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Abstract: This paper present a method based on simulation data to optimize Lyapunov
functions to stabilize nonlinear systems such that an estimation of the domain of attraction
(DOA) is maximized. For non-affine nonlinear system, our previous work proposes an approach
to estimate robust closed-loop DOA for uncertain nonlinear systems by sampling the state- and
input-space. However, the main drawback is that the Lyapunov function is given and does not
consider the problem of finding a good Lyapunov function to enlarge the estimate of the robust
closed-loop DOA. The motivation of this paper is to enlarge the estimate of the closed-loop
DOA in order to reduce conservatism of the DOA estimate. To achieve this goal, a solvable
optimization problem is formulated to use sum-of-squares techniques to evaluate the cost for
a given Lyapunov function and then optimizing over Lyapunov functions via existing meta-
heuristic optimization methods. The effectiveness of proposed method is verified by numerical
results.
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1. INTRODUCTION

Research on robust control began in the 1960s has gained
more and more popularity (Petersen and Tempo, 2014). In
the past two decades, robust control has been a research
hot-spot due to its ability of dealing with the uncertainty.
However, most of robust control theory is linear (assume
that the nominal model is linear) (Safonov, 2012; Petersen
and Tempo, 2014; Bhattacharyya, 2017). It is generally
known that linear robust control ignores available informa-
tion about existing nonlinearities. When the nonlinearities
are significant, the resulting controller is very conservative.
Hence, nonlinear robust control is proposed (Freeman and
Kokotović, 2008).

Most of nonlinear robust control methods just consider
the affine nonlinear nominal model that is affine with
respect to the control input, such as the Lyapunov min-
max approach (Corless, 1993), the nonlinear H∞ approach
(Basar and Helton, 1995), the robust backstepping ap-
proach (Freeman and Kokotović, 2008) and the approach
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based on polynomial fuzzy systems (Ashar et al., 2018;
Tsai and Jen, 2018). When the nominal model is as-
sumed to be affine nonlinear, available information about
existing non-affine nonlinearities is ignored. Considering
the discrete-time general (non-affine) nonlinear nominal
model, Li et al. (2019) proposes a new nonlinear robust
control method based on Lyapunov function. Due to the
difficulty to achieve the global stabilization for general
nonlinear systems, this method also estimates the robust
closed-loop DOA besides designing a robust controller.
The basic idea is to check if the sampled simulation data
points satisfy the well-known requirements for being part
of the DOA (i.e., L(f(x, u)) − L(x) < 0 in sublevel set
{x|L(x) < α} for all functions f in the uncertainty descrip-
tion, if L is a given Lyapunov function). However, Li et al.
(2019) assumes that the Lyapunov function is given and
does not consider the problem of finding a good Lyapunov
function to enlarge the estimate of the closed-loop DOA.

Inspired by Li et al. (2019), we observe that, for different
Lyapunov functions, the estimates of the closed-loop DOA
are totally different. Therefore, the motivation of this
paper is to enlarge the estimate of the closed-loop DOA
by selecting an appropriate Lyapunov function. In order
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to achieve this goal, a solvable optimization problem is
formulated to select an appropriate Lyapunov function
from a parameterized positive-definite function set, which
is a subset of all sum-of-square polynomials. The objective
function of this optimization problem is the volume of the
estimate of the closed-loop DOA, which can be obtained
based on the method proposed in Li et al. (2019). The
analytical expression of the volume of the estimate of the
closed-loop DOA is hard to be derived, but it is easy
to evaluate for a given positive-definite function. Hence,
meta-heuristic optimization methods can be used to solve
this optimization problem.

The rest of this paper is organized as follows. In Section
2, the control problem is formulated. In Section 3, the
method proposed in Li et al. (2019) is briefly introduced,
which solves the robust stabilization problem with estima-
tion of the closed-loop DOA when the Lyapunov function
is given. In Section 4, a solvable optimization problem is
formulated and solved to select an appropriate Lyapunov
function from a parameterized positive-definite function
set. In Section 5, simulation results show the effectivenss
of the proposed method. Finally, the conclusion is drawn
in Section 6.

Notation: For x ∈ Rn and u ∈ Rm, (x;u) represents a new
vector in Rn+m. For x1, x2 ∈ Rn, x1 ≤ x2 means x1 is less
than or equal to x2 element by element.

2. PROBLEM FORMULATION

Consider the nonlinear discrete-time plant set

F :=
{
f : Rn×Rm→Rn

∣∣∣f(0, 0) = 0,

f̂(x, u)− δ(x, u) ≤ f(x, u) ≤ f̂(x, u) + δ(x, u)
}
, (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control

input, f̂ : Rn × Rm → Rn is the known nominal model

satisfying f̂(0, 0) = 0 and δ : Rn×Rm → Rn+ is the known
modeling error bound satisfying δ(0, 0) = 0.The control
objective is to find a robust controller µ : Rn → Rm and
an estimate of the robust closed-loop DOA to ensure that,
∀f ∈ F, the closed-loop x(k + 1) = f(x(k), µ(x(k))) is
asymptotically stable at the origin for all initial states in
the estimate of the robust closed-loop DOA and to enlarge
the estimate of the robust closed-loop DOA.

The first part of the control objectives, i.e., finding a
robust controller and an estimate of the robust closed-
loop DOA, can be achieved by using the method proposed
in Li et al. (2019). In this paper, the second part of
the objective, i.e., enlarging the estimate of the robust
closed-loop DOA, is achieved by selecting an appropriate
Lyapunov function from a positive-definite function set,
e.g., sum-of-square polynomials (Packard et al., 2010).

3. PRELIMINARIES: ROBUST STABILIZATION
WITH ESTIMATION OF CLOSED-LOOP DOA

In this section, we briefly introduce the method solving
robust stabilization with estimation of the closed-loop
DOA. See Li et al. (2019) for more details.

3.1 Sufficient condition for robust stabilization

Theorem 1. For the plant set F defined in (1), if a positive-
definite function L : Rn → R and a constant α ∈ R+ exist
such that the level-set Xls(L,α) satisfying

Xls(L,α) =
{
x ∈ Rn

∣∣∣ L(x) ≤ α
}
⊂ XF(L) ∪ {0}, (2)

then any state feedback controller µ : Rn → Rm satisfying

µ(0) = 0, (x;µ(x)) ∈WF(L),∀x ∈ XF(L), (3)

can asymptotically stabilize any plant f ∈ F for all initial
states x0 ∈ Xls(L,α), where

WF(L) =
{
(x;u)∈Rn+m

∣∣∣∀f ∈F, L(f(x,u)
)
−L(x)<0

}
,(4)

XF(L) =
{
x ∈ Rn

∣∣∣∃u ∈ Rm, (x;u) ∈WF(L)
}
. (5)

The proof of Theorem 1 is presented in Li et al. (2019).

From Theorem 1, we know that any state feedback
controller in the robust negative-definite domain(NDD)
WF(L) ⊂ Rn×Rm, i.e., satisfying (3), can asymptotically
stabilize all plant in the plant set F and that any Lyapunov
function level-set Xls(L,α) belonging to the robust NDD
XF(L) ⊂ Rn, i.e., satisfying (2), can be an estimate of
DOA for all closed-loops of all plants in the plant set F.
Hence, if the robust NDDs WF(L) and XF(L) are obtained,
it is easy to find a robust controller and an estimate
of the robust closed-loop DOA. In the next subsection,
a data-driven method of estimating the robust NDDs is
introduced.

3.2 Robust negative-definite domains estimation

Let compact sets X ⊂ Rn and U ⊂ Rm denote the
interested regions, containing the origins, in the state
space and the control space, respectively. Let W = X ×
U ⊂ Rn+m denote the interested region in the state-control
space. Then a sample data set W d of W can be generated
by (6), in which each data point (xd;ud) ∈ Rn+m is drawn
from the uniform distribution on W.

W d =
{

(xdv;u
d
v) ∈ Rn+m, v = 1, 2, · · · , Nd

xu∣∣∣(xdv;udv) ∼ U(W)
}
, (6)

where Nd
xu is the number of data points and U(D) denotes

the uniform distribution on compact domain D belonging
to any multi-dimensional Euclidean space.

Next, we aim to find the sample data set W d
F(L) ⊂W d of

WF(L) defined in (4). WF(L) is rewritten as

WF(L) =
{

(x;u) ∈ Rn+m
∣∣∣∀x̄ ∈ X̄F(x, u),

L(x̄)− L(x) < 0
}
, (7)

where x̄ = f(x, u) and, for any (x;u) ∈ Rn+m, X̄F(x, u) is
defined as

X̄F(x, u) =
{
x̄ ∈ Rn

∣∣∣f̂(x, u)− δ(x, u) ≤ x̄

≤ f̂(x, u) + δ(x, u)
}
. (8)
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For each data point (xd;ud) ∈ W d , a sample data set
X̄d

F(xd, ud) of X̄F(xd, ud) is generated by (8), in which each

data point x̄d ∈ Rn is drawn from the uniform distribution
on X̄F(xd, ud).

X̄d
F(xd, ud) =

{
x̄h ∈ Rn, h = 1, 2, · · · , Nd

x̄∣∣∣x̄h ∼ X̄F(xd, ud)
}
, (9)

where Nd
x̄ is the number of data points. Hence, from (7),

the sample data set W d
F(L) of WF(L) can be expressed as

W d
F(L) =

{
(xd;ud) ∈W d

∣∣∣∀x̄d ∈ X̄d
F(xd, ud),

L(x̄d)− L(xd) < 0
}
. (10)

Finally, the region X ⊆ Rn and U ⊆ Rm are partitioned
into disjoint cells. Here, we apply uniform grids over X and
U. Let {Cxi } denote the partition of X and {Cuj } denote

the partition of U, where Cxi ⊂ Rn, i = 1, 2, · · · , NC
x , Cuj ⊂

Rm, j = 1, 2, · · · , NC
u , and NC

x and NC
u are numbers of

cells in {Cxi } and {Cuj }, respectively. Hence, the partition

of W ∈ Rn+m can be represented as {Cwt } = {Cxi }×{Cuj },
where Cwt ⊂ Rn+m, t = 1, 2, · · · , NC

x ·NC
u . With the sample

data set W d
F(L) of WF(L) and the partition {Cwt } of W,

an estimate ŴF(L) of WF(L), which is set of partitions,
can be obtained by combining all cells in which all data
points belong to W d

F(L) and is expressed as

ŴF(L)=
{
Cw ∈ {Cwt }

∣∣∣∀(xd;ud) ∈ Cw ∩W d,

(xd;ud) ∈W d
F(L)

}
. (11)

The estimate X̂F(L) of the robust NDD XF(L) (defined

in (5)) can be obtained by projecting ŴF(L) along the
control space onto the state space and is expressed as

X̂F(L)=
{
Cx∈{Cxi }

∣∣∣∃Cu∈{Cuj },
Cx×Cu∈ŴF(L)

}
. (12)

From (11), it is obvious that ŴF(L) is an inner approxi-
mation of WF(L). Since L(f(0, 0))−L(0) = 0,∀f ∈ F, the
origin 0 ∈ Rn+m is in boundary of WF(L). Hence, there is

no cell belonging to the inner approximation ŴF(L) and
there is a small neighborhood of the origin 0 ∈ Rn which
is not contained by the projection X̂F(L) of ŴF(L). The
size of the neighborhood is smaller when the size of cells
is smaller. However, from (4)-(5), we know that XF(L)
contains this neighborhood of the origin in the state space
except the origin. We modify X̂F(L) obtained by (12) such
that it contains this neighborhood of the origin and the
origin.

The above procedure of finding ŴF(L) and X̂F(L) is
summarized in Algorithm 1.

Algorithm 1 Estimation of NDDs for a given Lyapunov
function
Inputs:

- positive-definite function L : Rn → R;
- plant set F defined in (1).

Outputs:
- ŴF(L) and X̂F(L).

Parameters:
- interested region W ⊂ Rn+m;
- partition {Cwt , t = 1, · · · , NC

x ·NC
y } of the region W;

- number Nd
xu of data points in W d;

- number Nd
x̄ of data points in X̄d

F(xd, ud).
Steps:

1: Generate the sample data set W d of W by (6), whose
data points are drawn from the uniform distribution
on W.

2: For each data point (xd;ud) ∈ W d, generate the
sample data set X̄d

F(xd, ud) by (9), whose data points

are drawn from the uniform distribution on X̄F(xd, ud).
3: Find the sample data set W d

F(L) of WF(L) by (10).

4: Obtain the estimate ŴF(L) of WF(L) by (11), com-
bining all cells only containing data points in W d

F(L).

5: Obtain the estimate X̂F(L) of XF(L) by (12), project-
ing W̄(L) along the control space onto the state space.

3.3 Estimating robust closed-loop DOA and designing
controller

Replacing the robust NDD XF(L) ⊂ Rn with its estimate

X̂F(L), from Theorem 1, we know that any Lyapunov
function level-set Xls(L,α) satisfying

Xls(L,α) ⊂ X̂F(L) (13)

can be an estimate of closed-loop DOA for all plant in the
plant set F.

Replacing the robust NDD WF(L) ⊂ Rn+m with its

estimate ŴF(L), from Theorem 1, we know that any
controller µ satisfying

µ(0) = 0, (x;µ(x)) ∈ ŴF(L),∀x ∈ X̂F(L)\{0} (14)

can asymptotically stabilize all plant in the plant set F. A
simple way to find a controller µ satisfying (14) is that,

first, select a controller training set belonging to ŴF(L);
then, obtain the controller µ with a function estimation
method, such as interpolation, neural network, Gaussian
processes regression and so on.

4. ENLARGEMENT OF ROBUST CLOSED-LOOP
DOA

In Section 3, for a given positive-definite function, an es-
timate of colosed-loop DOA can be obtained. This section
introduces a method of searching for better Lyapunov
function to make the estimate of the robust closed-loop
DOA as large as possible.
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4.1 Enlarging robust closed-loop DOA for given Lyapunov
function

From Theorem 1, we know that any Xls(L,α) satisfing
condition (2) could be an estimate of the robust closed-
loop DOA. For the given L, the optimization problem

max
α∈R+

m(Xls(L,α)) subject to (2) (15)

can enlarge the estmate of the robust closed-loop DOA,
where m(Xls(L,α)) is the Lebesegue measure of Xls(L,α)(in
Euclidean space, it is the volume of Xls(L,α)). However,
optimization problem (15) cannot be solved, because cal-
culating m(Xls(L,α)) and verifying the constraint (2) are
impossible due to nonlinearities of L and F. In order to
handle m(Xls(L,α)) and the set containment constrain
(2), Xls(L,α) and XF(L) are replaced with their estimates

X̂ls(L,α) and X̂F(L), respectively, and optimization prob-
lem (15) is rewritten as

max
α∈R+

m(X̂ls(L,α)) subject to (16)

X̂ls(L,α) ⊂ X̂F(L), (17)

where X̂F(L) is obtained by Algorithm 1 and X̂ls(L,α) can
be obtained with the same idea of estimating WF(L) in
Algorithm 1. First, a sample data set Xd of the interested
region X ⊂ Rn in the state space is generated, in which
each data point xd ∈ Rn is drawn from the uniform
distribution on X and the number of data points is Nd

x .
Then, the sample data set

Xd
ls(L,α) :=

{
xd ∈ Xd

∣∣∣L(xd) ≤ α
}

(18)

of Xls(L,α) can be obtained. Finally, with the partition
{Cxi , i = 1, 2, · · · , NC

x } of X which is same as the one in

estimation of XF(L), the estimate X̂ls(L,α) of Xls(L,α)
can be obtained by combining all cells only containing data
points in Xd

ls(L,α), namely,

X̂ls(L,α) =
{
Cx ∈ {Cxi }

∣∣∣∀xd ∈ Cx ∩Xd,

xd ∈ Xd
ls(L,α)

}
. (19)

Due to that X̂ls(L,α) consists of cells, it is easy to calculate

the volume of X̂ls(L,α), namely, m(X̂ls(L,α)) in (16). Due

to that both X̂ls(L,α) and X̂F(L) consist of cells, the set
containment constraint (17) is equivalent to

XC
ls (L,α) ∩XC

F (L) = XC
ls (L,α) (20)

where XC
ls (L,α) ∈ {0, 1}NC

x and XC
F ∈ {0, 1}NC

x are
logical vectors and the binary operator ∩ represents the
logical operator AND for two logical vectors element by
element. Each cell in {Cxi } corresponds to a element of

XC
ls (L,α) and XC

F (L). If a cell belongs to X̂ls(L,α), the

corresponding element of XC
ls (L,α) equals to 1, otherwise

equals to 0. If a cell belongs to X̂F(L), the corresponding
element of XC

F (L) equals to 1, otherwise equals to 0.

When m(X̂ls(L,α)) can be calculated and the set contain-
ment constrain (17) can be verified, optimization problem

(16)-(17) can be solved. Note that the volume of X̂ls(L,α)
is increasing as α is increasing for the given L. The idea
of solving optimization problem (16)-(17) is very simple.
Initially set α := ε, and repeat α := α + ε until the set
containment constraint (17) is not satisfied, where ε ∈ R+

is a given small constant. Let α∗(L) denotes the solution
of optimization problem (16)-(17). The above procedure
finding α∗(L) is summarized in Algorithm 2. In order to
improve the search efficiency, Algorithm 2 uses the variable
ε scheme rather than the constant ε scheme. For example,
suppose α∗(L) = 97.678, for the constant ε = 0.001
scheme, the number of verifying constraint (17) is 97679;
for the variable ε scheme, where εinit = 10 and the desired
accuracy is 0.001, the number of verifying constraint (17)
is 42. Generally, set εinit = 10η, η ∈ Z+. After obtaining
α∗(L), the largest estimate of the robust closed-loop DOA

for the given Lyapunov function L is X̂ls(L,α
∗(L)).

Algorithm 2 Finding the optimal α∗(L) for the given
Lyapunov function L

Inputs:
- positive-definite function L : Rn → R;
- estimate X̂F(L) of NDD XF(L).

Outputs:
- solution α∗(L) of optimization problem (16)-(17);

- largest X̂ls(L,α
∗(L)) satisfying (17) for given L.

Parameters:
- εinit

- desired accuracy
Steps:

1: Set ε := εinit and α := ε, where εinit ∈ R+ is a
constant.

2: Find estimate X̂ls(L,α) of Xls(L,α) by (19).
3: Verify constrain (17) by (20), if constrain (17) is

satisfied, then set α := α+ ε and go to Step2.
4: Set α := α− ε and ε := 0.1 · ε.
5: If ε satisfies the desired accuracy, then set α∗(L) := α

and X̂ls(L,α
∗(L)) := X̂ls(L,α), otherwise α := α + ε

and go to Step2.

4.2 Enlarging robust closed-loop DOA by selecting appropr
-iate Lyapunov function

When the Lyapunov function L : Rn → R is not given
but can be selected from a positive-definite function set, a
significantly larger estimate of the robust closed-loop DOA
may be obtained by solving the following optimization
problem.

max
L∈Cn

m(X̂ls(L,α
∗(L))), (21)

where Cn denotes the set of all continuous positive-definite
functions in n variables and X̂ls(L,α

∗(L)) is the largest es-
timate of the robust closed-loop DOA for L. Unfortunately,
optimization problem (21) is an infinite dimensional prob-
lem and unsolvable. Hence, we restrict L ∈ Ln,2d rather
than L ∈ Cn. Function set Ln,2d is a subset of all sum-of-
square polynomials and defined as

Ln,2d =
{
L ∈ Rn,2d

∣∣∣L(x) = STd (x)QTQSd(x)
}

(22)

where Rn,2d is the set of all polynomials in n variables with
degree ≤ 2d, x = (x(1);x(2); · · · ;x(n)) ∈ Rn, Q ∈ Rr×r is
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a full rank matrix, Sd(x) = (x(1); ...;xn;x(1)x(2); ...;x
d
(n))

∈ Rr and r = (n+d
d ) − 1. Ln,2d is choosen because,

∀L ∈ Ln,2d, L is positive-definite, namely L(0) = 0 and
L(x) > 0, ∀x ∈ Rn\{0}. With Ln,2d, the unsolvable
optimization problem (21) is rewritten as the following
solvable optimization problem.

max
L∈Ln,2d

m(X̂ls(L,α
∗(L))) (23)

The positive-definite function set Ln,2d is a parameterized
sum-of-square polynomial function set, whose parameter
is Q ∈ Rr×r. We define function m : Rr×r → R+ as

m(Q) = m(X̂ls(L,α
∗(L))), where L(x) = STd (x)QTQSd(x)

and α∗(L) obtained by Algorithm 2. With the function
m(Q) ,the optimization problem (23) can be equivalently
rewritten as

max
Q∈Rr×r

m(Q). (24)

The analytical expression of m(Q) is hard to be derived,
but it is easy to evaluate m(Q) for the given Q. The
procedure of evaluating m(Q) for the given Q is summa-
rized in Algorithm 3. Hence, classic optimization methods,
e.g., gradient descent method, cannot be used to solve
the optimization problem (24). However, meta-heuristic
optimization methods can be used to solve the optimiza-
tion problem (24), whose advantage is that the function
to be optimized is only required to be evaluable. Popu-
lar meta-heuristic optimizers for real-valued search-spaces
include particle swarm optimization(Kennedy and Eber-
hart, 1995), differential evolution and evolution strategies.
There are lots of literatures about meta-heuristic optimiz-
ers, so we omit an introduction about them in this paper
(Marler and Arora, 2004).

Algorithm 3 evaluating m(Q) for given Q

Inputs:
- Q ∈ Rr×r
- plant set F defined in (1);

Outputs:
- m(Q) ∈ R+;

Steps:

1: Determine the positive-definite function L(x) =
STd (x)QTQSd(x) according to Q.

2: Based on L, f̂ , δ and {Cwt }, obtain X̂F(L) by Algo-
rithm 1.

3: Based on L and F, obtain X̂ls(L,α
∗(L)) by Algo-

rithm 2.
4: Obtain m(Q) = m(X̂ls(L,α

∗(L))).

5. SIMULATION

Consider the nominal model f̂ and the modeling error
bound δ(x, u):

f̂(x, u) =− sin(2x)− xu− 0.2x− u2 + u,

δ(x, u) = 1− exp
(
−0.5(x2 + u2)

)
,

where x ∈ R and u ∈ R. The interested region W =
[−2, 2] × [−2, 2] ⊂ R2 in the state-control space is parti-
tioned into 1.6×105 cells of size 0.01×0.01. The number of

data points in W d is selected as 5×106. For each data point
(xd;ud) in W d, the number of data points in X̄F(xd, ud) is
selected as 500.

When the positive-definite function L(x) = x2 is selected,

an estimate ŴF(L) of the robust NDD WF(L) is obtained
by Algorithm 1 and shown in Fig 1(a) denoted by gray

region. An estimate X̂F(L) of the robust NDD XF(L) is
also obtained and shown in Fig 1(a) denoted by green line
segment in x-axis. The largest estimate

X̂ls(x
2, 0.0117) = [−0.108, 0.108] ⊂ R

of the robust closed-loop DOA for L(x) = x2 is found by
Algorithm 2 and shown in Fig 1(a) denoted by the blue line
segment in x-axis. In order to find a controller µ belonging
to the gray region, we select a training data set shown
by red ′×′ in Fig 1 (a). With the training data set, the
robust controller µ is obtained using Gaussian processes
regression, as shown in Fig 1 denoted by black line. To
verify whether the controller µ can stabilize all plants in
the plant set for all initial state in X̂ls(x

2, 0.0117), we con-

sider the controlled system x(k+1) = f̂(x(k), u(k))+e(k),
where noise e(k) is drawn from the uniform distribution on
[−δ(k), δ(k)] ⊂ R and δ(k) = δ(x(k), u(k)). Fig 1(b) shows

1000 state trajectories of x(k+1) = f̂(x(k), µ(x(k)))+e(k)
denoted by blue dash lines, whose initial states are drawn
from the uniform distribution on X̂ls(x

2, 0.0117). Fig 1(c)
also shows 1000 noises trajectories corresponding to the
1000 state trajectories. We see that all state trajectories
converge to the origin.

When the positive-definite function set

L1,4 =
{
L ∈ R1,4

∣∣∣L(x) = (x;x2)TQTQ(x;x2)
}

is selected, the optimization problem (24) is solved through
the particle swarm optimization method, where Q ∈
R2×2. The solution Q∗ = (0.3587

1.0000
0.9232
0.8249). According to Q∗,

the appropriate Lyapunov function L∗(x) = 1.5327x4 +
2.3121x3 + 1.1286x2 and α∗(L∗) = 10.5421. The estimate

ŴF(L∗) of the robust NDD WF(L∗) is shown in Fig 2 (a)

denoted by gray region. The estimate X̂F(L∗) = [−2, 2] ⊂
R of the robust NDD XF(L∗) is also shown in Fig 2(a)
denoted by green line segment in x-axis. The largest
estimate

X̂ls(L
∗, α∗(L∗)) = [−2, 1.2699] ⊂ R

of the robust closed-loop DOA for L∗ is shown in Fig 2(a)
denoted by the blue line segment in x-axis. The training
data set is shown by red ′×′ in Fig 2(a). The robust
controller µ is shown in Fig 2(a) denoted by black line.
To verify whether the controller µ can stabilize all plants
in the plant set for all initial state in X̂ls(L

∗, α∗(L∗)), the

same control system x(k + 1) = f̂(x(k), u(k)) + e(k) is
considered. Fig 2(b) shows 1000 state trajectories of x(k+

1) = f̂(x(k), µ(x(k))) + e(k) denoted by blue dash lines,
whose initial states are drawn from the uniform distribu-
tion on X̂ls(L

∗, α∗(L∗)). Fig 2(c) also shows 1000 noises
trajectories corresponding to the 1000 state trajectories.
It shows that all state trajectories converge to the origin.
As shown in Fig 2(a), the new DOA is [−2.0, 1.2699],
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Fig. 1. (a) Estimates ŴF(L), X̂F(L) of robust NDDs, estimate X̂ls(L, 0.0117) of closed-loops, controller training data
and robust controller µ. (b) State trajectories of closed-loops x(k). (c) Noise trajectories e(k).
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Fig. 2. (a) Estimates ŴF(L), X̂F(L) of robust NDDs, estimate X̂ls(L, 10.5421) of closed-loops, controller training data
and robust controller µ. (b) State trajectories of closed-loops x(k). (c) Noise trajectories e(k).

compared with Fig 1, the DOA has enlarged by 15.1384
times.

6. CONCLUSION

This paper proposed a new data-driven control method
to asymptotic stabilize non-affine nonlinear plant with
DOA enlargement. By applying Lyapunov approach, a
solvable optimization problem was formulated to enlarge
robust closed-loop DOA iterated through parameterized
positive-definite function set. Simulation results verified
the effectiveness of all algorithms in the method. The
sufficient conditions are stringent, finding looser conditions
is our future work.
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