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Abstract: The regulations on NOx emissions from diesel vehicles have been stringent in recent
years. Various techniques such as lean NOx trap (LNT) and selective catalytic reduction (SCR)
have been developed to lessen the NOx emissions . The urea-based SCR method, which utilizes
NH3 as reducing agent to remove NOx, is widely used. Determining optimal amount of injected
urea that keeps NOx at outlet below regulated NOx emission and also minimizes the amount
of dosed urea is important. Model predictive control (MPC) is popularly used to determine the
optimal amount of injected urea. However, applying MPC to real vehicle driving may be difficult
because the on-line computation of MPC is too costly to be conducted in the engine control
unit (ECU), the computation performance of which is significantly low at present. Therefore,
reinforcement learning (RL) is considered as an alternative to on-line control method. In this
paper, deep Q-networks (DQN), which is an off-policy RL with discrete action space and suitable
to solve high dimensional problem, is applied to determine the amount of urea injection in the
SCR system. The simulation of urea injection control with DQN has been conducted with
respect to inlet NOx emissions of real driving data.

Keywords: Diesel vehicle, Selective catalytic reduction, Urea-based SCR system,
Reinforcement learning, Model-free learning, Deep-Q networks.

1. INTRODUCTION

Diesel engines have been widely used in the vehicle due
to their superior fuel efficiency and lower CO2 emission.
However, the diesel engines have a challenging limitation
that it generates NOx, which is known to be harmful
to the environment and human health (Morawska et al.,
2004). With global increasing concerns on the issues,
the regulations on the NOx emission from diesel vehicles
have been stringent all over the world. According to the
recent emission regulations of European Union, the limited
amount of NOx was reduced from 180 mg/km at Euro 5
to 80 mg/km at Euro 6 (Ko et al., 2017). Considering the
incoming emission regulation of Euro 7 which is expected
to be more harsh and challenging, efforts to eliminate NOx
will be even greater (Puškár and Kopas, 2018).

To satisfy the tightened regulation, various technologies
to reduce NOx emission from diesel vehicle. Among those
technologies, urea-based SCR is a promising method due
to its ability to reduce NOx efficiently (Gabrielsson, 2004).
In the urea-based SCR system, the urea is injected into
the hot gas upstream of the catalytic reactor. The urea is
thermally decomposed to NH3, which is adsorbed into the
catalyst in the reactor. The adsorbed NH3 is utilized as a
reductant, converting NOx to N2 (Koebel et al., 1996).

Control of urea injection is play a important role in attain-
ing high NOx removal efficiency. In addition, depending on
the control method of urea injection, the amount of NH3

slip at the tailpipe and remaining amount of urea in a
tank are determined. Thus, many researchers have focused
on the development of efficient control methods for urea
injection in the SCR system. In particular, model predic-
tive control (MPC) is one of the most widely used control
methods in the urea-based SCR system. Chiang et al.
propose a new controller design with MPC that minimizes
NOx emissions and NH3 slip during the transient driving
cycle (Chiang et al., 2010). Kim et al. suggest a control
method integrating backstepping control with MPC, which
makes SCR system stable with respect to disturbances
and determines a desired adsorbed NH3 coverage fraction
of catalyst (Kim et al., 2018). The studies demonstrate
that NOx at outlet controlled by MPC satisfies the regu-
latory amount. In addition, it is suggested that the overall
efficiency of MPC, which considers NOx, NH3 slip, and
injected urea, is superior to other control methods.

Though MPC has been widely used as a fairly good con-
troller for the urea-based SCR system, MPC has a critical
limitation that it requires excessive on-line computation.
Application of MPC, which should solve a challenging
optimization problem on-line, might be difficult when the
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mathematical model of the system is too complex or sam-
pling time is short (Lee, 2014). The other disadvantage of
MPC is the model-plant mismatch. In utilizing MPC, the
plant is usually reduced to a simplified model where the
obtained policy is not equivalent to the optimal policy of
the real system (Badwe et al., 2009).

The urea-based SCR system is a complicated system where
dynamics inside the SCR reactor are represented as a
partial differential equations (PDE) with respect to bulk
gas and temperature. The dimension of states in the
system can be fairly high in dealing with the infinite states
of PDE. Thus, the model complexity in the urea-based
SCR system poses a challenge of on-line computation in
MPC. To lessen the limitations of the on-line computation,
MPC usually utilizes reduced models such as control
oriented two-cell model. (Kim et al., 2018).

Nevertheless, from a practical point of view, the feasibility
of computation of MPC in real driving is still doubtful. The
main reason is that engine control unit (ECU), where the
computation of control performs in the modern vehicles,
still lacks ability to conduct complex calculation. The
demanding on-line computation, for example, from MPC
is difficult to implement due to the insufficient number
of ECUs, the footprint of which is limited in the modern
vehicle (Stewart and Borrelli, 2008). It is also suggested
that the on-line computation of MPC would be impractical
due to poor performance of ECU (Del Re et al., 2010).
In addition, the sampling interval for measurement of
incoming NOx is short, which makes application of MPC
to real driving more difficult.

Reinforcement learning (RL) (Sutton and Barto, 2018), an
off-line approach, can be an alternative to MPC for urea
based SCR system. The advantage of RL as a controller is
that computation time is fairly short because it utilizes a
control policy obtained off-line, not in each time step (Lee,
2014). Among numerous RL algorithms, this study em-
ploys the deep-Q networks (DQN), an off-policy RL with
discrete action space (Mnih et al., 2015) because DQN is a
proper algorithm in dealing with high dimensional system
such as urea based SCR system. It is also expected that
the mismatch problem can be alleviated in that DQN is
model-free based method.

The rest of the paper is organized as follows: In Section 2,
overall mathematical models of SCR system are presented.
In Section 3, detailed explanation on DQN algorithm is
provided. In Section 4, simulation results on the SCR
system are presented to validate the performance of DQN.
The results of cost and NOx emissions at outlet with DQN
and MPC will be compared. The computation time of
DQN and MPC is also compared to discuss performance
of DQN controller.

2. PRELIMINARIES

2.1 Virtual plant of SCR system

The SCR system consists of honeycomb catalytic mono-
lith. The pollutant bulk gas containing NOx passes
through each channel of monolith, where the NOx is re-
moved by reduction with the adsorbed NH3 in the catalyst.
The inside of each channel is covered with the porous layers

containing catalyst, called washcoat.
The governing equations of the virtual SCR system model
is referred to (Kim et al., 2018). In addition, the following
assumptions are required to establish governing equations:

• Plug flow and negligible pressure drop
• Incompressible gas
• Negligible heat transfer between the SCR system and
ambient system
• The bulk gas temperature and wash coat temperature
are the same

The governing equations can be written as

• Concentration of bulk gas species (xg,j , m=catalyst)

φg(
∂xg,j
∂t

+ u
∂xg,j
∂z

) = −km,jGa(xg,j − xwc,j
Tg
Tm

). (1)

• Concentration of gas species in washcoat (xwc,j)

(1− φg)φwcεwc
∂xwc,j
∂t

= km,jGa(xg,j
Tm
Tg
− xwc,j)

+
RTm
P

n∑
i=1

λjiri.

(2)

• Coverage fraction of catalyst (θm,k, k=site)

∂θm,k
∂t

=

∑n
i=1 λkiri
ψk

(3)

• Temperature of bulk gas (Tg)

φgρgcp,g(
∂Tg
∂t

+ u
∂Tg
∂z

) = −khGa(Tg − Tm) (4)

• Temperature of gas in washcoat (Tm)

(1− φg)(1− φwcεwc)ρmcp,m
∂Tm
∂t

= khGa(Tg − Tm)

−
n∑
i=1

Hf
j λjiri

(5)

where i, j, and k are the reaction index, species index,
and catalyst site index, respectively. φg and φwc are the
volume ratio of gas layer and washcoat layer to the reactor,
u denotes the bulk gas velocity, km,j is the mass transfer
coefficient of the each species, Ga is a ratio of wetted area
to the reactor volume, εwc denotes the washcoat porosity,
λji is the reaction coefficient, ri is the reaction rate of the

ith reaction, ψk is the storage capacity of k site, and Hf
j

denotes the enthalpy of formation of each species.

2.2 Control oriented two-cell model

In this paper, MPC is utilized to initialize the policy in
the training. As discussed above, MPC usually uses the
reduced model from the plant to lessen the computation
load. The control oriented two-cell model is a popular
simplified model for MPC. The control oriented model
assumes that SCR system is the continuous stirred tank
reactor (CSTR). Assuming all the states in the SCR sys-
tems are homogeneous and neglecting the energy balance,
the model can be represented as a set of 0-D ordinary
differential equations (ODE). It is reasonable to split the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8268



Table 1. Reactions and Kinetics of SCR system

Reaction Kinetics

NH3 + S1↔ NH3− S1 r1 = k11fxNH3
(1− θ)ψ − k1bθψ

2NH3 − S1 + 3
2
O2 → N2 + 3H2O + 2S1 r2 = k2xO2θψ

NO + 1
2
O2 ↔ NO2 r3 = k3fx

0
O2
.5xNO − k3bxNO2

4NH3 − S1 + 4NO +O2 → 4N2 + 6H2O + 4S1 r4 = k4xNOθψ
2NH3 − S1 +NO +NO2 → 2N2 + 3H2O + 2S1 r5 = k5xNOxNO2θψ
4NH3 − S1 + 3NO2 → 3.5N2 + 6H2O + 4S1 r6 = k6xNO2

θψ
2NH3 − S1 + 2NO2 → N2 +N2O + 3H2O + 2S1 r7 = k7xNO2

θψ

control oriented model into several cells because the model
with only a single section is not accurate to represent
all the length of the SCR reactor. Among the proposed
SCR cell models (Schär et al., 2004), (Upadhyay and
Van Nieuwstadt, 2002), we adopted the two cell model,
which is utilized for controlling urea injection (Kim et al.,
2018). The equations of the two cell model are represented
as follows:

• Concentration of bulk gas species(xg,j)

dxg,j
dt

=
1− φg
φg

n∑
i=1

λjiri − u
xg,j − xg,j,inlet

L
(6)

• Coverage fraction of catalyst(θm,k, k=site)

dθm
dt

=

∑n
i=1 λiri
ψ

(7)

where j is each species of the bulk gas, NO,NO2, O2, and
NH3 and L is the length of SCR system.

2.3 Reactions and kinetics of SCR system

The reactions and kinetics of the SCR system are adopted
from (Olsson et al., 2008) and shown in Table 1.

3. DEEP Q-NETWORKS

RL aims to find a nearly optimal control policy by inter-
acting with environment and learning the optimal value
function and/or corresponding policy with reinforcement
signal such as cost or reward. For state xt in each time step
t, the agent chooses an action ut with given policy π, which
maps state xt to action ut. The state is transitioned with
state dynamics xt+1 = f(xt, ut) and the agents receives a
reward rt(xt, ut). The return is often defined as the sum
of discounted future rewards G(t) =

∑∞
i=t γ

i−tri(xi, ui),
where γ is a discount factor. During the training, the agent
selects an action to maximize the expectation of returns
for each state xt.
Q-value is defined as an expectation of returns at state xt
with action ut and is represented as

Qπ(xt, ut) = E[G(t)|xt, ut] (8)

where Qπ(xt, ut) denotes the Q-value at a state xt and an
action ut, which are derived from the policy π.
By applying Bellman equation, the Equation (8) also can
be represented in a recursive relationship as follows:

Qπ(xt, ut) = E[rt + γE[Qπ(xt+1, ut+1)]] (9)

Q-learning utilizes Equation (9) to iteratively update the
Q-value by applying the off-policy method represented as

(Qπ)
′
(xt, ut)) =Qπ(xt, ut) + α(rt + γmax

ut+1

Qπ(xt+1, ut+1)

−Qπ(xt, ut))
(10)

where 0 < α < 1 is the learning-rate parameter and
(Qπ)

′
(xt, ut) denotes the updated Q-value (Watkins and

Dayan, 1992).
Model-free RL algorithms, including Q-learning, is an
approach that learns the policy only from sequences of
samples obtained during episodes. In other words, it does
not need any information about the system dynamics in
determining the action ut (Gu et al., 2016). There are two
advantages of the model-free approach over the model-
based approach. First, the model-free approach needs less
amount of on-line computation load because it follows the
policy, which is presented in a tabular or parameterized
form. (Lee, 2014). Second, it can avoid model error, which
occurs in linearization or reduction of the model in the
model-based approach (Badwe et al., 2009). Thus, model-
free approach might be appropriate for SCR system where
on-line computation load is demanding with the limited
capacity of ECU and the system is too complex, which is
required to be simplified.
In most of the problems which we would like to utilize
RL, the state space is high dimensional. Accordingly, the
Q-learning based on a tabular search is impossible to find
an optimal action due to the the curse-of-dimensionality.
Thus, it is required to approximate Q-value with given
data of states and actions in the parametric form. (?).
Deep Q-networks (DQN) approximates the Q-value by
applying deep neural networks. The notable technique of
DQN is the usage of experience replay (U) where the se-
quences of samples (xt, ut, rt, xt+1) at each time are stored.
The samples randomly chosen from experience replay are
used to update Q-value, which removes correlations be-
tween consecutive samples and hinders the parameters of
Q-value to be stuck in a poor local minimum (Mnih et al.,
2013). The loss function for Q-learning updates at iteration
i is

Li(θi) = E(xt,ut,rt,xt+1)∼U [(rt + γmax
ut+1

Qπ(xt+1, ut+1; θ−i )

−Qπ(xt, ut; θ1))2]
(11)

where θi are the parameters of the Q-network at iteration
i and θ−i are the parameters of the target Q-network at
iteration i, which are only replaced by the parameters of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8269



the Q-network θi at a specific iteration step.
In several studies, it has been demonstrated that DQN
learns a nearly-optimal policy successfully. Atari 2600
games was tested by DQN, which is trained with high-
dimensional input pixels, whose output is the estimation
of Q-value. The result showed that the performance of
DQN exceeded those of previous algorithms, also being
a level matching the professional human testers in some
games (Mnih et al., 2015). DQN was also applied to a
controller of robot manipulator with no prior knowledge,
whose objective is target reaching. The experiment proved
that the controller, which is trained by DQN, performed
the target reaching successfully (Zhang et al., 2015).

4. SIMULATION RESULTS AND DISCUSSION

To validate the performance of DQN, simulation results
on the SCR system with time-varying inlet emissions are
presented. The time-varying inlet emissions data were ob-
tained by experiments of FTP75 cycle, which is widely
used for the real driving mode (Zhang et al., 2014).
In this simulation, virtual plant of SCR system mentioned
in Section 2.1 was used and the inlet gas was considered
as a disturbance variable. We assumed the complete ther-
molysis of urea which is injected into the hot upstream
of SCR system. The state variables include concentrations
of gas species, temperature of gas and coverage fraction
of catalyst, and the state dimension is 48. It is assumed
that all the states are measurable. The number of action
is one, which is the amount of injected urea and the value
of which is bounded with upper and lower limits.

4.1 Settings for deep Q-network

Actions in DQN model are assumed to be discrete. Because
it is infeasible to choose an action by comparing Q-values
of infinite actions, the number of actions was limited to 40
in this study.
The number of hidden layers for approximating Q-function
are three and each layer consists of 50, 50, and 30 nodes, re-
ferring to the network structure of (Kim et al., 2020). Both
states and an action are input arguments of the networks
and Q-value is estimated as an output. As an activation
function, Relu function was used, which guarantees a short
training time than other activation functions (Krizhevsky
et al., 2012). To prevent an over-fitting problem that often
occurs in making deep neural networks model, methods
of L2-regularization (Bilgic et al., 2014) are applied to
establish our model. In updating parameters of the neural
networks, Adam-optimizer (Kingma and Ba, 2014) was
utilized.
The construction of cost function is significantly important
in establishing DQN model (Russell, 1998). In the case
of SCR system, reducing the amount of NOx emission
at the outlet below the regulated quantity is the most
important. Ammonia slip at the tailpipe, which is not
utilized as a reductant, also should be avoided. In addit-
tion, minimizing the amount of injected urea is significant.
Improperly overdosed urea leads to a rise of operating
cost and inconvenience of urea make-up. Considering the
objectives of SCR system and the facts that the incoming
regulation on the emissions will be more stringent, a cost
function can be formulated as

r(t) =‖xNO(t)‖2Q1
+ ‖xNO2

(t)‖2Q2
+ ‖xNH3

(t)‖2Q3

+ ‖uNH3(t)‖2R
(12)

where Q1, Q2, Q3, and R is 5, 5, 2.5, and 0.5 respectively
and the concentrations of gas species are scaled value. A
relatively high values are weighted to the concentration of
NOx to satisfy regulation on NOx emission preferentially.

4.2 Learning process

As discussed above, parameters of Q-function are updated
by sequences of samples (xt, ut, rt, xt+1) induced by an
action with given policy at each time. For the training
of DQN, the number of episodes was set as 700. For each
episode, the horizon is 1200 seconds and the sampling time
is one second.
An exploration plays an important role in the training
of model-free RL algorithm such as DQN. To find better
actions which might give lower costs, it is necessary to try
actions that have not been met before (Sutton and Barto,
2018). The exploration was also conducted in training
DQN for SCR systems. In the earlier period of the training,
exploratory noises was added to the actions derived from
DQN. The size of the added noise was set to decrease as
the training proceeds. We also examined the appropriate
number of episodes, where enough exploration is available,
with several trials. The exploration was employed during
the first a hundred episodes. After 100th episodes, actions
were chosen by the DQN policy without noises.

4.3 Results and analysis

Figure 1 describes the sum of costs, represented as∑1200
t=1 r(t), in each episode during the learning. The dis-

count factor was not included in obtaining the sum of
costs. During the first a hundred episodes, it is shown that
the sum of costs remains high and fluctuates considerably.
The reason is that DQN explored various actions, which
might result in higher sum of costs. After the periods of
exploration, the noises added to actions are eliminated,
which make fluctuations in the sum of costs lessened. From
the approximately 400th episode, it can be found that the
sum of the costs from DQN are stable and remained below
the value from MPC. This indicates that DQN converged
to optimal policy and the performance of DQN is superior
to MPC in terms of the given cost function. As it will
be discussed later, it appears that small usage of injected
urea is the main reason for reducing the sum of costs from
DQN.
Figure 2 indicates the scaled amount of injected NH3

determined by DQN and MPC. At this time, DQN model,
whose training was finished after 700 episodes, was used.
It can be seen that DQN yields a fairly different amount of
urea with that of MPC. As with urea based SCR system,
MPC usually utilizes a simplified model from a complex
real system, leading to failure of obtaining optimal solution
for real system (Badwe et al., 2009). On the other hand,
DQN is a controller that is approximated with data from
real system, not model. Thus, it is acceptable that the ac-
tions from DQN might consider a real system better than
MPC. The results showed that the cumulative amount of
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Fig. 1. Sum of costs for each episode in DQN and MPC.

injected NH3 from DQN is 12 percent less than that of
MPC.
Figure 3 shows the scaled cumulative amount of NOx at
outlet controlled by DQN and MPC. The limited amount
of NOx emissions by EURO 6 regulation is also depicted
in Figure 3. The cumulative regulated NOx emissions were
calculated with respect to the driving distance of FTP75
cycle. It is observed that NOx emission at outlet controlled
by DQN is nearly comparable to that of MPC. Overall, the
removal of NOx by DQN is satisfactory except the periods
from 180 to 280 seconds. In this period, it is thought that
considerable amount of NOx suddenly enters the SCR
system while the coverage of NH3 are small, where the
performance to reduce the NOx is insufficient. Thus, the
improvement on DQN controller to handle the sudden
influx of large NOx emission is required.
Figure 4 depicts the scaled concentration of NH3 slip at
tailpipe controlled by DQN and MPC. It is shown that
NH3 slip by DQN is nearly comparable to that of MPC.
For the overall periods, the amount of NH3 slip controlled
by DQN does not exceed the reference value which guar-
antees the satisfactory emission control (Hsieh and Wang,
2011). Thus, it seems that performance of DQN controller
is acceptable in handling the NH3 slip.
Finally, we compared a computation time between DQN
and MPC. The simulation was conducted on an Intel Core
i7-6700 3.40GHz processor, 32GB RAM, and a GeForce
RTX-2070 graphic card. During 1200 seconds, the average
computation time of DQN and MPC per sampling time is
0.0018 s and 0.053 s, respectively. DQN could determine
the amount of injected urea 30 times faster than MPC does
in online. As discussed above, the computation perfor-
mance of ECU in the modern vehicles is fairly poor. Thus,
it is expected that DQN can be a potential alternative to
MPC in controlling amount of urea injection for the real
driving.

5. CONCLUSION

In this study, we applied DQN to controlling the amount
of injected urea in the urea based SCR system. Through
the simulations of urea injection control with DQN, it
is demonstrated that computation time of DQN is fairly
shorter than that of MPC and the sum of costs of DQN
is less than that of MPC. These results that DQN has a

Fig. 2. Scaled concentration of injected NH3 by DQN and
MPC

Fig. 3. Scaled cumulative amount of NOx at outlet for
DQN, MPC and EURO 6 Regulation

Fig. 4. Scaled concentration of NH3 at outlet for DQN,
MPC and reference value
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possibility to control urea injection in the real driving, the
performance of computation of which is poor at present.
However, DQN controller failed to remove NOx efficiently
when considerable amount of NOx suddenly injected to the
SCR system. Thus, the coverage fraction which is thought
to be important factor to prevent those situations will
be considered in constructing DQN controller in the next
study.
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