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Abstract: This study analyses the boundary stabilization of a system of two parabolic linear
PDEs weakly coupled at the boundary. This model is motivated by heat transfer in a membrane
distillation based desalination modeled by a two-dimensional advection diffusion equations
coupled at the boundary. Based on some physical assumptions, the 2D model can be formulated
as a 1D reaction-diffusion system. Two cases were studied: full and under actuated scenarios.
In the full actuated case, a backstepping approach is used to map the plant to an exponentially
stable target system. The well-posedness of the kernel equations is proved. Moreover, the
actuation of only one of the parabolic equations has been considered. The standard backstepping
transformations is again used to transform the initial plant to a desired target system where
Lyapunov analysis is adequately used. Finally, a numerical example showing the performance
of the proposed control design is presented.

Keywords: Backstepping, reaction-diffusion system, boundary Stabilization, Membrane
Distillation, full/under actuated.

1. INTRODUCTION

Water supply is one of the biggest challenges facing the
world. Indeed, due to the increasing potable water de-
mand and the limited natural ressources, many countries
rely on alternative solutions for their water supply such
as water desalination. However, conventional desalination
technologies are usually expensive and energy inefficient.
More sustainable and efficient water desalination solutions
are being investigated. Among the emerging technologies
is Membrane Distillation (MD). It is a thermally driven
technology, which uses a hydrophobic membrane to filter
the water. This technology has been widely studied dur-
ing the recent years from different perspectives such as
mathematical modeling, design and optimization. However
very few work has been done in term of control design,
where the control problem would be to control the water
production to a desired level (or maximum level) while
reducing the energy consumption. Some control solutions
have been proposed for a Direct Contact Membrane Dis-
tillation (DCMD), one the simplest configurations of the
MD process, based on a two dimensional coupled advection
diffusion model coupled at the boundary in Eleiwi and
Laleg-Kirati (2016, 2018), and based on a reduced order
approximation given by an algebraic differential equation
in Karam et al. (2017); Karam and Laleg-Kirati (2019).

In this paper, we investigate the control problem using a
stabilization of a one dimensional approximation of the
? This work has been supported by the King Abdullah Univer-
sity of Science and Technology (KAUST) Base Research Fund
(BAS/1/1627-01-01) to Taous Meriem Laleg.

two dimensional model. This approximation is given by a
reaction-diffusion system weakly coupled at the boundary.
While the problem of control of PDEs has been well
covered, the control of coupled PDE systems has been less
investigated. Recently, boundary stabilization for general
linear unstable parabolic systems with constant-coefficient
and spatially-varying reaction was analyzed Baccoli et al.
(2014, 2015); Vazquez and Krstic (2017) . Among the pro-
posed control strategies is the backstepping based control
Smyshlyaev and Krstic (2010). For instance, in Vazquez
and Krstic (2017), the authors show that the kernels
of the reaction-diffusion-convection system with spatially
varying coefficients are equivalent to those satisfied by
the control kernels for hyperbolic systems. Their proof
is based on the results presented within Hu et al. (2016,
2018), showing that the kernel equations of the quasilinear
hyperbolic system are well-posed. The authors applied this
result in the case of parabolic systems with spatially vary-
ing coefficients, and they proved H1 exponential stability
of the closed-loop system. However, in Tsubakino et al.
(2013) the stabilization of two coupled reaction-diffusion
equations is studied, where the problem is solved using
a single control input acting only at the boundary. The
authors used a nonconventional backstepping approach
using a discontinuous kernel function. More recently, a
comparison between the unilateral and bilateral control
laws for a class of reaction-diffusion system with an in-
terface relation has been presented in Vazquez and Krstic
(2016). The authors proved that the bilateral control law is
more accurate for large coefficients. The interface relation
presented in this publication does not cover the class of
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systems investigated in our paper. Some specific results
about high-dimensional systems of coupled PDEs have
been recently considered using the backstepping boundary
stabilization techniques, Meurer (2012); Meurer and Kugi
(2009); Jadachowski et al. (2015). Moreover, in Vazquez
and Krstic (2015) the problem of stabilization of reaction-
diffusion equations in arbitrary dimension was studied.
However, it is worth noting that several recent publications
have studied the controller design for PDE-ODE cascade
systems, for example Di Meglio et al. (2018); Deutscher
et al. (2019).

The objective of this work is to stabilize two unstable
reaction-diffusion equations coupled at the boundary using
full and under actuated control law. A particular structure
of the kernel exploring the boundary coupling property for
the under actuated boundary control of the full system
is investigated. This choice reduces the computational
complexity of solving the full-kernel system. Under some
conditions on the kernel, we prove the L2 exponential
stability of the closed-loop system.

The remainder of the paper is organized as follows. In
section 2, the problem of full actuated boundary control
of the unstable reaction-diffusion system coupled at the
boundary is stated, and the Backstepping transformation
is introduced. The under actuated scenarios where the
Lyapunov stability analysis is showed in Section 3. Section
4 presents a numerical example illustrating the theoretical
result. Finally, section 5 summarizes the paper and gives
some future perspectives of this work.

Notations : Throughout this paper, standard notations
are used. L2(0, 1) for the Hilbert space of square integrable
scalar functions.

‖z(.)‖22,2 =
(
‖z1(.)‖22 + ‖z2(.)‖22

)
,

is adopted for the corresponding norm in [L2(0, 1)]2of a
generic vector z(t, x) = [z1(t, x), z2(t, x)]T .

For a symmetric and positive definite matrix A, σm(A)
and σM (A) denote the smallest and largest eigenvalues of
A, respectively.

2. FULL ACTUATED BOUNDARY STABILIZATION
OF PARABOLIC SYSTEM COUPLED AT THE

BOUNDARY

Consider the linear parabolic system
qt(t, x) = αqxx(t, x) + λq(t, x) t > 0 x ∈ (0, 1),

q(t, 1) = U(t) t > 0,

qx(t, 0) =Mq(t, 0) t > 0,

q(0, x) = q0(x) (0, 1),

(1)

with, λ =

[
λf 0
0 λp

]
, α =

[
αf 0
0 αp

]
,M =

[
γf −γf
−γp γp

]
,

U(t) ∈ R2 is control law acting on the boundary, q(t, x) =

[q1(t, x), q2(t, x)]
T

is the state of the reaction-diffusion
system, and γf and γp are physical parameters of the
device. System (1) can be considered as a simplification
to 1D of the two-dimensional DCMD parabolic system;
For a cross-section, y-direction is neglected, as shown in
the (Ghattassi et al., 2019, figure 1). Moreover, some local
reactions in the feed and permeate side can generate an
instability of the system. However, the reaction coefficients

λf , λp are assumed sufficiently large such that (1) is open-
loop unstable system. To solve the state feedback problem
we consider the controller

U(t) =

∫ 1

0

κ(x)q(t, x)dx. (2)

In order to calculate the state feedback gain κ(x) the
backstepping approach is used. Thereby, controller coor-
dinates z(t, x) = [z1(t, x), z2(t, x)]T are introduced by the
backstepping transformation

z(t, x) = q(t, x)−
∫ x

0

K(x, ξ)q(t, ξ)dξ = Tb[q(t)](x), (3)

where the kernel has the following structure

K(x, ξ) =

[
K11(x, ξ) K12(x, ξ)
K21(x, ξ) K22(x, ξ)

]
. (4)

Let us introduce the target system
zt(t, x) = αzxx(t, x)− Cz(t, x) t > 0 x ∈ (0, 1),

z(t, 1) = 0 t > 0,

zx(t, 0) =Mz(t, 0) t > 0,

z(0, x) = z0(x) (0, 1),

(5)

where C = diag(c11, c22).

Theorem 1. Consider the system (1) with initial condition
q0 ∈ [L2(Ω)]2. The backstteping mapping (3) transfers
system (1) into a target system (5), where the kernel
matrix K(x, ξ) is a solution from the following hyperbolic
system of PDEs:
αKxx(x, ξ)−Kξξ(x, ξ)α− CK(x, ξ)−K(x, ξ)λ = 0,

αKx(x, x) + α
d

dx
K(x, x) + C + λ+Kξ(x, x)α = 0,

αK(x, x)−K(x, x)α = 0,

Kξ(x, 0)α = −K(x, 0)αM,
(6)

where (x, ξ) ∈ T = {x ∈ (0, 1) 0 6 x 6 1, 0 6 ξ 6 x},
and d

dxK(x, x) = Kx(x, x) +Kξ(x, x).

Proof. From (3) it follows

zt(t, x) = qt(t, x)−
∫ x

0

K(x, ξ)qt(t, ξ)dξ, (7)

zx(t, x) = qx(t, x)−
∫ x

0

Kx(x, ξ)q(t, ξ)dξ −K(x, x)q(t, x),

and

zxx(t, x) = qxx(t, x)−
∫ x

0

Kxx(x, ξ)q(t, ξ)dξ

−Kx(x, x)q(t, x)−K(x, x)qx(t, x)− d

dx
K(x, x)q(t, x),

where d
dxK(x, x) = Kx(x, x) + Kξ(x, x). Thereby, substi-

tuting (1) and (5) inside (7), we obtain

αzxx(t, x)−Cz(t, x) = αqxx(t, x) + λq(t, x)

−
∫ x

0

K(x, ξ) (αqξξ(t, ξ) + λq(t, ξ)) dξ,

then,
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α
(
−
∫ x

0

Kxx(x, ξ)q(t, ξ)dξ −Kx(x, x)q(t, x)

−K(x, x)qx(t, x)− d

dx
K(x, x)q(t, x)

)
− Cq(t, x) + C

∫ x

0

K(x, ξ)q(t, ξ)dξ

= λq(t, x)−
∫ x

0

K(x, ξ) (αqξξ(t, ξ) + λq(t, ξ)) dξ,

(8)

However, we have∫ x

0

K(x, ξ)αqξξ(t, ξ)dξ = K(x, x)αqx(t, x)

−K(x, 0)αqx(t, 0)−Kξ(x, 0)αq(t, 0)

+

∫ x

0

Kξξ(x, ξ)αq(t, ξ)dξ +Kξ(x, x)αq(t, x).

(9)

Consequently, we have

α
(
−
∫ x

0

Kxx(x, ξ)q(t, ξ)dξ −Kx(x, x)q(t, x)

−K(x, x)qx(t, x)− d

dx
K(x, x)q(t, x)

)
− Cq(t, x) + C

∫ x

0

K(x, ξ)q(t, ξ)dξ = λq(t, x)

−K(x, x)αqx(t, x) +K(x, 0)αqx(t, 0)

−
∫ x

0

Kξξ(x, ξ)αq(t, ξ)dξ +Kξ(x, x)αq(t, x)

+Kξ(x, 0)αq(t, 0)−
∫ x

0

K(x, ξ)λq(t, ξ)dξ.

(10)

Then∫ x

0

(
αKxx(x, ξ)−Kξξ(x, ξ)α+ CK(x, ξ)−K(x, ξ)λ

)
q(t, ξ)dξ

+

(
αKx(x, x) + α

d

dx
K(x, x) + C + λ+Kξ(x, x)α

)
q(t, x)

(αK(x, x)−K(x, x)α) qx(t, x)

+K(x, 0)αqx(t, 0) +Kξ(x, 0)αq(t, 0) = 0
(11)

it follows that

αKxx(x, ξ)−Kξξ(x, ξ)α− CK(x, ξ)−K(x, ξ)λ = 0

We also need

αKx(x, x) + α
d

dx
K(x, x) + C + λ+Kξ(x, x)α = 0,

and
αK(x, x)−K(x, x)α = 0.

However, we have

+Kξ(x, 0)αq(t, 0) +K(x, 0)αqx(t, 0)

=
(
Kξ(x, 0)α+K(x, 0)αM

)
q(t, 0),

(12)

it leads
Kξ(x, 0)α+K(x, 0)αM = 0.

Finally, the kernel satisfies (6). By considering the previously rela-
tions, it follows that the backstteping mapping (3) transfers system
(1) into a target system (5). This finish the proof.

Now, we give the proof of well-posedness of the kernel (6).
The demonstration is inspired by the work of Vazquez and
Krstic Vazquez and Krstic (2017).

Proposition 1. The kernel system (6) has a solution in the
domain T . The transformation (3) is invertible.

Proof. We define

S(x, ξ) = Kξ(x, ξ)
√
α−K(x, 0)M̄

√
α−
√
αKx(x, ξ). (13)

where M̄α = αM.

Our original system is equivalent to

Kξ(x, ξ)
√
α+K(x, 0)M̄

√
α−
√
αKx(x, ξ) = S(x, ξ)

(14)
√
αSx(x, ξ)+Sξ(x, ξ)

√
α = −Kλ− CK

−
√
α
dK(x, 0)

dx
M̄
√
α (15)

To determine the boundary conditions of K, and S, we will
analyze separate the kernel S and K. From the boundary
conditions

αK(x, x)−K(x, x)α,

is automatically satisfied for i = j, i, j ∈ {1, 2}. Otherwise
we need

Kij(x, x) = 0, ∀i 6= j.

Now, for the boundary condition of S, from (13), we have

S(x, ξ)
√
α = Kξ(x, ξ)α+K(x, 0)M̄α−

√
αKx(x, ξ)

√
α

= Kξ(x, ξ)α+K(x, 0)αM−
√
αKx(x, ξ)

√
α.

(16)
Therefore, we obtain

S(x, 0)
√
α = −

√
αKx(x, 0)

√
α.

Finally, this result shows an equivalence between the kernel
equations for this case and the kernel equation for general
hyperbolic system, see Hu et al. (2018, 2016). Then, we
can deduce the well-posedness criteria of our system. This
finishes the proof.

3. UNDERACTUATED BOUNDARY STABILIZATION
OF PARABOLIC SYSTEM COUPLED AT THE

BOUNDARY

We consider now the unilateral boundary control,where
the boundary control input U(t) is given by

U =

[
U1

0

]
. (17)

Let us introduce the new variable
z(t, x) = [z1(t, x), z2(t, x)]T , solution of the following tar-
get system

zt − αzxx = −C(γ∗)z +W1z(t, 0) t > 0 x ∈ (0, 1),

z(t, 1) = 0 t > 0,

zx(t, 0) = 0 t > 0,

z(0, x) = z0(x) (0, 1),
(18)

with W1 is defined further in the paper and C(γ∗) is a
square matrix depending now on γ∗ > 0, design parameter,
is chosen to guarantee the exponential stabilization of the
target z−system (5).
We assume that the kernel has the following structure

K(x, y) =

[
k(x, y) 0

0 0

]
, (19)

it leads,

z1(t, x) = q1(t, x)−
∫ x

0

k(x, ξ)q1(t, ξ)dξ, (20)

z2(t, x) = q2(t, x), (21)

where the kernel k(x, y) is solution of
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αfkxx(x, ξ)− αfkξξ(x, ξ)− γ∗k(x, ξ) = 0, (x, ξ) ∈ T ,

k(x, x) = −γ
∗

2
x, x 6= 0

k(0, 0) = −γf ,
kξ(x, 0)− γfk(x, 0) = 0.

(22)
The explicit form of the kernel is given in Smyshlyaev and
Krstic (2004). Therefore, the kernel k(x, y) is given by

k(x, y) =
γfγ

∗√
γ∗ + γ2f

∫ x−y

0

e−γfτ/2

I0

(√
γ∗ (x+ y) (x− y − τ)

)
sinh


√
γ∗ + γ2f

2
τ

 dτ − γ∗x
I1

(√
γ∗(x2 − y2)

)
√
γ∗(x2 − y2)

,

(23)

for (x, y) 6= (0, 0), with Ii is a modified Bessel function of
order i, for more details see Smyshlyaev and Krstic (2010).

Remark 1. The backstepping transformation (3) is invert-
ible and the inverse is defined by Smyshlyaev and Krstic
(2010)

q(t, x) = z(t, x)−
∫ x

0

L(x, ξ)z(t, ξ)dξ, (24)

with the following structure of kernel

L(x, y) =

[
l(x, y) 0

0 0

]
,

such that the kernel PDE of the inverse transformation is
given by

αf lxx(x, ξ)− αf lξξ(x, ξ) = −γ∗l(x, ξ), (x, ξ) ∈ T ,

l(x, x) = −γ
∗

2
x,

l(0, 0) = −γf ,
lξ(x, 0)− γf l(x, 0) = 0,

(25)
where the explicit solution is drawn in Smyshlyaev and
Krstic (2004).

Based on the proposed structure of kernel (19), we explore
the boundary coupling property of our system to propose
the following structure of the matrix C = C(γ∗) that
depends on the parameter γ∗, where c11 = αfγ

∗ − λf and
c22 = −λp. The parameter γ∗ > 0 satisfies the following
condition

1

2σm (C(γ∗))
α2
fγ

2
fγ

∗e2γ
∗ 4

π2
≤ σm(α). (26)

However, for a very small value of γ∗, the condition (26)
holds. This value will be further chosen to guarantee the
exponential stability of the target system.

Theorem 2. The Backstteping transformation (3), (20),(21)
such that the kernel k(x, ξ) solution of (22), transfers
initial system into the target system dynamics (5), where
W1 is given by

W1 =

[
0 −αfγfk(x, 0)
0 0

]
. (27)

Proof. From (3) it follows

zt(t, x) = qt(t, x)−
∫ x

0

K(x, ξ)qt(t, ξ)dξ, (28)

zx(t, x) = qx(t, x)−
∫ x

0

Kx(x, ξ)q(t, ξ)dξ −K(x, x)q(t, x),

and

zxx(t, x) = qxx(t, x)−
∫ x

0

Kxx(x, ξ)q(t, ξ)dξ

−Kx(x, x)q(t, x)−K(x, x)qx(t, x)− d

dx
K(x, x)q(t, x),

where
d

dx
K(x, x) = Kx(x, x) +Kξ(x, x).

Thereby, substituting (1) and (5) inside (7), we obtain

αzxx(t, x)−C(γ∗)z(t, x) +W1(t, x)z(t, 0)

= αqxx(t, x) + λq(t, x)

−
∫ x

0

K(x, ξ) (αqξξ(t, ξ) + λq(t, ξ)) dξ,

then, from (8), (9), and using the structure of the kernel
(19), it follows that

αKxx(x, ξ)−Kξξ(x, ξ)α− C(γ∗)K(x, ξ)−K(x, ξ)λ =[
αfkxx(x, ξ)− αfkξξ(x, ξ)− c1k(x, ξ)− λfk(x, ξ) 0

0 0

]
,

then into (22) we get

αKxx(x, ξ)−Kξξ(x, ξ)α− CK(x, ξ)−K(x, ξ)λ = 0.

Therefore it leads
d

dx
k(x, x) = −c1 + λf

2αf
= −γ

∗

2
,

and
c2 + λp = 0.

Then, it easy to satisfy

αKx(x, x) + α
d

dx
K(x, x) + C + λ+Kξ(x, x)α = 0.

However, for the boundary conditions it follows

Kξ(x, 0)αq(t, 0) +K(x, 0)αqξ(t, 0) =[
αf (kξ(x, 0)− γfk(x, 0)) f(t, 0)− αfγfk(x, 0)p(t, 0)

0

]
.

(29)
From the backstteping transformation, we have

p(t, 0) = z2(t, 0),

from the invertible backstteping transformation, we de-
duce

q1(t, x) = z1(t, x)−
∫ x

0

l(x, ξ)z1(t, ξ)dξ, (30)

then
q1(t, 0) = z1(t, 0), (31)

Thus [
q1(t, 0)
q2(t, 0)

]
=

[
z1(t, 0)
z2(t, 0)

]
.

By considering the previously relations, it follows that the
backstteping mapping (3) transfers system (18),(17) into
a target system (5).

Based on some hypothesis we now state the stability result
of the target system in the space [L2(0, 1)]2. The next
theorem specifies the main stability result of this paper.

Theorem 3. Under hypothesis (26), the boundary control
input

U1(t) =

∫ 1

0

k(1, ξ)q1(t, ξ)dξ, (32)

exponentially stabilizes the system (1) in [L2(0, 1)]2.
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Proof. The candidate Lyapunov function is given by

V (t) =
1

2
‖z(t, .)‖22,2.

The derivative along the solutions of the system (5) takes
the form

V̇ (t) =

∫ 1

0

zT (t, x) (αzxx − C(γ∗)z +W1(t, x)z(t, 0)) dx,

the two first terms on the right hand side of (3) can be
estimated as follows∫ 1

0

zT (t, x)αzxx(t, x)dx ≤ −σm(α)‖zx(t, .)‖22,2,

−
∫ 1

0

zT (t, x)C(γ∗)z(t, x)dx ≤ −σm (C(γ∗)) ‖z(t, .)‖22,2.

From (Smyshlyaev and Krstic, 2004, Theorem 2), we have

|k(x, ξ)| 6 γ∗e2γ
∗x ∀x ∈ (0, 1). (33)

From Young’s inequality, for all ε > 0∫ 1

0

zT (t, x)W1(t, x)z(t, 0)dx

= −αfγf
∫ 1

0

z1(t, x)k(x, 0)z2(t, 0)dx

≤ 1

2ε

∫ 1

0

z21(t, x)dx

+
ε

2
α2
fγ

2
f

∫ 1

0

k(x, 0)dxz22(t, 0),

for ε = 1
σm(C(γ∗)) ,∫ 1

0

zT (t, x)W1(t, x)z(t, 0)dx ≤ σm (C(γ∗))

2

∫ 1

0

z21(t, x)dx

+
1

2σm (C(γ∗))
α2
fγ

2
f

∫ 1

0

k(x, 0)dxz22(t, 0),

Now, using the Poincaré inequality and (33) it leads

1

2σm (C(γ∗))
α2
fγ

2
f

∫ 1

0

k(x, 0)dxz22(t, 0)

≤ 1

2σm (C(γ∗))
α2
fγ

2
fγ

∗e2γ
∗ 4

π2
‖zx(t, .)‖22,2.

Under condition (26), it follows that

V̇ (t) ≤ −σm (C(γ∗))

2
V (t).

Finally, applying Gronwall’s inequality the exponential
stability of the target dynamics is proved.

4. NUMERICAL ILLUSTRATIONS

We now describe a numerical example to illustrate the
effectiveness of the proposed method for the stabilization
of unstable parabolic system coupled at the boundary.
This numerical test is carried out in MATLAB. A stan-
dard finite-difference approximation method is used in all
simulations by discretizing the spatial domain x ∈ [0, 1].
Denoting N the number of the spatial nodes, xi = ih,
h = 1/(N + 1), i = 1, 2, ..., N . The employed value in
the numerical example is equal to N = 40. The implicit
stable scheme for the temporal discretization with time
step δt = 10−4 is used.

The physical parameters of system are as follows: αf = 2
αp = 3 λf = 4, λp = 1, γf = 0.3 and γp = 0.5.

The initial conditions are set as q10(x) = 100cos(π2x),

q02(x) = 100cos( 3π
2 x). Figures 1-(a), 1-(b) and 3-(a) show

the blow-up of the temporal evolutions of the L2 norms of
‖q1(., t)‖2 and ‖q2(., t)‖2 for the open loop case.

The boundary control law U1 (32), is implemented for the
value γ∗ = 0.2 satisfying condition (26) . The convergence
of the solution to zeros are proved in figure 2 presenting
the exponential decay of (‖q1(., t)‖2, ‖q2(., t)‖2) to zero.
Figures 2-(a) and 2-(b) show the time evolution of solution
(q1, q2) for the closed loop system. The time evolution of
control is depicted in figure 4. These results demonstrate
the applicability of the proposed boundary stabilization
method.

(a)

(b)

Fig. 1. Spatiotemporal evolution of the state
(‖q1(., t)‖2, ‖q2(., t)‖2), in the open-loop test.

5. CONCLUSION

A backstteping approach has been proposed for the bound-
ary stabilization for an unstable two parabolic linear
PDEs weakly coupled at the boundary. We propose qui-
diffusivity and underactuated boundary control law for
the stabilization of the reaction-diffusion system based
on the particular form of the kernel matrix which allows
to control both equations by only transformation of vari-
able. The boundary coupling property of the system is
explored to prove the exponential decay of the closed-
loop system in [L2(0, 1)]2. These results open the door to
the output feedback design of parabolic system coupled
at the boundary including the convection term and with
spatially-dependent parameters.
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