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Abstract: In this paper, we give a formulation of distributed parameter systems with a moving
diffuse interface using the Port Hamiltonian formalism. For this purpose, we suggest to use the
phase field modeling approach. In the first part we recall the phase field models, in particular
the Cahn–Hilliard and Allen–Cahn equations, and show that they may be expressed in terms
of a dissipative Hamiltonian system. In the second part we show how this Hamiltonian model
may be extended to a Boundary Port Hamiltonian System and illustrate the construction on
the example of crystallization.
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1. INTRODUCTION

In this paper we consider the modeling problem of dis-
tributed parameter systems with internal moving inter-
face. The interface is the narrow region which separates
two spatial regions of different material states (solid/
liquid, liquid/gas, solid/solid, etc). One way to model
such systems is to consider sharp interfaces and to divide
the spatial domain into sub–systems. Each sub–system is
governed by a set of conservation laws interconnected at
the interfaces through boundary conditions resulting from
flux conditions and constitutive relations. This implies an
explicit tracking of the interface position, both in space
and time. This representation of multi–phase distributed
parameter systems increases the complexity of modeling,
analysis, and numerical discretization schemes (Godlewski
and Raviart, 2004; Boutin et al., 2008).
An alternative approach is to consider diffuse interfaces
where phases are defined by continuous variables in space
and time. This is the phase field approach. The dynam-
ics of phase variable are governed by partial differen-
tial equations derived from thermodynamics potentials.
Most models falling into the scope of phase field systems
are then described by Cahn–Hilliard (Cahn and Hilliard,
1958) or Allen–Cahn (Allen and Cahn, 1979) equations
which describe conservative and non–conservative pro-
cesses, respectively. Sharp interface models can be recov-
ered from phase field ones by considering infinitely small
interface thickness (Elder et al., 2001). See the mono-
graph (Emmerich, 2003) for more details on the develop-
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entitled Interconnected Infinite–Dimensional Systems for Hetero-
geneous Media, INFIDHEM, financed by the French National
Research Agency (ANR). Further information is available at
https://websites.isae-supaero.fr/infidhem/the-project/

ment, the analysis and the applications of this modeling
tool. Allen–Cahn and Cahn–Hilliard equations are em-
ployed as boundary control models. Chehab et al. (2017)
used a 1–D Allen–Cahn equation to model the interface
formation in a lithium electric battery and to control the
number of interface through a Neumann boundary control
variable. Chen (1993) proposed a boundary optimal con-
trol law for the Allen–Cahn equation.
The boundary control port Hamiltonian formulation of
infinite–dimensional systems is convenient to model sys-
tems governed by conservation laws (van der Schaft and
Maschke, 2002). The port Hamiltonian formulation of
sharp moving boundary in 1–D systems was addressed
by Diagne and Maschke (2013). In this work we define
phase field systems within the boundary control port
Hamiltonian framework. Toward this end we introduce
phase fields models. We define the potential of the interface
and the conservative and non–conservatives modeling ap-
proaches. The port Hamiltonian representations for phase
field systems are obtained by prolongation of the systems
on their jet spaces. This approach was already introduced
in various examples Maschke and van der Schaft (2005,
2013); Schöberl and Siuka (2014). The contribution is con-
cluded with a solidification example (Elder et al., 2001).
The paper is structured as follows. In Section 2 the phase
field modeling is introduced and Stokes–Dirac structures
are recalled in Section 3. The main contributions are pre-
sented in sections 4 and 5 where boundary port Hamilto-
nian formulations of non–conserved and conserved phase
field models are stated, respectively. In Section 6 a solidi-
fication example illustrates the contribution.
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2. INTRODUCTION TO PHASE FIELD MODELS

Interfaces are implicitly represented through a continuous
time–varying distributed parameter named the phase field
variable. This parameter possesses its own dynamics and
physical properties. Hence, a phase field model is defined
by two elements. Firstly a functional representing a ther-
modynamical potential such as the energy or the entropy
(or any other Legendre transformations). Secondly a state
equation governing the phase field dynamics. Two phe-
nomenological behaviors are distinguished depending on
the phase field conservative properties. The state equations
are conservation laws or gradient systems. For an overview
of phase field models see the review article (Kobayashi,
2010) or the monograph (Emmerich, 2003).
Consider z to be the space variable defined in the spa-
tial domain Ω ⊂ R3 with boundary ∂Ω ⊂ R2 and t ∈
[0,+∞) to be the time variable. The conserved phase
field variable c(t, z) ∈ [0,+∞) × Ω → [0, 1] is a scalar
distributed parameter. Values 0 and 1 enable the repre-
sentation of two phases. Intermediate values indicate the
proximity with the dissipative interface. We have delib-
erately chosen the interval [0, 1] for simplicity but any
interval [a, b] for any a > b ∈ R is adequate to repre-
sent two phases. Non–conserved phase field variables are
labelled φ(t, z) ∈ [0,+∞) × Ω → [0, 1]. Phase fields are
initialized at time t = 0 as φ(0, z) = φ0(z) ∈ C∞(Ω, [0, 1])
and c(0, z) = c0(z) ∈ C∞(Ω, [0, 1]) for all z ∈ Ω.

2.1 The Landau–Ginzburg functional

The cornerstone of phase field modeling relies on the
definition of the functional representing indifferently its
entropy density, its energy density or other thermodynami-
cal potentials. This function is a thermodynamic potential
where a phase field variable is added to the thermody-
namic variables present in the system (Emmerich, 2003).
Consider any, conserved or non–conserved, phase field
variable x. The Landau–Ginzburg model for interfaces is
defined with the functional G : C∞(Ω) → R (Emmerich,
2003):

G(x) =

∫
Ω

g(x) +
1

2
κx(z)(grad x)2dV, (1)

where κx(z) ∈ C∞(Ω,R+) is the gradient entropy co-
efficient and relates the interface surface tension and
width (Kobayashi, 2010). The functional (1) is the sum
of a quadratic term that represents the cost for inhomo-
geneities and g(x) ∈ C∞([0, 1],R) is an analytic poten-
tial function that generates the interface dynamics. This
function exhibits two minima in the interval [0, 1] enabling
the thermodynamic consistency of each phase (Emmerich,
2003).
The dynamics of either a non–conserved phase field vari-
able or a conserved one are generated by variations of the
potential function (1).

2.2 Non–conserved phase field variable

A non–conserved phase field variable, φ(t, z), is governed
by a gradient equation of the following form:

∂φ

∂t
(t, z) = −Γφ(z)

δG
δφ
, (2)

where Γφ(z) ∈ C∞(Ω,R+) represents the isotropic inter-

face mobility and δG/δφ denotes the functional derivative
of the functional G with respect to the phase field vari-
able φ(t, z). The variational differentiation of the func-
tional (1) is given by:

δG
δφ

(φ) =
∂g

∂φ
(φ)− div

(
κφ(z) grad φ(t, z)

)
. (3)

According to the functional derivative (3), the phase field
state equation (2) reads as follows:

∂φ

∂t
= −Γφ

(
− div

(
κφ grad φ

)
+
∂g

∂φ
(φ)

)
, (4)

where time and space dependences on the state variable
and coefficients are omitted for sake of clarity. Equation (4)
is named the Allen–Cahn equation (Allen and Cahn,
1979). To define a Cauchy problem we include initial
conditions at t = 0 with φ(0, z) = φ0(z) for all z ∈
Ω, and boundary conditions, evaluated on ∂Ω, that can
be Dirichlet, Neumann or Danckwerts (Nauman and He,
2001).

Remark 1. The Allen–Cahn equation (4) is a parabolic
equation (Duindam et al., 2009), e.g. a heat diffusion
equation, and can be formulated as a Hamiltonian sys-
tem. Nevertheless one has to use a different Hamiltonian
function than the potential (1), defined as:

H(φ) =

∫
Ω

1

2
φ2dV, (5)

along with the conservation law:
∂φ

∂t
+ div jφ = 0, (6)

where jφ denotes the non–conserved flux given by:

jφ = −Γφ grad
δH
δφ

. (7)

Then the Hamiltonian representation of the Allen–Cahn
equation (4) is given by:∂φ∂t +

∂g

∂φ
(φ)

Fφ

 =

(
0 −div

−grad 0

)δHδφ
jφ

 , (8)

where Fφ denotes the thermodynamic phase flux. The

Hamiltonian function (5) is not physically based as the
potential function (1). Therefore, the contribution due to
the density potential function g(φ) is not included as an
effort term but arises in the left hand side of equation (8)
as a distributed source term. This implies the definition of
non–physical port variables and motivates the formulation
of an extended port Hamiltonian representation of the
Allen–Cahn equation (4).

2.3 Conserved phase field variable

Dynamics of a conserved phase field variable c(t, z) ∈ [0, 1],
are governed by a balance equation of the following form:

∂c

∂t
(t, z) + div jc(t, z) = 0, (9)

where the phase field flux jc(t, z) ∈ C∞(Ω,R3) is closed
by the following linear transport relation:

jc = −Γc(z) grad

(
δG

δc
(c)

)
, (10)

where Γc(z) ∈ C∞(Ω,R+) represents the phase field dif-
fusion coefficient. After injecting the phase field flux (10)
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into the conservation law (9), with the variational deriva-
tive (3), one finds the Cahn–Hilliard equation (Cahn and
Hilliard, 1958):

∂c

∂t
= div

(
Γc grad

(
− div(κc grad c) +

∂g

∂c

))
, (11)

where time and space dependences on the state variable
and coefficients are omitted. To define a Cauchy problem
we add initial conditions c(0, z) = c0(z) for all z ∈
Ω and boundary conditions on ∂Ω to the phase field
equation (11).

Remark 2. Similarly to the Allen–Cahn equation, the
Cahn–Hilliard equation (11) can be represented as a
Hamiltonian system. Indeed we have a conservation law (9)
which can be formulated with the same operator as in
equation (8):(

∂c

∂t
Fc

)
=

(
0 −div

−grad 0

)(δG
δc
jc

)
, (12)

with the thermodynamic force Fc is defined as:

Fc = − grad δG
δc
. (13)

One should note the presence of differential operators in
the functional derivative (3). This motivates the formu-
lation of an alternative Hamiltonian formulation of the
Cahn–Hilliard equation (11) where the extended represen-
tation includes all differential terms in the structure.

Both conserved and non–conserved phase field variables
can be present in the same dynamical system. This will be
illustrated with a solidification process in Section 6.

3. PORT HAMILTONIAN SYSTEMS AND
STOKES–DIRAC STRUCTURES

The port Hamiltonian formulation of infinite–dimensional
systems relies on the definition of a Stokes–Dirac struc-
ture (van der Schaft and Maschke, 2002). Hereby we recall
the definition needed for the structured representation of
the Cahn–Hilliard (11) and the Allen–Cahn (4) equations.
Consider an n–dimensional space F ⊂ R and E = F ′ its
dual, i.e. the space of linear operator e : F → R. The
elements of f ∈ F and of e ∈ E are called flows and efforts,
respectively. The pair of boundary port variables (e∂ , f∂)
are defined in the boundary spaces E∂ and F∂ , respec-
tively. Power is defined with the dual product between e
and f as 〈e, f〉 = e(f). The space of power variables is
given by:

B =
{

(f, f∂ , e, e∂) ∈ F × F∂ × E × E∂
}
, (14)

such that the duality pairing between elements of B is
defined as: 〈〈

(f1, f
∂
1 , e1, e

∂
1 ), (f2, f

∂
2 , e2, e

∂
2 )
〉〉

=

〈e1, f2〉+ 〈e2, f1〉+ 〈e∂1 , f∂2 〉∂Ω + 〈e∂2 , f∂1 〉∂Ω.
(15)

Definition 1
Le Gorrec et al. (2005) A Stokes–Dirac structure D on
the bond space B is a subspace of B which is maximally
isotropic with respect to the canonical symmetrical pair-
ing (15), i.e. D = D⊥ , where D⊥ denotes the orthogonal
subspace of D with respect to the pairing (15).

Port Hamiltonian systems defined by the state vari-
able x(t) ∈ F , the potential function H(x(t)) ∈ E with

boundary port variables ζ(t) ∈ Z. Then the port Hamil-
tonian system is defined by the Stokes–Dirac structure(

−ẋ(t), f∂ ,
δH
δx

(x(t)), e∂
)
∈ D. (16)

Dirac structures are defined for various physical applica-
tions. For details and properties concerning their com-
position one can refers to (Duindam et al., 2009). The
case of a system with two conservations laws is discussed
in (Kotyczka et al., 2018). Dirac structures are also defined
on Hilbert spaces (Kurula et al., 2010).

4. PORT HAMILTONIAN FORMULATION OF
NON–CONSERVED PHASE FIELDS

Consider the model of a non–conserved phase field vari-
able φ(t, z) ∈ C∞(Ω, [0, 1]) defined with the storage func-
tion (1) and the gradient equation (2). To emphasize the
linear structure behind the phase field model we augment
the system. This is a modeling technique already used for
port Hamiltonian systems (see example 4.3 in Maschke and
van der Schaft (2005)). The state space representation (4)
is augmented as:(

φ
ψ

)
,

(
φ

gradφ

)
∈ C∞(Ω, [0, 1])× C∞(Ω,R3), (17)

Hence the potential (1) is re–written as:

G(φ, ψ) =

∫
Ω

κφ
2
ψ2 + g(φ)dV. (18)

Furthermore we introduce the new distributed parame-
ter Eφ(t, z) ∈ C∞(Ω,R) given by:

Eφ(t, z) = Γφ(z)Fφ(t, z), (19)

where Fφ(t, z) ∈ C∞(Ω,R) denotes the variational deriva-

tive of the potential function (3) expressed in terms of the
new pair of variables (17) as:

Fφ =
δG
δφ
− div

(
δG
δψ

)
. (20)

The gradient equation (2) is now:

∂φ

∂t
(t, z) = −Eφ(t, z). (21)

The time variation of the second variable ψ(t, z) ∈
C∞(Ω,R3) is given by

∂ψ

∂t
(t, z) =

∂

∂t
grad φ(t, z). (22)

The gradient operator and the time derivative commute
since φ(t, z) ∈ C∞(Ω, [0, 1]), and plugging equation (21)
in (22) one obtains:

∂ψ

∂t
(t, z) = − grad Eφ(t, z). (23)

The balance equation of the potential function (18) is given
by:

dG
dt

= −
∫

Ω

EφFφdV −
∫
∂Ω

−→n δG
δψ
EφdS, (24)

where we have used the state equations (21) and (23),
and applied integration by parts and Stokes’ theorem. The
outward unit normal vector acting on the boundary ∂Ω is
denoted −→n . One identifies a distributed dissipative term,
due to the interface diffusion in the all domain Ω, in the
first integral term in equation (24). The second term in
the right hand side of equation (24) denotes the potential
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variation due to the exchanges through the boundary ∂Ω.
With the state equations (21) and (23), and the closure re-
lation (19), one identifies the following implicit structured
representation:

fφ = Jφeφ, (25)

where the flow variable fφ and the effort variables eφ are

f>φ =

(
∂φ

∂t
,
∂ψ

∂t
, Fφ

)>
∈ Fφ, (26)

where Fφ = C∞(Ω,R)× C∞(Ω,R3)2 and

e>φ =

(
δG
δφ
,
δG
δψ
, Eφ

)>
∈ Eφ, (27)

where Eφ = C∞(Ω,R) × C∞(Ω,R3) × C∞(Ω,R), respec-
tively. Furthermore the linear operator Jφ takes the fol-
lowing form:

Jφ =

(
0 0 −1
0 0 −grad
1 −div 0

)
. (28)

With the functional (24) we identify the following pair of
boundary port variables(

fφ∂
eφ∂

)
=

(
0 −−→n · 0
0 0 1

)
eφ
∣∣
∂Ω

=

−−→n δG
δψ

Eφ

 , (29)

Boundary port variables fφ∂ and eφ∂ are defined in the linear

spaces of boundary flows and efforts F∂φ = C∞(∂Ω,R3)

and E∂φ = C∞(∂Ω,R), respectively. Finally, the space of
power variables is the Cartesian product of the bulk and
boundary efforts and flow variables:

Bφ =
{

(fφ, f
∂
φ , eφ, e

∂
φ) ∈ Fφ ×F∂φ × Eφ × E∂φ

}
. (30)

The duality pairing between elements of Bφ is defined as:〈〈
(f1
φ, f

1∂
φ , e1

φ, e
1∂
φ ), (f2

φ, f
2∂
φ , e2

φ, e
2∂
φ )
〉〉

=

〈e1
φ, f

2
φ〉+ 〈e2

φ, f
1
φ〉+ 〈e1∂

φ , f
2∂
φ 〉∂Ω + 〈e2∂

φ , f
1∂
φ 〉∂Ω.

(31)

Let us formally show that the non–conserved phase field
model is equipped with a Stokes–Dirac structure.

Proposition 1
Consider the space of power variables Bφ, the bilinear
product � ·, · �, and the linear operator Jφ defined

in (30), (31), and (28), respectively. Then the following
linear subspace Dφ ⊂ Bφ:

Dφ =


((

fφ
f∂φ

)
,

(
eφ
e∂φ

))
∈ Bφ s.t.

fφ = Jφeφ,
(
f∂φ
e∂φ

)
=Wφ eφ

∣∣
∂Ω

 , (32)

is a Stokes–Dirac structure.

Proof 1. The linear operator Jφ is skew–symmetric. Fol-

lowing (van der Schaft and Maschke, 2002) one shows
that the subspace Dφ is a Dirac structure, i.e. Dφ = D⊥φ
where D⊥φ denotes the orthogonal complement with re-

spect to the bilinear form (31).

Remark 3. Integrations over the domain Ω and its bound-
ary ∂Ω, e.g. the potential balance equation (24), are
independent on the interface position. This is a major
difference with the traditional way of modeling moving
interface systems where the domain of integration moves
with the interface (Diagne and Maschke, 2013). Hence

the Stokes–Dirac structure (32), and by extension the
port Hamiltonian system is defined independently of the
interface position.

To summarize, the structured model of a non–conserved
phase field is defined by the states (φ, ψ), with the Hamil-
tonian function (18) and the Stokes–Dirac structure:(

∂φ

∂t
,
∂ψ

∂t
, Fφ, f

∂
φ ,
δG
δφ
,
δG
δψ
,Eφ, e

∂
φ

)
∈ Dφ (33)

where Fφ and Eφ are closed by the algebraic equation (19).

Boundary conditions f∂φ and e∂φ are defined by the rela-

tion (29). They physically represent the gradient of the
phase field variable passing through the boundary ∂Ω and
the functional derivative of the potential function.

5. PORT HAMILTONIAN FORMULATION OF
CONSERVED PHASE FIELDS

Consider now the case of conserved phase field variables
as introduced in Section 2.3. The same methodology as for
the non–conserved cased is followed. Let us introduce the
augmented state variables:(

c
γ

)
,

(
c

grad c

)
∈ C∞(Ω,R)× C∞(Ω,R3), (34)

such that the potential (1) is now given by:

G(c, γ) =

∫
Ω

g(c) +
κc
2
γ2dV. (35)

The phase field variable c is governed by the following
balance equation (9):

∂c

∂t
= − div jc, (36)

and the state equation associated to the variable γ is given
by:

∂γ

∂t
= − grad (div jc) , (37)

where we have used the definition of γ, and the balance
equation (36). The gradient operator and the time deriva-
tive commute since c(t, z) ∈ C∞(Ω, [0, 1]). The phase
field flux jc ∈ C∞(Ω,R3) is closed by a linear transport
relation (10),

jc = ΓcFc, (38)

where Fc ∈ C∞(Ω,R3) denotes the phase field thermody-
namic force:

Fc = − grad
(
δG
δc
− div δG

δγ

)
. (39)

Remark 4. With the structure representation of conserved
phase field variables the constitutive relation (38) is an
algebraic equation. The differential part of the closure
equation is gathered in the thermodynamic force (39)
which will be included in the Stokes–Dirac Structure.

The balance equation of the potential function (35) enables
us to identity the boundary port variables and is given by:

dG
dt

=−
∫
∂Ω

−→n
(
−jc div

δG
δγ

+
δG
δγ

div jc +
δG
δc
jc

)
dS

−
∫

Ω

jcFcdV,

(40)

where we have derived G along the states trajectories
defined by the state equations (36) and (37), and applied
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two integrations by parts. The balance equation (36),
the state equation (37) and the closure relation (38) are
gathered in the following unique equation:

fc = Jcec. (41)

Let us define the linear operator Jc:

Jc =

(
0 0 − div(·)
0 0 − grad(div(·))

− grad(·) grad(div(·)) 0

)
. (42)

The vector of flows fc and effort ec variables are defined
as:

f>c =

(
∂c

∂t
,
∂γ

∂t
, Fc

)>
∈ Fc, (43)

with Fc = C∞(Ω,R)× C∞(Ω,R3)2, and

e>c =

(
δG
δc
,
δG
δγ
, jc

)>
∈ Ec, (44)

with Ec = C∞(Ω,R)×C∞(Ω,R3)2, respectively. One iden-
tifies in the balance equation (40) the following boundary
port variables:

(
f∂c
e∂c

)
=


0 div 0
0 0 −div
−1 0 0
0 0 −→n
0 −→n 0
0 0 −→n

 ec|∂Ω , (45)

where E∂c ∈ C∞(∂Ω,R3)2 × C∞(∂Ω,R) and F∂c ∈
C∞(∂Ω,R3)3.

Remark 5. The choice of boundary port variable is consis-
tent with the balance equation (40), but other boundary
port variables are possible (Le Gorrec et al., 2005).

The space of power variables is given by the:

Bc =
{

(fc, f
∂
c , ec, e

∂
c ) ∈ Fc ×F∂c × Ec × E∂c

}
. (46)

The duality pairing between elements of Bc is defined as:〈〈
(f1
c , f

1∂
c , e1

c , e
1∂
c ), (f2

c , f
2∂
c , e2

c , e
2∂
c )
〉〉

=

〈e1
c , f

2
c 〉+ 〈e2

c , f
1
c 〉+ 〈e1∂

c , f
2∂
c 〉∂Ω + 〈e2∂

c , f
1∂
c 〉∂Ω.

(47)

Let us show that the conserved phase field model has a
Stokes–Dirac structure.
Proposition 2
Consider the space of power variables Bc, the bilinear
product � ·, · �, and the linear operator Jc defined
in (46), (47), and (42), respectively. The following linear
subspace Dc ⊂ Bc:

Dc =


((

fc
f∂c

)
,

(
ec
e∂c

))
∈ Bc s. t.

fc = Jcec,
(
f∂c
e∂c

)
= Wcec|∂Ω

 (48)

is a Stokes–Dirac structure.

Proof 2. The sketch of the proof follows the following two
steps. Firstly, one can easily show the skew–symmetry
of the second order linear operator Jc defined at equa-
tion (42). Secondly, following (van der Schaft and Maschke,
2002), one can prove that the subspace Dc is a Dirac
structure, i.e. Dc = D⊥c where D⊥c denotes the orthogonal
complement with respect to the bilinear form (47). The
first step consists of verifying Dc ⊂ D⊥c . The second step
aims at showing that D⊥c ⊂ Dc.

To summarize the structured model of a conserved phase
field is defined by the state variables (c, γ), the Hamilto-
nian function (1), and the following Stokes–Dirac struc-
ture: (

∂c

∂t
,
∂γ

∂t
, Fc, f

∂
c ,
δG
δc
,
δG
δγ
, jc, e

∂
c

)
∈ Dc, (49)

where Fc and jc are closed by equation (38). Boundary
terms are defined at equation (45).

6. EXAMPLE OF A SOLIDIFICATION PROCESS

Let us consider the solidification process proposed in Elder
et al. (2001), where the spatial domain is labelled Ω ⊂ R3

with its boundary ∂Ω ⊂ R2. This binary concentration
solidification process is achieved at uniform and constant
temperature denoted T . This system possesses two phases:
a solid phase and a liquid one. Two fields are used to
represent the dynamics of this system: φ ∈ C∞(Ω, [0, 1])
a non–conserved phase–field, and c ∈ C∞(Ω, [0, 1]) a
conserved phase–field. The phase field c can be seen as
a concentration. The potential used to drive the system’s
dynamics, here the Gibb’s free energy is given by the
integral

G(φ, c) =

∫
Ω

G(φ, c)dz, (50)

with the density function:

G(φ, c) =
1

2
κφ(grad φ)2 +

1

2
κc(grad c)

2 + g(φ, c). (51)

The local bulk potential density g(φ, c) is defined as:

g(φ, c) = −a T
Tm

h(c) + k(φ, c), (52)

where the first term is function of the conserved field c and
is pre–multiplied to the scalar coefficient a ∈ R and the
ratio between the uniform temperature T and the melting
temperature Tm. The second term on the right hand side
of equation (52) denotes the free entropy associated to the
diffusive interface. The function h(c) defines the entropy
of a random mixing for binary solutions, and is defined
as h(c) = −Rn [c ln c+ (1− c) ln(1− c)], where R is the
ideal gas constant, and n denotes the total moles number
in the system. The mixing function k(φ, c) is given by:

k(φ, c) =

(
α∆T − β

(
c− 1

2

)2
)

Φ(φ)− 1

2
φ2 +

1

4
φ4, (53)

where Φ(φ) = 2φ− 4
3φ

3 + 2
5φ

5, ∆T = (T−Tm)/Tm denotes
the normalized temperature, and parameters α, β and u ∈
R are empiric scalar parameters. With the potential func-
tion (50) one associates the Allen–Cahn equation (4) and
the Cahn–Hilliard equation (11). Both phase field variables
are initialized at time t = 0 as c(0, z) = c0(z) ∈ C∞(Ω)
and φ(0, z) = φ0(z) ∈ C∞(Ω). The port Hamiltonian
formulation naturally follows from the development of
Sections 4 and 5 where one considers the augmented state
variable:(φ, ψ, c, γ) , (φ, gradψ, c, grad c) , with the re–
formulated potential (50):

G(φ, ψ, c, γ) =

∫
Ω

κφ
2
ψ2 +

κc
2
γ2 + g(φ, c)dz. (54)

Then the system under its structured representation is
expressed as

fs =

(
Jφ 0
0 Jc

)
es, (55)
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where flow and effort are defined as:

f>s =

(
∂φ

∂t
,
∂ψ

∂t
, Fφ,

∂c

∂t
,
∂γ

∂t
, Fc

)>
(56)

and

e>s =

(
δG
δφ
,
δG
δψ
, Eφ,

δG
δc
,
δG
δγ
, jc

)>
, (57)

respectively. From Proposition 1 and 2 it follows that the
solidification example is a port Hamiltonian system with
the boundary port variables defined for each sub–systems,
see equations (29) and (45).

Remark 6. The coupling is intrinsically defined in the po-
tential function (52). Thus there is no shared (boundary)
port variables between the conserved and non–conserved
sub–systems. This is where the phase field modeling ap-
proach differs from sharp interface models (Diagne and
Maschke, 2013).

7. CONCLUSION

In this contribution we have introduced the formulation of
phase field models as boundary control port Hamiltonian
systems. The originality of this work resides in the presence
of an underlying structure within the thermodynamic
fluxes. The idea is to extend the system’ state on their
jet spaces (Maschke and van der Schaft, 2005) such that
the port Hamiltonian systems of phase field models are
defined along side algebraic constitutive relations. The
conserved and non–conserved structured representation
can be applied to multi–phase problems with moving
interfaces. In Section 6 the problem of solidification was
addressed.
Outgoing work includes the boundary control (Duindam
et al., 2009) of the interface position in a pure substance
solidification process (Wang et al., 1993).
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Schöberl, M. and Siuka, A. (2014). Jet bundle formulation
of infinite–dimensional port–Hamiltonian systems using
differential operators. Automatica, 50(2), 607 – 613.

van der Schaft, A. and Maschke, B. (2002). Hamil-
tonian formulation of distributed–parameter systems
with boundary energy flow. Journal of Geometry and
Physics, 42(1–2), 166–194.

Wang, S.L., Sekerka, R., Wheeler, A., Murray, B.,
Coriell, S., Braun, R., and McFadden, G. (1993).
Thermodynamically–consistent phase–field models for
solidification. Physica D: Nonlinear Phenomena, 69(1),
189–200.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7664


