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Abstract: In order to better understand the stochastic dynamic features of signalized traffic
networks, we propose a Markov traffic model to simulate the dynamics of traffic link flow density
for signalized urban traffic networks with demand uncertainty. In this model, we have four
different state modes for the link according to different congestion levels of the link. Each link
can only be in one of the four link state modes at any time, and the transition probability from
one state to the other state is estimated by Bayesian estimation based on the distributions of
the dynamic traffic flow densities, and the posterior probabilities. Therefore, we use a first-order
Markov Chain Model to describe the dynamics of the traffic flow evolution process. We illustrate
our approach for a small traffic network. Compared with the data from the microscopic traffic
simulator SUMO, the proposed model can estimate the link traffic densities accurately and
can give a reliable estimation of the uncertainties in the dynamic process of signalized traffic
networks.

Keywords: Markov traffic model, Traffic signals, Bayesian, Urban traffic network.

1. INTRODUCTION

Many uncertainties exist in traffic flow dynamics in real
traffic networks. These uncertainties are usually expressed
with link capacity and traffic demands, and rarely con-
veyed in traffic models, especially for signalized traffic net-
works. In order to better understand dynamic features and
stochastic features of signalized stochastic traffic networks,
this research investigates the randomness in link capacity
and traffic demands.

Assuming that both the link capacity (supply) and traf-
fic demand are known, deterministic methods have been
used by researchers to describe the performance of traffic
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networks. However, in real traffic networks, link capacity
and traffic demand are subject to stochastic fluctuations.
Uncertainty in traffic supply is caused by various dis-
turbances on the road, such as accidents, road affairs or
weather (Chen and Zhou (2010)). Traffic control measures,
such as traffic signal and ramp metering, can also cause
changes in link capacity. On the other hand, there are
many causes for the uncertainty of traffic demand. Travel
demand fluctuations may be caused by time factors (time
of day, day of the week or seasonality), special events,
weather conditions, etc.

The dynamic traffic flow model is an important component
in dynamic traffic distribution as well as in real-time traffic
control and management. In order to simulate dynamic
random traffic, a lot of researches have been done on the
establishment and verification of different models. For in-
stance, Baras et al. (2005) developed a point queue model
with assumption of Poisson arrivals and departures that
adds measurement noise to the vehicle’s communication.
Lan and Davis (1997) proposed a Markov Chain model to
describe the traffic flow between signalized intersections by
dividing one link into several sections. Inspired by this, Yu
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and Recker (2006) developed a Markov adaptive control
model with coarse state division and a large time step to
describe the arriving traffic flow. The numerical iterative
algorithm is used to determine the optimal decision of the
controlled Markov process. On this basis, Tordeux et al.
(2014) proposed a Markov jump model with discrete traffic
states and constant transition probabilities derived from
historical real traffic data or simulations. Another type
of stochastic dynamic traffic flow model (Jabari and Liu
(2012)) is derived from a deterministic traffic flow model
by adding random noise to the equation or by using a
stochastic distribution instead of deterministic traffic vari-
ables. Based on the CTM model (Daganzo (1995)), a lot of
models have been proposed to consider the randomness in
urban traffic networks. Sumalee et al. (2011) put forward
the stochastic CTM model (SCTM) for freeways by inte-
grating the random link Fundamental Diagrams (FD) into
the CTM dynamics to generate the stochastic traffic state
evolution. Besides, based on the link transmission model
(LTM) (Yperman et al. (2006)), Flötteröd and Osorio
(2017) proposed a Stochastic Link Transmission Model
(SLTM) that captures random traffic dynamics within a
link through a system of four finite-space capacity queues
with lagged flows. These models combined the stochastic
models with existing dynamic traffic models to formulate
the stochastic features in the traffic supply and the traffic
flow propagation.

In this paper, we propose a Markov traffic model for
signalized traffic networks with uncertainty in demand.
This model is a stochastic state transition model consid-
ering demand uncertainty and other exogenous sources
of uncertainties. The dynamic evolution of the model is
achieved by iteratively updating the link density of four
link state modes. According to the two boundary states of
the link, the state mode of the link can be determined. The
transition probability is estimated by Bayesian estimation
based on the distribution of dynamic traffic flow densities
derived at each time step, and the posterior probabilities
obtained through historical traffic data. The traffic density
at the next time step can be obtained by the calculation
formula of the traffic flow density of the transferred mode,
which is initially discussed in Lin et al. (2018). The model
can describe changes in link density and flow under the
influence of traffic signal settings, and it provides the pos-
sibility to better analyze the uncertainty in the dynamic
iteration of urban traffic flow network.

2. MODEL DESCRIPTION

An important feature of traffic flow density is that the
traffic volume predicted for the next time period has a
strong but not massively deterministic relationship with
the current and recent state. The Markov chain model
can express this feature well and it is very suitable for
describing the traffic flow density. In the Markov chain
model, the state to be predicted obeys the probability
distribution, and the probability of the next state depends
on the current and previous states. In this section, we
adopt this idea and use a Markov Chain model to describe
the traffic flow density with demand uncertainty. Firstly,
we briefly introduce the Markov Chain model and divide
the link state into 4 different modes based on the traffic
density of the upstream and downstream of the link,

and introduce the dynamic process of the link in 4 state
modes. Then, we propose a method which is based on
the distribution of the traffic flow density to calculate
the transition probability. Finally, we explain some traffic
volumes (leaving and receiving flow, entering and accepted
flow, etc) in the dynamic process of the traffic network and
introduce the dynamic process of state transferring.

2.1 Markov Chain Model for Traffic Flow Density

A Markov chain is a general model that can explain
the natural change with a mathematical method. It was
proposed by the famous Russian mathematician Markov
around 1910. Markov processes are an important aspect
of stochastic process theory in probability theory. After
a hundred years of development, Markov processes have
penetrated into various fields and played an important
role. People will find many phenomena with the continuous
development of time in the research of practical problems.
There are also some phenomena or processes that can be
expressed as follows: when the present is known, the future
and the past of this process of change are irrelevant. In
other words, the future situation of this process does not
depend on the past development and change. We call the
process with the above properties a Markov process. When
the time and state of Markov process are discrete, such
Markov process is called Markov chain. The mathematical
expression of Markov chain is as follows: Define a random
sequence {X(t), t ∈ T}, where T = {0, 1, 2 · · · }, and the
state space is S = {s0, s1, s2, · · · }. If at any time t and any
state s0, s1, · · · , st−1, si, sj , the random sequence always
satisfies with
P {Xt+1 =sj |Xt =si, Xt−1 =sn−1, · · · , X1 =s1, X0 =s0}
= P {Xt+1 =sj |Xt =si}.

(1)
then we call this random sequence Markov chain. In Eq.
(1), P {Xt+1 = sj |Xt = si} is the transition probability
from time step t to time step t + 1. The above formula
defines the Markov property at the same time as the defi-
nition of Markov chain, which is also called ”Memoryless-
ness”, i.e, the random variable of step t+1 is conditionally
independent of the rest of the random variables after the
random variable of step t is given.

2.2 Link State Modes and Transition Probabilities

In an optimal situation, the shape of the FD (Fundamental
Diagram) on each link is supposed to be triangular. Con-
sidering the congestion of the link in the real-life signalized
traffic networks, the traffic capacity of each link will be
reduced to a certain extent (Wu et al. (2011) Lo (1999)),
as shown in Fig. 1. Due to the presence of a traffic signal,
the shape of the FD at the upstream entrance of the link
is triangular, and the shape of the FD at the downstream
exit of the link is trapezoidal (Lin et al. (2018)).

As it is shown in Fig. 1, ρc is the critical density, ρcl and ρcu
are the lower and upper critical traffic flow density when
the traffic capacity is limited; ρJ is the junction traffic flow
density, vf is the free-flow speed, and wc is the spillback
speed. The traffic capacity is limited by the fraction of the
green time over the cycle time on the link:

Q′M=
QM · g
c

(2)
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Fig. 1. Illustration for the link state modes: Free flow-
Free flow(FF), Free flow-Saturation(FS), Congestion-
Congestion(CC), Congestion-Saturation(CS)

Fig. 2. Iterative Process of Markov Traffic Model

where QM and Q′M are the capacity and the limited
capacity of the FD, g is the green time on the link, and c
is the cycle time of the traffic lights.

According to the different degree of congestion at the
upper and lower boundary. the link state mode of each
link can be classified into four different modes Lin et al.
(2018). As shown in Fig. 1, the four state modes can be
expressed as:

(1) Free flow-Free flow(FF): the upstream boundary of
the link is in free-flow state and the downstream
boundary of the link is also in free-flow state.

(2) Free flow-Saturation(FS): the upstream boundary of
the link is in free-flow state and the downstream
boundary of the link is in saturation state.

(3) Congestion-Congestion(CC): the upstream boundary
of the link is in congestion state and the downstream
boundary of the link is also in congestion state.

(4) Congestion-Saturation(CS): the upstream boundary
of the link is in congestion state and the downstream
boundary of the link is in saturation state.

As Fig. 2 shows, the state mode set of the Markov traffic
model is M = {FF, FS,CC,CS}, and it is possible for
each state mode to switch to any other state mode in
the state mode set. The transition probability transfer-
ring from mode n to m at time step k is defined as
Pn,m(k)(n,m ∈M). So, according to Bayesian estimation,
we have
Pn,m(k) = P [ρm(k + 1)|ρn(k)]

=
P [ρm(k + 1)]P [ρn(k)|ρm(k + 1)]∑
m∈M P [ρm(k + 1)]P

[
ρn(k)|ρm(k+1)

] . (3)

We assume that the transition probability Pn,m(k) is equal
to the conditional probability of mode m at time step k+1

under the condition of having mode n at time step k, where
P [ρn(k)|ρm(k+ 1)] is the posteriori probability of mode n
at time step k under the condition of having mode m at
time step k+1, which can be statistically obtained through
history data. Thus, Eq. (3) can be written as

Pn,m(k) =
P [ρm(k + 1)]P [ρn|ρm]∑

m∈M P [(ρm(k + 1)]P [ρn|ρm]
. (4)

where P [ρn|ρm] is the posteriori probability statistically
estimated through historical data. We suppose that the
traffic flow density on the link follows the Normal distri-
bution as ρn(k) ∼ N(µn(k), σn(k)); then the transition
probabilities of four different state modes can be formu-
lated as

P [ρn(k)] =


Pr {0 ≤ ρn(k) < ρcl} n = FF
Pr {ρcl ≤ ρn(k) ≤ ρc} n = FS
Pr {ρcu < ρn(k) ≤ ρJ} n = CC
Pr {ρc < ρn(k) ≤ ρcu} n = CS

(5)

Where P [ρn(k)] is the probability that the link is in the
mode n at time step k. Then the transition probability
transferring from mode n to mode m can be calculated
by the distribution of traffic flow density in Eq. (4). After
that, the link state will jump to the state mode with the
highest transition probability at time step k + 1.

As long as the mean µ(k) and the variance σ(k) are
obtained, the transfer probability of Markov model can be
calculated based on formula Eq. (4). In the next section, we
will make a model of traffic flow density in four state modes
and explain some traffic volumes in the state transferring.

2.3 Link Models for Different Link State Modes

Considering the different modes, entering and leaving flows
and traffic signals, the dynamic evolution of the traffic flow
density at time step k on a link can be formulated as

ρ(k+1)=Aρ(k)+B0ρ(k)U(k)+B1U(k)+Dd(k)+C, (6)

U(k) = β(k)γ(k), (7)
where A,B0, B1, D and C are constant parameters, U(k)
is the scalar control input at time step k, which is assumed
to be a deterministic value; it is composed of the turning
rate vector β(k) and the vector of green time splits γ(k) of
the traffic signal at the intersection at time step k. More
over d(k) includes the stochastic disturbances from outside
the link:

d(k) = [qE(k)di(k)d0(k)qA(k)], (8)
where qE is the input flow of the link, which composed
of all the leaving flows of the upstream links, qA is the
output flow of the link, which is determined by all available
receive flow of the downstream links, and di and do are the
disturbance flows that get in and out of the link.

The control input U(k) can be defined as

U(k) = βth(k)γth(k) + βl(k)γl(k), (9)

where βth(k) and βl(k) are the ratios of going straight and
turning left at the intersection at time step k, and γth(k)
and γl(k) are the green signal splits of going straight and
turning left at intersections at time step k.

In the stochastic link flow model, we can further write
four different dynamic models according to the different
probability of the link mode. For the link state mode FF:
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ρ(k + 1) = Aρ(k) +B0ρ(k)U(k) +Dd(k), (10)

where A = 1 + βrβ0, B0 = −Ts

l vf , D = [Ts

l 000], and l is
the length of the link, Ts is the simulation time step.

For the link state mode FS:

ρ(k + 1) = Aρ(k) +B1U(k) +Dd(k) + C, (11)

where A = 1, B1 = −Ts

l QM , D = [Ts

l 000], and C = βrβl.

For the link state mode CC:

ρ(k + 1) = Aρ(k) +Dd(k) + C, (12)

where A = 1 + Ts

l wc, D = [000−Ts

l ], and C = −Ts

l wcρJ .

For the link state mode CS:

ρ(k + 1) = Aρ(k) +B1U(k) +Dd(k) + C, (13)

where A = 1 + Ts

l wc, B1 = −Ts

l QM , C = −Ts

l wc + βrβl.

2.4 Link Mean Density and Auto-Correlation

According to Eq. (6), the link density can be calculated as

µ(k+ 1)=(A+B0U(K))µ(K) +B1U(K) +DE(d(k)) +C.
(14)

Let Ω(k) = E
(
ρ2(k)

)
. The auto-correlation of the link

density can be calculated as

Ω(k + 1) = F1(k)Ω(k) + F0(k)µ(k) +G(k)E(d(k))

+ E(dT (k)DT (k)D(k)d(k)) +H(k)
(15)

where

F1(k) = A2 +B2
0U

2(k) + 2AB0U(k), (16)

F0(k) = 2B0B1U
2(k) + 2(B0D(k)E(d(K)) +AB1

+B0C)U(k) + 2ADE(d(k)) + 2AC,
(17)

G(k) = 2B1D(k)U(k) + 2CD, (18)

H(k) = B2
1U

2(k) + 2B1CU(k) + C2. (19)

Then, the mean and variance of the link density at time
step k can be written as

µ(k) = ρ(k), (20)

σ(k) =
√

Ω(k)− µ2(k). (21)

2.5 Leaving and Receiving Flows of the Link

In the previous section, we defined four different state
modes for the link based on the different congestion levels
of the link. The leaving flow and the receiving flow of the
link are exactly related to the congestion levels of the link.
So when the link is in different traffic modes, the leaving
flow and the receiving flow are also different. According
to the Fundamental Diagram in Fig. 1, the leaving flow of
the link can be written as

qL,FF (k) = ρ(k)VfU(k), (22)

qL,FS(k) = qL,CS(k) = QMU(k), (23)
qL,CC(k) = qA(k), (24)

which means that the leaving flow of the link totally
depends on the accepting flow of the downstream links
and congestion levels.

Similarly, the receiving flow of the link can be defined as

qR,FF (k) = qR,FS(k) = QM , (25)

qR,CC(k) = qR,CS(k) = wc(ρ(k)− ρJ), (26)
which shows that the receiving flow of the link depends on
the capacity and the congestion flow of the link.

2.6 Entering and Accepted Link Flows

In the FF and FS mode, the traffic flow upstream of the
link is in free-flow state, the entering link flow is always
provided by the upstream link; in the CC mode, the
upstream link is in congestion mode, and it cannot provide
space for the entering link flow, thus the accepted link flow
only depends on the available space of the downstream
link.

The entering flow of link i can be expressed as the sum of
all the flows from upstream links as

qE,i(k) =
∑
u∈Ii

βu,iqu(k), (27)

where βu,i is the turning ratio of the flow turning from link
u to link i, qu(k) is the leaving flow of link u at time step
k, and qE,i(k) is the entering flow of link i at time step k.

In the CC mode, the accepted traffic flow can be separated
into two situations for each downstream. The probabilities
can be written as

P1,d(k) = Pr{qR,d(k) ≤ QM,iβi,dγi,d(k)}, (28)

P1,d(k) = Pr{qR,d(k) > QM,iβi,dγi,d(k)}, (29)

where QM,i is the capacity flow of link i, qR,d(k) is the
receiving flow of link d at time step k , and γi,d(k) is the
green time split for the flow turning from link i to link d
at time step k.

Thus, the accepted flow of link i can be written as

qA,i(k)=
∑
d∈Oi

[P1,d(k)qR,d(k) + P2,d(k)QM,iβi,dγi,d(k)].

(30)

2.7 State Transferring

According to the model described above, we could derive
the mean and the variance of link density in any mode and
at any time step. Then, we can obtain the distribution
of traffic flow density throughout the evolution of the
traffic states Thus we could calculate the probability of
every mode at all time steps based on Eq. (5). Therefore,
the transition probability can be estimated by Bayesian
estimation, based on these probabilities predicted by the
dynamic model, and the posteriori probability obtained
from the historical traffic data, as in Eq. (4). Hence we
obtain the transition probability of traffic flow density of
Markov traffic model. During the iteration of the model,
we suppose that the link state will jump to the state mode
with highest transition probability at each iteration. As is
shown in Fig. 2, we assume the link is in the FF mode at
time step k. With the increase of traffic demand, the traffic
density in the road network will gradually accumulate and
the probability of transferring to the FS mode will become
the highest. Then the link state mode will switch from the
FF mode to the FS mode at time step k+1. If the demand
keeps on increasing, the probability of transferring will be
changed and the probability of transferring to the CS mode
will become the highest. The link state mode will switch
from the FS mode to the CS mode at time step k + 2,
in which the traffic congestion will be propagated to the
upstream link.
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3. SIMULATION

To estimate the effectiveness of the Markov traffic model,
we use the micro traffic simulator SUMO to build a traffic
network that provides stochastic traffic demand, as well
as real values of traffic density and traffic flow. The traffic
demand generated by SUMO is given to the Markov traffic
model, and the link state will jump to the state mode with
the highest transition probability at each iteration. Finally,
we compare the estimated link density in Markov model
with the data obtained from SUMO.

3.1 Network and Signal Setup

We build a simple traffic network, which has 3 signalized
intersections, 12 links in the network, and 12 sets of green
time splits. As shown in Fig. 3. The stochastic traffic
demand is provided to the network through 8 external
access links. As shown in Fig. 4, there are four traffic signal
stages: North South through, North South left, East West
through, and East West left. Stochastic traffic demands
are generated for all the entry links of the network for 7
hours,The stochastic traffic demand is shown in Fig. 5.
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3.2 Results

Compared with the actual values of Markov traffic model
and SUMO in Fig. 6, the results show that the average
link density simulated by Markov traffic model is in good
agreement with link densities from SUMO. As we can see
in Fig .7, four links are all in FF mode in first three hours,
and the estimated data match well with SUMO data. After
that, link become more congested than link, and the state
modes of the link are switched into CS mode and CC
mode. At the same time, when the link gets congested, the
estimation standard deviation of the link density from the
stochastic model increases, which proves that the higher
the average link density is, the more uncertainties of the
link density will have.

If the link is more congested, based on the previous
derivation of Markov traffic model, the standard deviation
of link density is more affected by the high average and
automatic-correlation of links in the previous time steps.
This means that congestion will increase the uncertainty of
link density estimation. In other words, congestion is the
main cause of the random disturbance in the link traffic
flow, which leads to more uncertainty. As Fig. 7 shows,
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links 1, 2 are more in CC mode, but link 3, 4 are more in
FF mode. This means that traffic congestion under high
traffic demands will make the Markov traffic model highly
random in determining the link state mode.

In general, the results of the simulation are basically in
agreement with the real data from SUMO, and can rea-
sonably explain the relationship between the congestion
condition and uncertainties. In addition, the proposed
model is computational fast compared to SUMO. There-
fore, the Markov traffic model can be used to study the
propagation of urban traffic demand and its uncertainty,
and can also be used to optimize the traffic signal of urban
traffic network with demand uncertainty.

4. CONCLUSIONS

In this paper, we have proposed a Markov traffic model to
describe the traffic link flow in an urban traffic network
with signalized intersections. This model is a stochastic
state transition model considering demand uncertainty. In
the proposed model, the link state is formulated as four
different modes based on different congestion levels of the
link. The dynamic process of traffic network is described by
the state transferring, and the transition probability from
one state to another state is approximated by Bayesian
estimation based on the distribution of traffic flow density
at neighboring time steps. The Markov traffic model is
a stochastic state transition model considering demand
uncertainty and other exogenous sources of uncertainties.

For the simulation of a small traffic networks, we compared
the results with the real values from SUMO, and verified
the reliability of the Markov traffic model. According to
the state transferring of different links at different time
steps, we can reasonably explain the relationship between
traffic congestion and uncertainties: when the link is in a
congested state, the standard deviation of its traffic flow
density will become larger which means that congestion is
the main cause of random disturbance of link traffic, and
it leads to more uncertainties. The results show that the
Markov traffic model can be used to study the propagation
of urban traffic dynamic process and its uncertainty, and
can also be used to optimize the traffic signal of urban
traffic network with demand uncertainty.
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