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Abstract: Cooperative robotic problems often require coordination in space in order to
complete a given task, important examples include search and rescue, operations in hazardous
environments, and autonomous taxi deployment. Events can be quickly detected by partitioning
the working environment and assigning one robot to each partition. However, a crucial factor
that limits the effectiveness and usage of coverage algorithms is related to the ability of
taking decisions in the presence of constraints. In this paper, we propose a coverage control
algorithm that is capable of handling nonlinear dynamics, and state and input constraints. The
proposed algorithm is based on a nonlinear tracking model predictive controller and is proven
to converge to a centroidal Voronoi configuration. We also introduce a procedure to design the
terminal ingredients of the model predictive controller. The effectiveness of the algorithm is then
highlighted with a numerical simulation.
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1. INTRODUCTION

Collaborative robotics has the potential to improve the
quality of our lives. Possible applications include: swarms
of autonomous robots that quickly map and explore un-
known and dangerous environments to perform search and
rescue operations; a fleet of underwater vehicles that detect
the source of an oil spill and mitigate the environmental
damages fixing the leak and cleaning the surrounding area;
self-driving taxis that coordinate themselves to quickly
serve customers, minimize travel time and emissions. In all
these examples, the robots can effectively detect events by
partitioning the environment in which they are operating.
Optimal partitions can be collaboratively and iteratively
computed when the robots are deployed. However, while
iteratively determining the partition, it is crucial to take
into account that robots’ actions are subject to limitations,
e.g., actuation constraints or constraints induced by dy-
namics. Without taking into account these limitations, the
group of agents can be led into dangerous scenarios, e.g.,
two agents can crash into each other if they overestimate
their breaking capabilities.

In this work, we address the problem of optimally cov-
ering an area of interest while satisfying robot dynamics,
and state and input constraints. Specifically, results from
Voronoi partitioning and coverage control are combined
with model predictive control (MPC) techniques, resulting
in an MPC-based algorithm that is proven to converge to a
centroidal Voronoi configuration. The presented algorithm
is based on the nonlinear tracking MPC formulation intro-
duced by Ferramosca et al. (2009), and a result on discrete-
time Lloyd descent algorithms presented in Cortes et al.
(2004).
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Related Work: There has been a considerable effort in the
analysis of coverage and constrained control problems sep-
arately. Classical approaches to coverage problems assume
the system dynamics to be a single integrator. In Cortés
and Bullo (2005) and Bullo et al. (2012), gradient-based
solutions are proven to converge to centroidal Voronoi par-
titions. Non-uniform coverage over a line has been studied
in Leonard and Olshevsky (2011); Davison et al. (2012,
2015), where the authors determine a policy that is proven
to converge to an optimal partition. In Lee et al. (2015),
the coverage control problem under known time-varying
sensory functions is analyzed. In Schwager et al. (2009);
Carron et al. (2015); Todescato et al. (2017) the problem of
concurrently estimating the sensory function and covering
the environment is studied. To the best of our knowledge,
the only work that considers systems with dynamics is
the one proposed by Cortes et al. (2004), however, the
authors consider passive systems without state or input
constraints. Conversely, in Mohseni et al. (2017), the au-
thors develop a receding horizon controller that is proven
to satisfy state and input constraints, but the robots have
single integrator dynamics. Finally, in Patel et al. (2013),
a coverage control problem is studied where the area of
the partitions is constrained.

Model predictive control received a considerable attention
in the last decades thanks to its capability of systemati-
cally handling state and input constraints. For a compre-
hensive review about model predictive control, we refer
the reader to Mayne et al. (2000); Mayne (2014); Borrelli
et al. (2017). While there is a variety of techniques, the
approach most relevant to this paper is the work presented
by Ferramosca et al. (2009). The authors present a track-
ing MPC formulation for nonlinear systems with recursive
feasibility and convergence guarantees. This is crucial for
coverage control problems where systems are nonlinear and
constrained, and have to track a given reference.
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Contributions: The main contributions of this paper are
twofold: the first is a coverage control algorithm capable
of converging to centroidal Voronoi configuration while
satisfying nonlinear system dynamics, and state and input
constraints. The second contribution is to show that the
results in Chen and Allgöwer (1998) can be utilized to
design the nonlinear tracking MPC terminal ingredients.

The remainder of the paper is organized as follows. Sec-
tion 2 recalls preliminaries about coverage control. In Sec-
tions 3 and 4, we formulate the coverage control problem,
introduce the model predictive coverage control algorithm,
and prove its convergence to a centroidal Voronoi con-
figuration. Section 5 presents a procedure to compute
the terminal ingredients for the proposed nonlinear MPC
scheme. In Section 6, the numerical results are discussed,
and Section 7 concludes the paper.

2. COVERAGE CONTROL

Let Q be a convex polytope in Rn. We define a partition
of Q as a collection of M polytopes W = {W1, . . . ,WM}
with disjoint interiors, the union of which is Q.

Let p = [p1, . . . , pM ] be the location of M robots, each
moving in Q. The Voronoi partition of Q generated by p is
given by V(p) = {V1(p), . . . ,VM (p)}, see e.g. Okabe et al.
(1992), which is defined as

Vi(p) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i},
where ‖ ·‖ denotes the Euclidean norm. Given that the set
Q is convex, it can be shown that the Voronoi regions are
convex as well, Du et al. (1999).

Let Φ : Q → R+ be a probability density function that
represents a measure of information or probability that
some event takes place over Q. Given a partition W, we
define for each region its centroid with respect to the
probability density function Φ as

ci(Wi) =

(∫
Wi

Φ(q)dq

)−1 ∫
Wi

qΦ(q)dq.

We denote with c(W) = [c1(W1), . . . , cM (WM )] the vector
containing the partition’ centroids. A partition W is said
to be a centroidal Voronoi partition of the pair (Q,Φ)
if W = V(c(W)), i.e., W coincides with the partition
generated by c(W). To simplify the notation, we denote
with ci(p) the centroid computed with respect to the
Voronoi partition generated by p, i.e., ci(Vi(p)).
We consider the task of minimizing the locational opti-
mization function, introduced in Cortes et al. (2004),

H(p,W) =

M∑
i=1

∫
Wi

g(‖q − pi‖)Φ(q)dq, (1)

where pi ∈ Wi, and g(·) denotes the sensing performance of
the robot at point q from point pi. Note that the function
is to be minimized with respect to the robot locations p
and the partitions W. In Du et al. (1999), it is shown
that for a fixed probability density function, the set of
local minima of H(p,W) coincides with the centroids of a
Voronoi partition of the pair (Q,Φ).

Let p(0) be the robots’ initial location, and assuming that
the robots have a single integrator dynamics, without state
and input constraints, the update

p(k + 1) = ci(p(k))

asymptotically converges to the set of centroidal Voronoi
partitions, which are extreme points of the coverage func-
tion (1), Cortes et al. (2004). This algorithm is also known
as Loyd algorithm, Lloyd (1982).

A generalization of the Lloyd algorithm is given by the
following proposition.

Proposition 1. (Cortes et al. (2004)). Let T : QM → QM
be a continuous mapping satisfying the properties

(1) for all i ∈ {1, . . . ,M}, ‖Ti(p)− ci(p)‖ ≤ ‖pi − ci(p)‖,
where Ti denotes the ith component of T ;

(2) if p is not centroidal, then there exists a j such that
‖Tj(p)− cj(p)‖ < ‖pj − cj(p)‖.

Let p(0) ∈ QM denote the initial robots’ location. Then,
the sequence {Tm(p(0))|m ∈ N} converges to a centroidal
Voronoi configuration.

3. PROBLEM FORMULATION

We consider a group of M robots, which move in the
region Q. The goal of the robots is to optimally cover the
region Q with respect to the cost (1) under a fixed and
known probability density function Φ.

Robots move according to the following discrete-time
nonlinear dynamics

xi(k + 1) = fi(xi(k), ui(k))

yi(k) = hi(xi(k), ui(k))

pi(k) = Cixi(k),

(2)

where, for all i ∈ {1, . . . ,M}, xi(k) ∈ Rni , ui(k) ∈ Rmi

and yi(k) ∈ Rpi are state, input, and output vectors of the
ith robot, respectively, fi represents the state dynamics,
hi the output function, Ci ∈ Rn×pi is a matrix that selects
the robot position among the state variables. The dynam-
ics models fi(xi, ui) and the output models hi(xi, ui) are
assumed to be known and Lipschitz continuous.

All robots are subject to polytopic state and input con-
straints containing the origin in their interior, i.e.,

Xi = {xi|Axxi ≤ bx}
Ui = {ui|Auui ≤ bu},

(3)

where Ax ∈ Rnxi
×ni , bx ∈ Rnxi , Au ∈ Rnui

×nu and bu ∈
Rnui for all i ∈ {1, . . . ,M}. Without loss of generality,
we assume that the first element of the state xi is the
position pi of the i-th robot and that the operator ψ(pi) =[
pTi 0 · · · 0

]
∈ Rnxi generates a vector of the dimension of

the state of the ith agent, where the first element is the
position pi of the ith robot, and the others are equal to
zero.

Assumption 1. The robots’ dynamics (2) are position in-
variant, i.e., f(x(k) + ψ(p), u(k)) = x(k + 1) + ψ(o)
∀p ∈ Rn, x(k), u(k). Moreover, we assume Q ⊆ CiXi ∀i ∈
{1, . . . ,M}.

Assumption 1 restricts the results to agents with dynamics
where the position appears only in an integrator. This
condition is, however, satisfied by the vast majority of
mobile ground, aerial, and underwater robots.

This paper presents a MPC-based coverage controller for
robots with nonlinear dynamics, and polytopic state and
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input constraints. The controller is guaranteed to converge
to a centroidal Voronoi partition, which is an extreme
point of the coverage cost function (1).

4. MODEL PREDICTIVE COVERAGE CONTROL

In this section, we introduce the model predictive coverage
controller. An MPC is used to track the centroids, which
are iteratively updated to converge to an optimal Voronoi
partition. To guarantee convergence, the tracked reference
centroid is updated if and only if all robots have decreased
their distance from their centroids. The controller is de-
scribed in Algorithm 1, and defines a map which satisfies
the assumptions of Proposition 1.

Algorithm 1 works as follows. During the initialization
phase (line 1), the robots, based on their initial position
p(0), compute their Voronoi partitions, centroids, and the
distance between their location p(0) and the computed
centroids. The centroid is set as reference of the tracking-
MPC problem (4), i.e.,

ri = ci(p(0)),

and the distance between their location and the computed
centroid is set as tracking-error, i.e.,

ei,r = ‖pi(0)− ci(p(0))‖.
Then, at every iteration, each agent first measures its own
state (line 4), then solves the nonlinear tracking-MPC
problem (4) (line 5), and finally applies the first input of
the optimal input sequence (line 6). The last step of the
algorithm (lines 8-10) checks if the reference of the MPC
controller can be updated. In particular, two condititions
must to be satisfied. First, all agents are required to not
increase their tracking error, i.e.,

‖pi(k)− ri‖ ≤ ei,r,
and second, at least one agent j ∈ {1, . . . ,M} is required
to decrease its tracking error, i.e.,

‖pi(k)− rj‖ < ej,r.

If these two conditions are fulfilled, then all agents update
their reference ri = ci(p(k)) and their tracking error ei,r.
Note that the only step that requires a centralized coordi-
nation is the MPC reference update detection (line 8), all
other steps can be performed using only local information.

The nonlinear tracking MPC controller defined in (4) is in-
spired by the work in Ferramosca et al. (2009). This MPC
formulation is suitable for the coverage control problem
because it guarantees recursive feasibility independently
of how the reference changes. Moreover, if the reference
is constant, the controller converges to the closest feasible
reference. The MPC controller is defined by the following
optimization problem

min
u,x̄,ū,r̄

Ji(xi, ui, x̄i, ūi, ri, r̄i) (4a)

s.t. l = {1, . . . , N − 1} (4b)

xi,0 = xi(k) (4c)

xi,l+1 = fi(xi,l, ui,l) (4d)

(xi,l, ui,l) ∈ (Xi,Ui) (4e)

(xi,N , r̄i) ∈ Xterminal (4f)

r̄i = hi(x̄i, ūi) (4g)

x̄i = fi(x̄i, ūi). (4h)

Given a reference ri, which in our case is the current
centroid, the optimization problem computes the system’s

Algorithm 1 Model Predictive Coverage Control

1: Initialize: compute ri = ci(p(0)) and
ei,r = ‖pi(0)− ci(p(0))‖ ∀i = {1, . . . ,M}

2: for k=1,2,. . . do
3: for every agent i do
4: Measure state xi
5: Solve optimization problem (4)
6: Apply u?i,0
7: end for
8: if ‖hi(xi(k), ui(k))− ri‖ ≤ ei,r ∀i ∈ {1, . . . ,M} and

∃j ∈ {1, . . . ,M} s.t. ‖hj(xj(k), uj(k)) − rj‖ < ej,r
then

9: Update ri = ci(p(k)) and ei,r = ‖pi(k)−ci(p(k))‖
10: end if
11: end for

equilibrium point (4g)-(4h), and the optimal input se-
quence. The cost function in problem (4) is defined as

Ji(xi, ui, x̄i, ūi, ri, r̄i) =

N−1∑
l=1

`i,l(xi,l − x̄i, ui,l − ūi)+

`i,N (xi,l − x̄i) + `i,t(r̄i − ri),
(5)

where `i,l, `i,N , and `i,t are the stage cost, the terminal
cost, and the target cost, respectively.

The MPC controller is locally computed by each agent
and is used in a receding horizon fashion, which means
that the control law is given by κi(xi, ri) = u?i,0 ∀i ∈
{1, . . . ,M}, where u? is the optimal solution of (4). Note
that the feasible region of problem (4) does not depend
on the reference ri, because it just appears in the cost
function Ji(xi, ui, x̄i, ūi, ri, r̄i).

Consider the following assumptions on the controller pa-
rameters, which are commonly used in nonlinear tracking
MPC to guarantee recursive feasibility and convergence,
see e.g. Limon et al. (2009); Ferramosca et al. (2009).
Note that the assumptions on the terminal ingredients
are similar to those in standard MPC but extended to
a set of equilibrium points. While it can generally be
difficult to satisfy these assumptions, in the considered
problem satisfying Assumption 1 on position-invariance,
which makes any position a steady-state, the conditions
are easily satisfied. See also Section 5 for a design proce-
dure.

Assumption 2. Consider the optimization problem (4):

(1) Let
[
x̄Ti , ū

T
i

]T
= gi(ri) be a function that defines

the steady state given the reference. Assume gi to be
Lipschitz continuous ∀i ∈ {1, . . . ,M}.

(2) Let R be the set of admissible targets, i.e, R =
{(x, u)|ri = Cxi, xi = fi(xi, ui), (xi, ui) ∈ (Xi,Ui),
∀i ∈ {1, . . . ,M}}. Assume the set R to be convex.

(3) Let κi(xi, ri) be a continuous control law such that for
all ri ∈ R, the steady- state (x̄i, ūi) is asymptotically
stable for the system system fi(xi(k), κi(xi(k), ri)).

(4) Let Xterminal be an invariant set for system
fi(xi(k), κi(xi(k), ri)) under state and input con-
straints (3).

(5) Let `i,N (x, x̄) be Lyapunov functions for their associ-
ated systems xi,l+1 = fi(xi,l, κi(xi(k), ri)).

(6) Let `i,l(x, u, x̄, ū) be positive definite functions.
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(7) Let `i,t(r, r̄) be convex, positive definite and subdif-
ferentiable functions.

In the following, we show that Algorithm 1 converges
to a centroidal Voronoi configuration by satisfying the
assumption of Proposition 1.

Proposition 3. Let Assumptions 1 and 2 be satisfied. Let
pi(0) = Cixi(0) ∈ Q ∀i ∈ {1, . . . ,M} be the initial location
of the robots subject to dynamics (2) and constraints (3),
and xi(0) ∀i ∈ {1, . . . ,M} be a feasible initial condition
for problem (4). Then problem (4) is recursively feasible
and Algorithm 1 converges to a centroidal Voronoi config-
uration.

Proof. Recursive feasibility and convergence to the clos-
est feasible reference follow directly from Assumption 2
and the results in Ferramosca et al. (2009). Due to As-
sumption 1, any centroid is a feasible reference. Thus the
MPC scheme converges to the given references, and there
exists a subsequence of the iterations of Algorithm 1 that
satisfies Proposition 1. 2

5. MPCC DESIGN

In the previous section, an algorithm that solves the cov-
erage control problem under nonlinear state dynamics and
polytopic state and input constraints has been introduced.
The proposed solution is based on an MPC formulation
that requires the design of the terminal ingredients, i.e.,
a terminal control law, a terminal invariant set and a
terminal cost function. In the following, we present a
procedure to design these ingredients. Compared to the
work of Ferramosca et al. (2009), we neither propose an
equality terminal constraint nor a terminal set for an LTV
representation of the nonlinear system, but a method to
directly compute the terminal ingredients for the nonlinear
system.

5.1 Terminal control law

The terminal control law is computed for the linearized
system. The equilibrium (x̄, ū) under which the lineariza-
tion is performed is chosen as follows. Thanks to assump-
tion 1, the position is not relevant for the selection of the
equilibrium, and hence, without loss of generality, is set to
zero. All remaining states are problem dependent, and can
be chosen according to a given metric, i.e., to minimize a
cost function. The linearization gives the following state
and input matrices

Ai =
∂fi(xi, ui)

∂xi

∣∣∣∣
(x̄i,ūi)

, Bi =
∂fi(xi, ui)

∂ui

∣∣∣∣
(x̄i,ūi)

.

The terminal control law κi(xi, x̄i) = Ki(xi− x̄i) is chosen
as an LQR controller for the linearized system, which is
known to asymptotically stabilize the nonlinear system in
a neighborhood of the equilibrium (x̄i, ūi), see e.g. Kirk
(1970).

5.2 Terminal invariant set and cost

The terminal invariant set and cost computation are based
on the work of Chen and Allgöwer (1998), but in discrete-
time domain. The following lemma provides a region of

attraction and a performance bound for the nonlinear
system controlled by a local linear state feedback. We will
later use these results to outline a design procedure for the
terminal set and cost.

Lemma 4. Assume the closed-loop system x(k + 1) =
f(x(k),Kx(k)) to be stabilizable at the origin, and let
AK = A + BK denote the linearized closed-loop system
under the stabilizing controller u(k) = Kx(k). Then,

(1) the following Lyapunov equation(
1√

1− c
AK

)T
P

(
1√

1− c
AK

)
− P = −Q? (6)

admits a unique positive-definite and symmetric so-
lution P , where Q? = Q+KTRK is positive definite
and symmetric, and c satisfies

c < 1− |λmax(AK)|2.
(2) There exists a constant α ∈ (0,+∞) specifying a

neighborhood

Xterminal(α) = {x ∈ Rn|xTPx ≤ α} ⊆ X
such that
(a) the input Kx ∈ U for all x ∈ Xterminal(α), i.e.,

the linear feedback controller respects the input
constraints in Xterminal(α),

(b) Xterminal(α) is invariant for the nonlinear sys-
tem (2) controlled by the linear feedback u = Kx,

(c) for any x̄ ∈ Xterminal(α), the infinite horizon cost

J∞(x̄, u) =

+∞∑
k=k̄

x(k)TQx(k) + u(k)TRu(k)

subject to nonlinear dynamics (2), starting from
x(k̄) = x̄ and controller by the local linear state
feedback u = Kx, is bounded from above as
follows

J∞(x̄, u) ≤ x̄TPx̄.

From Lemma 4, we can derive a procedure to compute the
terminal set and cost, which is described in Algorithm 2.
The procedure is a direct extension of the approach
in Chen and Allgöwer (1998) for continuous-time systems,
to which we refer for more details.

Algorithm 2 Terminal Ingredient Computation

1: Compute the LQR controller for the linearization
of (2)

2: Choose a constant c < 1− |λmax(AK)|2 and solve (6)
3: Find the largest α1 such that Kx ∈ U for all x ∈
Xterminal(α1)

4: Find the largest α ∈ (0, α1], c1 and c2, with c =
c1 − 2c2, such that xTATPΦ(x) ≤ c1‖x‖2P and
xTATPΦ(x) ≤ c2‖x‖2P are satisfied in Xterminal, where
Φ(x) = AKx− f(x,Kx)

6. SIMULATIONS

In this section, we show the effectiveness of the model
predictive coverage control algorithm in simulation. The
simulation is performed in Python on an Intel Core i7
3.3GHz machine with 16 GB of RAM, using CasADI and
IPOPT as solver.
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Fig. 1. Robot positions (blue dots) and Voronoi partitions (green dots and black lines) at iterations k = 1, 10, 20, 100.

The environment to cover is defined as Q = [0, 1] × [0, 1],
with density function Φ(q) = 1. We consider a fleet of 4
robots, each modeled as a bicycle model. Each dynamics
is represented by the following non-linear system

pxi
(k + 1) = pxi

(k) + Ts cos(θ)vi(k)

pyi(k + 1) = pyi(k) + Ts sin(θ)vi(k)

θi(k + 1) = θ(k) + Ts tan(γi(k))
vi(k)

L
γi(k + 1) = γi(k) + Tsδ(k),

(7)

where pxi
and pyi represent the position, θi the yaw, and

γi the steering angle of the ith robot. The two inputs are
the velocity vi and the steering rate δi. The sampling time
Ts is 0.1s, and the wheelbase of the vehicle L is 0.005. We
assume the output function to be equal to the state, i.e.,
hi(xi, ui) = xi, and the output matrix

Ci =

[
1 0 0 0
0 1 0 0

]
.

The position of each robot is constrained to be within Q,
the steering angle γi ∈ [− π

2.1 ,
π

2.1 ], and the yaw θi ∈
[−π, π]. The velocity and the steering rate are limited
to |vi| ≤ 1 and |δi| ≤ 1. The robot initial positions
are p1 = [0.05, 0.15], p2 = [0.1, 0.15], p3 = [0.25, 0.35],
and p4 = [0.3, 0.1]. Figure 1 shows the robot positions
at iterations k = 1, 10, 20, 100. It can be seen from the
pictures that the algorithm converges to 4 rectangles of
equal area. In Figure 2, the coverage cost function (1) is
plotted for the first 100 iterations.
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Fig. 2. Evolution of the coverage cost function (1) over 100
iterations.

Note that the coverage cost is not monotonic, as it only
decreases when the centroids are updated but can increase
during the MPC iterations. Finally, Figure 3 shows the
trajectories of the robots.
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Fig. 3. Trajectories of the 4 agents (colored dotted lines),
Voronoi partition (green dots and black lines), and
centroids (blue dots).

7. CONCLUSIONS

In this paper, we propose a coverage control algorithm that
is capable of handling nonlinear state dynamics, and state
and input constraints. The proposed controller is based on
a nonlinear tracking MPC, and it is proven to converge to
a centroidal Voronoi configuration. Numerical results show
the effectiveness of the algorithm.
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