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Abstract: This paper proposes a simple saturated proportional-integral-derivative (PID) control for set-
point stabilization of motion systems subject to actuator constraint. The proposed controller consists of a 
saturated proportional-derivative (PD) term and a saturated integral (I) term that robustly compensates 
the constant or slow time-varying unknown disturbances. It is shown that the proposed saturated PID 
(SPID) controller globally asymptotic stabilizes the set-point of motion systems without violation of 
actuator constraint. The appealing feature of the proposed approach is that it embeds the PD term within 
a single saturation function, which allows us to choose the proportional and derivative gains freely for 
faster transient and higher steady-state set-point precision. Numerical comparisons of an illustrative 
example demonstrate the improved performance of the proposed approach. 

Keywords: Actuator constraint, proportional-integral-derivative (PID) control, motion systems, 
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

1. INTRODUCTION 

Motion systems have been widely applied in industrial 
automation fields. Set-point is the simplest aim in motion 
control and at the same time one of the most relevant issues 
in practice (Bucci, Cole, Ludwick, & Vipperman, 2013; 
Ohnishi, Shibata, & Murakami, 1996). Although the modern 
control theory has achieved considerable progress, so far 
most industrial motion systems are still controlled with 
PID/PD controllers, due mostly to their conceptual simplicity, 
model-free formulation, and explicit tuning procedures 
(Bisoffi, Da Lio, Teel, & Zaccarian, 2018; Putra, Nijmeijer, 
& van de Wouw, 2007; Su, Müller, & Zheng, 2010). 

To improve the performance of the classical PID control, 
significant effort has been devoted and some nonlinear 
PID/PD structures have been proposed. More specifically, 
several variable-gain linear controls for fast transient of 
motion systems can be found in the literature (Armstrong, 
Guitierrez, Wade, & Joseph, 2006; Hunnekens, van de Wouw, 
Heertjes, & Nijmeijer, 2015; van de Wouw, Pastink, Heertjes, 
Pavlov, & Nijmeijer, 2008). Recognizing the advantages of 
high robustness against uncertainties and disturbances, 
impulsive control is introduced to improve the performance 
of the classical PID/PD control (Orlov, Santiesteban, & 
Aguilar, 2009; van de Wouw & Leine, 2012). Switching 
control offers an alternative solution to an improved PID/PD 
control for motion systems. Such examples include switching 
PID control (Beerens, Nijmeijer, Heemels, & van de Wouw, 
2017) and adding a relay-like term to the commonly-used PD 
control (Zheng, Su, & Mercorelli, 2018). Recently, to 
improve the convergence of PID controlled motion systems 
with friction, several appealing reset schemes have been 
proposed (see, e.g., Aangenent, Witvoet, Heemels, van de 
Molengraft, & Steinbuch, 2010; Beerens, Bisoffi, Zaccarian, 

Heemels, Nijmeijer, & van de Wouw, 2019; van Loon, 
Hunnekens, Heemels, van de Wouw, & Nijmeijer, 2016). 

While these elegant schemes achieve satisfactory results, one 
major drawback remaining is that the control designs do not 
take into account actuator constraint. It is known that the 
control system design approaches that do not incorporate 
input constraint directly may suffer from the deteriorate 
performance limitations such as degraded or unpredictable 
motion, thermal or mechanical failure, and even instability of 
the controlled system (Galeani & Teel, 2006; Gayaka, Lu, & 
Yao, 2012; Hu & Lin, 2001). 

This observation is supported by several works on high-
precision set-point of motion systems subject to actuator 
constraint. In particular, Workman (1987) pioneers a 
proximate time-optimal (PTO) scheme for servomechanisms 
to overcome the effect of actuator saturation. This seminal 
work is later extended in several directions and various 
interesting PTO controls have been proposed (Cheng & Hu, 
2014; Salton, Al-Ghanimi, Flores, Zheng, Gomes da Silva, & 
Fu, 2017; Salton, Chen, & Fu, 2012). The other efforts on the 
composite nonlinear feedback (CNF) methodology for fast 
and accuracy control of motion systems with actuator 
constraint can be found in the literature, see, e.g., Chen, Lee, 
Peng, and Venkataramanan (2003), Cheng and Peng (2007), 
Peng, Chen, Cheng, and Lee (2005), and the references 
therein. The weakness of these saturated controls is that they 
require the system parameters to be known exactly. 

Recently, a simple model-free saturated PD control is 
proposed for an improved set-point of motion systems with 
actuator constraint (Zheng, Su, & Mercorelli, 2019a). The 
minor weakness is that the friction is not considered. This 
favourable result is later extended by adding a robust term to 
compensate the effect of nonlinear friction (Zheng, Su, & 
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Mercorelli, 2019b, c). The main drawback of these model-
free saturated control techniques is that the persistent 
injection of high frequency robust control signals may excite 
unmodeled high-frequency system dynamics, which is highly 
undesirable in motion systems, and, therefore, these 
techniques are not appealing for being used in industrial 
applications (Beerens, Bisoffi, Zaccarian, Heemels, Nijmeijer, 
& van de Wouw, 2019). 

In this paper, we propose a simple but quite effective 
saturated PID (SPID) control for motion systems subject to 
actuator constraint and constant or slow time-varying 
disturbance. The proposed SPID control is constructed within 
the framework of model-free nonlinear PID (NPID) control 
methodology with simple and intuitive structure, and thus it 
permits easy implementation. The proposed control embeds 
the PD action within a single saturation function and utilizes 
a saturated integral term to compensate the effect of the 
constant or slow time-varying unknown disturbances. 
Benefitting from such design, it completes remove elaborated 
discrimination of the terms of the commonly-used saturated 
controls that shall be bounded and permits free choice of 
proportional and derivative gains, and thus it is ready for 
implementation with faster transient and higher steady-state 
set-point precision. Global asymptotic stabilization is proven 
following Lyapunov’s direct method and LaSalle’s 
invariance principle. The conditions on control gains 
ensuring global asymptotic stability are obtained. The 
effectiveness and improved performance of the proposed 
approach is demonstrated by numerical simulations 
performed on a servo system used in (Cheng & Peng, 2007). 

2. PROBLEM STATEMENT 

Similar to (Cheng & Peng, 2007; Peng, Chen, Cheng, & Lee, 
2005), consider the following motion system 

Jq u bq d                                                                          (1) 

where J  is the positive inertia (or mass), q  and q  denote 

the angular position (or position) and angular velocity (or 
velocity), u  is the control input, b  denotes the viscous 
damping friction coefficient, and d  is a bounded unknown 
constant or slow time-varying disturbance. 

For our purpose, the following assumption is required. 

Assumption 1. We assume that the actuator has a maximum 
torque maxu  satisfying 

max mu d                                                                               (2) 

where md  is a known positive constant such that md d . 

For a given desired constant position dq  for the motion 

system defined by (1), our objective in this paper is to design 
a very simple model-free high computational efficient 
saturated PID control satisfying the actuator constraint 

maxuu                                                                                  (3) 

such that the system is global asymptotic stable with an 
improved performances including fast transient and high 
steady-state set-point precision. 

To quantify this objective, a set-point error ( )e t  is defined as 

dqqe                                                                                (4) 

Our proposed control explores on the following lemma. 

Lemma 1 (Su, Zheng, & Mercorelli, 2017). For any 
yx, , a strictly increasing saturation function )(x  

ensures that 0))()((  xyxy   if 0y  and 

0))()((  xyxy   if and only if 0y . 

3. CONTROL DEVELOPMENT 

3.1  Control formulation 

Following (Zheng, Su, & Mercorelli, 2018, 2019a), we first 
define a nonlinear function as follows 

1

sgn( ),
( )

,

x x x
s x

x x







 

  


                                          (5) 

where , (0, 1]    are parameters to be designed, and )sgn(  

is the standard signum function. 

Lemma 2 (Zheng, Su, & Mercorelli, 2018). The nonlinear 
function )(xs  has the following properties: 

1) )(xs  is strictly increasing in x  and 0)( xs  only for 

0x ; 
2) For all 0x , the following fact holds true 

2( ) ( ) tanh( ) tanh ( ) 0xs x s x x x                                                (6) 

where )tanh(  is the standard hyperbolic tangent function. 

We now propose the following simple model-free saturated 
PID (SPID) control to solve the above stated problem: 

tanh( ( ) ) tanh( )m p d iu a k s e k q k y                                   (7) 

0
[ ( ) tanh( ( ))]

t
y q e d                                                       (8) 

where pk , ik , and dk  are positive proportional, integral, and 

derivative gains, respectively, and ma  and   are two 

positive constants. 

Remark 1. Different to the aforementioned well-known PTO 
and CNF strategies for motion systems, the proposed SPID 
control is constructed in the framework of NPID 
methodology, which is complete model-free with intuitive 
structure, and this it is easy to implement in practice. In 
comparison with our saturated controls (Zheng, Su, & 
Mercorelli, 2019b, c), a saturated integral action is introduced 
and the proposed control is absolute continuous, and hence it 
removes the potential chattering of (Zheng, Su, & Mercorelli, 
2019b, c) resulted from the discontinuous robust 
compensation involving signum function and thus it is quite 
appealing for being used in industrial applications. 

It is clear from (7) that the control effort of the proposed 
SPID control can be explicitly upper bounded by 

m iu a k                                                                              (9) 
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To facilitate the following analysis, let us define a filtered 
positioning error as follows: 

tanh( )e e                                                                    (10) 

Now the error system development is first conducted by 
calculating the open-loop filtered error dynamics. To this end, 
taking the time derivative of (10) yields 

2sech ( )e e e                                                                   (11) 

where )(sech   is the standard hyperbolic secant function. 

Multiplying both sides of (11) by J  and then substituting qJ   

from (1) into the resulting expression, it follows that 

2sech ( )J u bq d J e q                                                   (12) 

where we have invoked the facts that qe    and qe    for 

set-point control. 

Upon introducing a new variable 

1tanh( ) iz y k d                                                                 (13) 

and substituting the proposed control (7) into (12), the 
closed-loop dynamics for   take 

2tanh( ( ) ) ( sech ( ))m p d iJ a k s e k q b J e q k z               (14) 

After adding the term dk   and subtracting the equivalent 

term ( tanh( ))dk e e  (by the definition of   of (10)) to the 

first term of the right-hand side (RHS) of (14), we have 

2

tanh( ( ) tanh( ))

( sech ( ))

m d p d

i

J a k k s e k e

b J e q k z

  



   

  




                        (15) 

where the fact that qe    for set-point control is used. 

Now let us define an auxiliary function ( )e  as follows 

( ) ( ) tanh( )p de k s e k e                                                   (16) 

After adding and subtracting the term tanh( ( ))ma e  to the 

RHS of (15), it follows that 

2

[tanh( ( )) tanh( ( ))]

tanh( ( )) ( sech ( ))

m d

m i

J a k e e

a e b J e q k z

   

 

   

   




                 (17) 

where we have invoked (16). 

3.2  Stability analysis 

Now we are in a position to present the following theorem. 

Theorem 1. Given the uncertain motion systems subject to 
actuator constraint and bounded unknown constant or slow 
time-varying disturbances described by (1) and the desired 
constant position dq , the proposed SPID control defined by 

(7) and (8) ensures global asymptotic set-point stability and 
completely avoids actuator saturation, provided the control 
gains are chosen to satisfy the following sufficient conditions: 

i mk d                                                                                  (18) 

maxm ia k u                                                                        (19) 

0 min ,p

d

k b

k J


 
   

 
                                                          (20) 

Proof. The proof proceeds with Lyapunov’s direct method 
and LaSalle’s invariance principle. For this purpose, the 
Lyapunov function candidate is proposed as 

2
1 2 3

1

2
V J V V V                                                          (21) 

with , 1, 2, 3iV i   are, respectively, defined as 

1
0
tanh( ( ))

e

mV a d                                                              (22) 

2
2

0
( sech ( )) tanh( )

e
V b J d                                            (23) 

2 1
3

0
sech (atanh( ))

z

i iV k k d d                                         (24) 

where atanh( )  being the standard inverse hyperbolic tangent 

function. 

To show the radially unbounded and positive definiteness of 
V , we first consider 1V  defined by (22). By virtue of 

property (6) in Lemma 2 and the condition (20) on   (i.e. 

p dk k ), it is easy to verify that 

( ) 0e e   for 0e  , and ( ) 0e e   only for 0e              (25) 

This fact together with the property of the standard 
hyperbolic tangent function allows us to conclude that 1V  is 

radially unbounded and positive definite with respect to 
(w.r.t.) e . Similarly, by condition (20) on   (i.e. b J ) 

and the fact that 2sech ( )J J      from the property of 

the standard hyperbolic secant function, 2V  is also radially 

unbounded and positive definite w.r.t. e . 

In the light of the fact that 2sech ( )   is positive and the 

property of the calculus, it is straightforward to have the fact 
that 3V  defined by (24) is radially unbounded and positive 

definite w.r.t. e . Finally, invoking the positive property of 
the inertia J , it can conclude that the V  given by (21) is 
radially unbounded and positive definite w.r.t. e, . 

Upon taking the time derivative of V  along (17) yields 

2

2 1

tanh( ( )) ( sech ( )) tanh( )

sech (atanh( ))

m

i i

V J a e e b J e e e

k z k d zz

   
 

   

 

   


    (26) 

By the definition of z  in (13) and the assumption on the 
disturbance d , it is straightforward to have 

2sech ( )z y y                                                                       (27) 

After taking the time derivative of (8) and invoking (10) and 
the fact that qe    for set-point control, it is clear that 

y                                                                                      (28) 
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Again recalling the definition of z  in (13) and the property 
of function, it is easy to have 

1atanh( ) atanh(tanh( ))iz k d y y                                    (29) 

In the light of (27)–(29), it is easy to conclude that 

2 1 2 2sech ( tanh( )) sech ( ) sech ( )ia z k d zz y z y z        (30) 

Now substituting J  from (17) and (30) into (26), we have 

2 2

[tanh( ( )) tanh( ( ))]

tanh( ( )) tanh( ) ( sech ( ))

m d

m

V a k e e

a e e b J e q

   

  

   

  




           (31) 

By virtue of Lemma 1, it yields 

[tanh( ( )) tanh( ( ))] 0m da k e e                                   (32) 

Upon applying (32) to (31), the final upper bound for V  is 

2tanh( ( )) tanh( ) ( )mV a e e b J q                                (33) 

Obviously, 0V   and 0V   implies that 0e   and 0q  . 

Hence, by invoking LaSalle’s invariance principle (Slotine & 
Li, 1991), the globally asymptotic stability shown in 
Theorem 1 directly follows. This ends the proof.□ 

Remark 2. The proposed SPID control is constructed within 
the framework of saturated PID control methodology with 
very simple and intuitive structure and without reference to 
any modelling parameter, and thus it is easy to implement. 
The gains of the proposed SPID control can be tuned as 
follow: the positive constants   and   to shape the error 
should be determined first. Normally,   can be chosen as 

0.01   for most motion systems and smaller   is helpful 
for faster transient but too small   may induce chattering. 
Then, ik  should be chosen to satisfy the condition (18) in 

Theorem 1 for disturbance rejection. After that, ma  can be 

chosen subject to constraint maxm ia u k   from (19). Finally, 

pk  and dk  can be freely tuned following the abundant 

guidelines for PD control for motion systems. 

Remark 3. On the basis of the above derivation, for the 
position control of motion systems (1), the commonly-used 
three-term saturated PID (cSPID) control maybe conceived as 

0 0tanh( ( )) tanh( ) tanh( )p p d d iu k k s e k k q k y                (34) 

where pk , ik , dk , and y  are the same as (7), and 0pk  and 

0dk  are positive sharpness factors. It is easily to see that to 

avoid the actuator saturation, the control gains of the cSPID 
control should be chosen to satisfy 

maxp i dk k k u                                                                  (35) 

Remark 4. Comparing (7) and (34), and (19) and (35), it is 
clear that the proposed SPID control has simple structure and 
it embeds the PD action within a single saturation function. 
Benefiting from this single saturation function embedment, 
the proposed SPID control removes the elaborated 
discrimination of proportional and derivative gains within the 
allowable actuator constraint and permits free choice and 
hence the further performance improvement is expected. 

4. AN ILLUSTRATIVE EXAMPLE 

In this section, the effectiveness and improved performance 
of the proposed SPID control is illustrated by an example 
used in (Cheng & Peng, 2007). The dynamics of the 
positioning system is given as (1) with 

1 20.1245 N m rad sJ      and 10.3516 Nm rad sb    . 

The actuator constraint is max 1 Nmu  . Similar to (Cheng & 

Peng, 2007), the desired set-point is 0.1raddq   and the 

disturbance is 0.05 Nmd  . All other conditions are also the 

same as (Cheng & Peng, 2007). The CNF control is given as 
(Cheng & Peng, 2007, eqs. (2) and (50)) 

 0 0 max 0( ) sign( ) min ,u sat u u u u                                  (36) 

2

0
1

ˆ( )d n

q e
u F q e F d

q qb

 
   

       
    

                               (37) 

where the matrices F  and nF , and function ( )e  are as 

2
0 1

1 1

2
,

a a
F

b b

   
  
 

                                                   (38) 

2

1 1

(1 )
,

2nF
b b

  


 
  
 

                                                           (39) 

   ( ) exp exp (0) de e q x                               (40) 

and d̂  is obtained by the following reduced-order observer 
(Cheng & Peng, 2007, eqs. (49)) 

0( )

ˆ
v v v v v

v v

x A x B sat u C q

p x L q

  
  


                                             (41) 

with 1 2( , )T
v v vx x x  is the output of the observer, 

2
ˆˆ ˆ( , )Tp x d  with 2x̂  and d̂  is the estimated velocity q  and 

d , respectively, and matrices vA , vB , and vL  are defined as 

1

2
1

2

0

v
v

v

b
A

b





 
  

  
, 1

0v

b
B

 
  
 

                                           (42) 

2
0 1 0

2 3
1 1

2

( 2 )

v
v

v v

a a
C

a b

 

 

  
  

   
, 1

2
1

2 v
v

v

a
L

b





 
  
  

                (43) 

where 0a , 1a , and 1b  are the system parameters obtained by 

J  and b  and are given as 0 0a  , 1 2.825a   , and 

1 8.034b   (Cheng & Peng, 2007). Note that for a fair 

comparison we replace 2x̂  with q  in 0u  of (Cheng & Peng, 

2007), due to the proposed control is full state feedback. 

The control gains of the CNF are the same as (Cheng & Peng, 
2007): 0.3  , 6  , 0.1  , 15v  , 2  , and 6  . 

The gains of the proposed SPID control are chosen as: 
0.01  , 0.5  , 0.5  , 0.8ma  , 40pk  , 0.1ik  , and 

15dk  . The set-point error and requested control inputs are 

illustrated in Figs. 1 and 2, respectively. 
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Fig. 1. Set-point error comparison with CNF control. 

 

Fig. 2. Requested control inputs of SPID and CNF controls. 

As we see, both two controls ensure that the positioning 
system completes the desired motion successfully and the set-
point errors converge to zero asymptotically after a large 
initial errors. Obviously, the proposed SPID control obtains a 
much faster transient over the CNF control. The requested 
inputs of the two controls keep within the allowable level. 
Note that the faster transient of the SPID control is obtained 
with a quite simple and model-independent control. 

After that, comparison with the commonly-used saturated 
PID (cSPID) control of (34). The conditions and gains of the 
SPID control are unchanged. The gains of the cSPID control 
are 0.5pk  , 0.48dk  , 0 35pk  , 0 30dk  , and the others 

are the same as SPID control. The results are shown in Figs. 
3 and 4. Obviously, the proposed SPID control also gives a 
much faster transient over the cSPID control. Note that this 
favourable is benefitted from the complete embedment of the 
PD action within a single saturation function such that the 
proportional and derivative gains can be freely chosen. 
Although the sharpness factors 0pk  and 0dk  of the cSPID 

control can be freely chosen, but they are not directly 
formulated to the control action. Limited by the actuator 
constraint, the proportional and derivative gains pk  and dk  

of the cSPID control cannot be chosen so large and hence the 
cSPID control cannot give a faster transient. 

 

Fig. 3. Set-point error comparison with cSPID control. 

 

Fig. 4. Requested control input of cSPID control. 

Finally, we show the benefit from the nonlinear function 
( )s e  by comparing with the following saturated linear PID 

(SLPID) control 

tanh( ) tanh( )m p d iu a k e k q k y                                      (44) 

where pk , ik , dk , ma , and y  are the same as (7) and (8). 

The gains of the SLPID control are the same as SPID control 
except 100pk   and 70dk  . The results are shown in Figs. 

5 and 6. It is clearly seen that the proposed SPID control 
achieves a much significant faster over the SLPID control. 

 

Fig. 5. Set-point error comparison with SLPID control. 
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Fig. 6. Requested control inputs of SPID and SLPID controls. 

On the basis of the above simulations, we can conclude that 
the proposed model-free SPID control provides a much 
improved solution for set-point control of uncertain motion 
systems with actuator constraint and constant disturbance. 

5. CONCLUSIONS 

In this paper, a simple but quite effective model-free 
saturated PID control is proposed for faster transient of 
motion systems subject to actuator constraint. The proposed 
controller consists of a saturated PD action and a saturated 
integral action for compensation of constant and slow time-
varying bounded disturbances. Global asymptotic set-point 
stability is proven. The conditions ensuring global asymptotic 
stability and avoidance of actuator saturation are obtained. 
The improved performance of the proposed approach is 
demonstrated by a servo system. The proposed controller 
provides an easy-going solution for faster transient of 
uncertain motion systems subject to actuator constraint. 
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