF (‖xi(tiki)‖) +Nε.

Next, if xi(t
i
ki

) ∈ Xi,N (Ωi)\Ωi, which implies that

ᾱF (‖xi(tiki)‖) ≥ ᾱF (ri). And thus

V H
i

i,N (xi(t
i
ki)) ≤V̄i,N

ᾱF (‖xi(tiki)‖)
ᾱF (ri)

≤ θiᾱF (‖xi(tiki)‖) +Nε

where θi = max{1, V̄i,N

ᾱF (ri)
}.

If the control action generated by Algorithm 1 ui(t
i
ki

) =

umpc
i (tiki) is applied, then the system evolves to xi(t

i
ki+1) =
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f(xi(t
i
k), x̂−i(t

i
ki

), umpc
i (tiki), di(t

i
ki

)). Based on the mono-
tonicity of the value function in Lemma 6 , we obtain

V
Hi∗(tiki+1)

i,N (xi(t
i
ki+1))− V

Hi∗(tiki
)

i,N (xi(t
i
ki))

≤V 1
i,N (xi(t

i
ki+1))− V H

i∗

i,N (xi(t
i
ki))

≤Vi,N (xi(t
i
ki+1))− max

di∈Di

{Vi,N−Hi∗(x∗i (H
i∗; tiki))

+

Hi∗−1∑
s=0

1

~i
Li(x

∗
i (s; t

i
ki), u

∗
i (s; t

i
ki))}

≤Vi,N (xi(t
i
ki+1))− Vi,N−Hi∗(xi(t

i
ki+1))

−
Hi∗−1∑
s=0

1

~i
Li(x

∗
i (s; t

i
ki), u

∗
i (s; t

i
ki))

≤−
Hi∗−1∑
s=0

1

~i
Li(x

∗
i (s; t

i
ki), u

∗
i (s; t

i
ki)) +Hi∗(tiki)ε

(14)

Clearly, the function V H
i

i,N (xi(t
i
ki

)) is the ISpS-type Lya-
punov function, which means that the closed-loop system
i is ISpS with respect to Ωi. This concludes the proof.

4. NUMERICAL EXAMPLE

Consider a three-agent system that comprises three dis-
crete nonlinear cart-spring-damper system (Liu et al.
(2014)). Each subsystem i is characterized by

xi1(tk + 1) =xi1(tk) + Txi2(tk)

xi2(tk + 1) =xi2(tk) +
T

mi
(−k0e

−xi1(tk)xi1(tk)

− hdxi2(tk)− kc(xi1(tk)− xj1(tk))

+ ui(tk) + vi(tk)xi2(tk) + wi(tk))

(15)

where xi1 and xi2 are the displacement and the velocity,
respectively, the mass mi = 1kg, the local nonlinear spring
steady-state stiffness k0 = 0.33N/m, the interconnecting
linear spring stiffness kc = 0.01N/m, the local viscous
damping hd = 0.3Ns/m, the sampling period is 0.3s. The
communication topology of systems adopts the neighbor-
to-neighbor method as shown in Fig. 2. The disturbances
and parametric uncertainties are bounded by −0.1 ≤
wi(tk) ≤ 0.1, −0.05 ≤ vi(tk) ≤ 0.05, respectively. The
control input requires −2N ≤ ui(tk) ≤ 2N and the system
state requires −2m ≤ xi1(tk) ≤ 2m. The initial states
of three subsystems are x1(t0) = [1.5, 0.5]T, x2(t0) =
[−1.6,−0.8]T, x3(t0) = [−0.65, 1.0]T.

The parameters of distributed min–max MPC optimiza-
tion problem are chosen as: the prediction horizon is se-
lected as N = 5 and the maximum triggering interval
H̄ = 4. The weighting matrices are chosen as Qi =
diag(0.64, 0.64), Pi = [4.5678, 3.2018; 3.2018, 4.3500] and
Ri = 1. The trade-off parameter ~i = 1.1. According
to (Liu et al. (2018); Magni et al. (2006)) the terminal
conditions for min–max MPC are designed as follows: Ωi =
{x : ‖x‖Pi

≤
√

3.8} and the terminal control law is chosen

as κi(xi) = [−0.7797,−1.1029]xi. The feedback control

policy µi(xi) = aκi(xi) + b‖xi‖2 + c, with a, b, c ∈ R. The
disturbances of each subsystem are shown in Fig. 5. Two
group of numerical experiments are conducted, i.e., the
distributed periodic min–max MPC and the distributed
self-triggered min–max MPC. The constrained distributed

min–max MPC optimization problem is solved by using
built-in function fminimax in MATLAB.

S1S2

S3

Fig. 2. Interconnection topology of three subsystems.

The displacements, velocities, self-triggered instants and
control signals of three subsystems are depicted in Figs. 3-
4. Fig. 3 illustrates the displacements, velocities trajecto-
ries and triggering time instants of three subsystems. The
control input signals of subsystems with periodic sampling
and self-triggered sampling are shown in Fig. 4. To fur-
ther compare the control performance and communication
cost, the average sampling time and the average cost are
summarized in TABLE. 1. The average cost is defined as

J̄ = J1+J2+J3
3 , Ji =

∑Tsim

tk=0
‖xi(tk)‖Qi

+‖ui‖Ri

Tsim
, where Tsim is

the total simulation time. As can be seen, the communi-
cation cost is significantly reduced by using the proposed
algorithm while achieving comparable control performance
of distributed periodic min–max MPC.
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Agent1-periodic
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Fig. 3. State trajectories of three subsystems with periodic
sampling and self-triggered sampling and the trig-
gering time instants of three subsystems. Top: The
displacement trajectory of three subsystems. Middle:
The velocities. Bottom: The triggering instants.

Table 1. Performance comparison.

Method Average sampling time Average cost

Periodic 0.3000 1.4702
self-triggered 0.9065 1.5600
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Fig. 4. Trajectories of control ui of three subsystems with
the periodic and self-triggered setting.
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Fig. 5. Disturbances trajectories of three subsystems.

5. CONCLUSION

In this paper, we propose a distributed self-triggered min–
max MPC algorithm for the formation stabilization of the
nonlinear dynamically coupled systems with parametric
uncertainties and external disturbances. Each subsystem
aperiodically samples its states and asynchronously broad-
casts its newest states to its neighbors based on the de-
signed distributed self-triggered scheduler. The recursive
feasibility and closed-loop stability of the proposed method
are rigorously analyzed. The simulation results verified the
effectiveness of the proposed method.
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