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Abstract: Electromechanical, or mechatronic, transducers exchange energy between the
mechanical and electrical domain via electrostatic and electromagnetic transduction principles,
which are the basis for actuators and sensors. This paper reveals the simple analogy between
electrostatic and electromagnetic transducers. Summarizing the well-known Gauß, Ampère’s,
Ohm’s, Chua’s, Newton’s, Hook’s and the damping laws into a signal-flow diagram with
linearized coefficients, the model shows the transducers reciprocity and physical behavior of
damped spring-mass mechatronic systems. The presented modeling approach simplifies the
derivation of transfer functions, the pull-in phenomenon, and the coupling factors for the
design of feedback methods for mechatronic systems. The analogies are shown by comparing an
electrostatic and an electromagnetic parallel-plate actuator, represented by a torsional MEMS
scanning mirror and a hybrid reluctance fast steering mirror, respectively. The paper discusses
the actuators performance and compares the transducer coefficients and the intrinsic stiffness
regarding pull-in.

Keywords: Generic Mechatronic Transducer Model, Electromechanical Analogy, Torsional
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1. INTRODUCTION

Electromechanical (also named mechatronic) transducers
are fundamentally based on quasistatic magnetic and elec-
tric fields and widely applied for actuators and sensors
in mechatronics, automation and control. Electromechan-
ical systems transduce energy between stator and anchor
through a working gap wherein the electromagnetic field
propagates like e.g. motors. For the micro scale Lyshevski
(2005) compares the energy densities in the working gap
for electrostatic and electromagnetic transducers, regard-
ing the question of which transduction principle is more
powerful. Since the electrostatic field is bounded by the
disruptive field strength of E < 3 kV/mm (Giao and
Jordan (1968)) in the air gap and the electromagnetic
field is bounded by the flux density saturation B < 2.4 T
(Major and Orrock (1988)) of the ferromagnetic material,
he concludes, that the electromagnetic energy density is
three orders of magnitude superior compared to the elec-
trostatic.

For applications, like satellite telecommunication mirrors
(Bayat, 2011, Tab. 2-1), fast steering mirrors (Csencsics,
2017, Fig. 6.18) and scanning MEMS mirrors (Kimme
et al. (2013); Holmström et al. (2014)), the achievable
performance is compared for common actuation princi-
ples, which are electrostatic, piezoelectric, electromagnetic
(variable reluctance) and electrodynamic (moving coil)
transducers. Tilmans (1996) points out inherent analogies
and proposes an equivalent electric circuit to describe
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electromechanical systems with lumped parameters. Fur-
ther systematization of the transducer principle is pre-
sented by Preumont (2006) and Janschek (2012) introduc-
ing a generic mechatronic system model. The extension
of this model can, however, provide a clear depiction of
the electromagnetic and mechanical field duality with the
transducers in between and help to design actuators and
sensors that overcome current limitations. In particular,
the analogies of transducer coefficients and stiffening of
electrostatic and electromagnetic torsional parallel-plate
systems are rarely discussed in literature so far.

The contribution of this paper is a generic mechatronic
modeling approach for electrostatic and electromagnetic
systems based on a signal-flow block diagram with lin-
earized coefficients, which reveals symmetries and analo-
gies of both transduction principles. The signal-flow dia-
gram is an extension of the generic mechatronic system
model with lumped parameters from Janschek (2012). It
clearly shows the duality of energy and power variables as
well as storages and dissipators, and provides a complete
model for the electrical and mechanical domain. For the
sake of completeness, Chua’s memristor (Chua (1971)) is
added as a damping element in the electrical and mechan-
ical domain. This generic mechatronic modeling approach
is discussed along two examples of electrostatic and elec-
tromagnetic torsional parallel-plate actuators: an electro-
static torsional micro-electro-mechanical system (MEMS)
scanning mirror (Kiessling et al. (2004)) and a hybrid
reluctance fast steering mirror (FSM) (Csencsics et al.
(2018)). Finally, the nonlinear behavior and pull-in insta-
bility (negative differential system stiffness) are discussed,
that affect the actuator range and performance.
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2. GENERIC MECHATRONIC TRANSDUCER

The generic mechatronic transducer model describes the
working principles of sensors and actuators that transform
energy between mechanic and electric variables, while
the transducer itself does not dissipate energy (Janschek
(2012)). Transducers can be used as sensor as well as
actuator, and even at the same time when using ’self-
sensing’ methods. The generic mechatronic transducer is
illustrated in Fig. 1 as a two-port network.

Generic
Mechatronic
Transducer

F

vS/iS

x

iT /vT

Fig. 1. Generic mechatronic transducer by Janschek
(2012).

2.1 Physical laws

There are four basic variables for the electrical as well as
the mechanical domain. In the electrical domain these are
the energy variables charge q and flux linkage ψ and the
power variables current i and voltage v. In the mechanical
domain these are the energy variables position x and
momentum p and the power variables velocity ẋ and force
F . Herein, the power variables are defined by time the
derivative of the corresponding energy variable according
to the fundamental physical laws for

Electric current: i =
d q

dt
= q̇, (1a)

Faraday’s law (induction): v =
dψ

dt
= ψ̇, (1b)

Force: F =
d p

dt
= ṗ, (1c)

Velocity: ẋ =
dx

dt
. (1d)

The energy storages are capacitance C and inductance L
in the electrical domain as well as stiffness k and mass
m in the mechanical domain. Between energies and power
variables dissipators are defined by the resistor R and the
memristor M (Chua (1971)) in the electrical domain, and
the damper d and the memdamper B (Jeltsema and van
der Schaft (2010); Fouda et al. (2015)) in the mechanical
domain. Both memory dissipators are an extension to the
model from Janschek (2012). The memristive element was
quite recently obtained and constructed by Strukov et al.
(2008) as well as the concept of a memdamper or tapered
dashpot e.g. Jeltsema and van der Schaft (2010) and could
be applied for passive damping in dynamic systems. The
corresponding linearized material equations are

Gauß’s law: q = C · v (2a)

Ampère’s law: ψ = L · i (2b)

Ohm’s law: v = R · i (2c)

Chua’s law: ψ = M · q (2d)

Newton’s law: p = m · ẋ (2e)

Hook’s law: F = k · x (2f)

Damping: F = d · ẋ (2g)

Memdamping: p = B · x (2h)
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Fig. 2. Signal-flow diagram of generic linear mechatronic
systems: (a) voltage driven electrostatic system and
(b) current driven electromagnetic system.
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2.2 Signal-flow diagram

Figure 2 illustrates the signal-flow diagram of the generic
linear transducer model for the electrostatic (Fig. 2a)
and electromagnetic (Fig. 2b) mechatronic system with
lumped parameters linearized around an operation point.
The part in the green box describes the electrostatic
and electromagnetic transducers, coupling energy between
the upper electrical and lower mechanical system. Note,
that the relations (1) and (2) are represented in the
signal-flow diagrams. The energy variables are illustrated
with single-bordered circles , while power variables have
double-bordered circles . Both symbols represent a sum.
Shown with power drives the electrostatic transducer is
driven with a voltage and the electromagnetic trans-
ducer is driven with a current. The signal-flow diagram
in Fig. 2 is arranged symmetrically, with the storage el-
ements (L, C, kes,Q, kem,Ψ, k, m) on the vertical middle
axis between power and energy variables. The Laplace
variable s is used when going from a power to an energy
variable, while s−1 is used in the vice versa case. The
dampers are placed in the center of the mechanical (d, B)
or electrical (R, M) two-port systems connecting either
power or energy variables. The transducer coefficients or
motor constants (Kes, Kem) only transduce either power
or energy, while within the mechatronic transducer itself
no dissipation occurs. The transducer stiffness and coef-

ficient, linearized from the forces Fes = 1
2
∂C(x)
∂x v2 and

Fem = 1
2
∂L(x)
∂x i2, are for the electrostatic voltage drive

Kes,V =
∂C(x)

∂x
v

∣∣∣∣∣v=v0
x=x0

, kes,V =
1

2

∂2C(x)

∂x2
v2

∣∣∣∣∣v=v0
x=x0

, (3a)

C = C(x)
∣∣
x=x0

, (3b)

and for electromagnetic current drive

Kem,I =
∂L(x)

∂x
i

∣∣∣∣∣
i=i0
x=x0

, kem,I =
1

2

∂2L(x)

∂x2
i2

∣∣∣∣∣
i=i0
x=x0

, (4a)

L = L(x)
∣∣
x=x0

. (4b)

The capacitance C and inductance L are considered as
part of the mechatronic transducer and the transducer
stiffnesses shown in Fig. 2 are defined as (Janschek (2012))

kes,V = kes,Q +
K2

es,V

C
, kem,I = kem,Ψ +

K2
em,I

L
, (5)

where the indices V , Q, I, Ψ denote the cases for voltage,
charge, current or flux drive.

2.3 Transfer function

The transfer functions from input to output can be derived
directly from Fig. 2, where common rules for signal-flow
diagrams from control theory are applied. For example the
transfer function Gx/v with L = 0, R = M = 0 is derived
from x to v considering the arrow direction in Fig. 2a. If
the arrow points towards the destination variable (e. g.
x) a positive, and otherwise a negative sign is considered.
First, all equations with x are noted as

ẋ = s x, F = −(kes,Q − k)x, (6a)

q = −Kes,V x, p = −(−B)x. (6b)

Then, all equations from the newly obtained variables ẋ,
F and q are noted as

p = mẋ, F = −(−d) ẋ, (7a)

v = K−1
es,V F, p = s−1 F, v = C−1 q. (7b)

Now, all equations (6) and (7) are inserted and added
according to the summations in Fig. 2, so that only the
variables x and v remain

v =K−1
es,V

(
(k − kes,Q)x+ s d x+ sB x+ms2 x)

)
. . .

· · · − C−1Kes,V x (8)

Finally, the desired transfer function Gx/v with (5) is

Gx/v =
x

v
=

Kes,V

ms2 + (d+B) s+ k − kes,V
. (9)

2.4 Pull-In phenomenon and coupling factor

According to Kirchhoff’s mesh equation from x to F con-
sidering the mechanical system (cf. Fig. 2), the resonance
frequencies are found to be

Ω2
es,V =

k − kes,V

m
, ω2

es,Q =
k − kes,Q

m
, (10a)

Ω2
em,I =

k − kem,I

m
, ω2

em,Ψ =
k − kem,Ψ

m
. (10b)

In general, pull-in occurs, when the differential system
stiffness becomes negative, ∂F∑/∂x < 0, including all
forces at the node F . Figure 2 reveals inner loops, that
may cause static pull-in instability, when the transducer
stiffness becomes greater than the mechanical stiffness k

kes,Q +
K2

es,V

C
− k = kes,V − k ≥ 0, (11a)

kem,Ψ +
K2

em,I

L
− k = kem,I − k ≥ 0. (11b)

It is noteworthy, that the pull-in occurs for the electrome-
chanical coupling factor κ2 = 1, which are defined by
(Janschek (2012))

κ2
es =

ω2
es,Q − Ω2

es,V

ω2
es,Q

=
kes,V − kes,Q

k − kes,Q
=
K2

es,V

C

1

k − kes,Q
,

(12a)

κ2
em =

ω2
em,Ψ − Ω2

em,I

ω2
em,Ψ

=
kem,I − kem,Ψ

k − kem,Ψ
=
K2

em,I

L

1

k − kem,Ψ
.

(12b)

3. EXAMPLES: TORSIONAL PARALLEL-PLATE
ACTUATORS

To demonstrate the validity of the mechatronic system
model and reveal analogies, it is applied to torsional
parallel-plate actuators with the basic configuration shown
in Fig. 3 from each transducer domain, electrostatic and
electromagnetic.

Fig. 3. Basic principle of parallel plate configuration ac-
tuators with field lines of electric field E or magnetic
field H and torsion θ.
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Fig. 4. Electrostatic parallel-plate MEMS mirror, adapted
from Kiessling (2007).

3.1 Electrostatic torsional parallel-plate actuator

Figure 4 shows the cross section of the parallel-plate
MEMS scanning mirror from Kiessling (2007). The mirror
plate, the upper part of a bonded silicon of insulator
wafer (BSOI), is split into two potentials (left and right
electrode), which are isolated with filled oxide trenches.
The counter electrode is a second wafer, which is glued
on the bottom of the first wafer. Two different voltages
towards the counter electrode lead to a deflection of the
mirror plate. The electrostatic torque is (Kiessling (2007))

τes =
1

2

∂C(θ)

∂θ
v2 =

1

2
v2

∫ a/2

0

ε b x dx

g − x · tan θ
, (13)

where a and b are the mirror plate width and length, g the
initial gap distance and ε the permittivity of the material
in the gap. The capacitance derivative can be denoted as

∂C(γ)

∂γ
=

εba2

4g2γ2

[
γ

1 − γ
+ ln (1 − γ)

]
, (14)

with the normalized deflection γ (Sattler et al. (2002))

γ =
tan(θ)

tan(θmax)
=
a tan(θ)

2g
, tan (θmax) =

2g

a
. (15)

Then, the integral and the second derivative are

C(γ) =
εba

2gγ
ln (1 − γ) , (16)

∂2C(γ)

∂γ2
=

εba3

8g3γ3

[
γ2

(1 − γ)2
− 2 ln (1 − γ) − 2γ

1 − γ

]
.

(17)
With kes,V − k = 0 from (11) or κ2

es = 1, the pull-in
for a linear spring torque k θ = τes is derived to be at

γPI = 0.4404 by solving γ · ∂
2C(γ)
∂γ2 − ∂C(γ)

∂γ ≡ 0 with (14)

and (17) (cf. Nemirovsky and Bochobza-Degani (2001)).
The pull-in voltage with (11) and (17) results in

vPI,V =

√
2k

(
∂2C(γPI)

∂γ2

)−1

=

√
6.6196 k g3

ε b a3
. (18)

The electrostatic transducer coefficient and stiffness (3)
linearized at zero deflection (γ = 0) are

Kes,V,0 = ε
a2b

8g2
v0, kes,V,0 = ε

a3b

24g3
v2

0 . (19)

For the silicon MEMS mirror example from Kiessling
(2007) with a plate size of a = b = 1 mm, g = 100µm gap,
k = 0.23µNm/rad stiffness and 1 kHz eigenfrequency, the
pull-in voltage (18) is vmax = 415 V at the angle θmax = 5 ◦.
Hence with v0 = vmax the transducer coefficients (19) are
Kes,V,0 = 46 pNm/V and kes,V,0 = 64 nNm/rad.

Kiessling (2007) shows, that the MEMS mirror behaves
according to (9) like a second order oscillation system

Gθ/v =
θ

v
=

Kes,V

J s2 + d s+ k − kes,V
. (20)

3.2 Electromagnetic parallel-plate actuator

In Fig. 5 the cross section of one system axis of a parallel
plate hybrid reluctance actuated fast steering mirror is
depicted, cf. Csencsics et al. (2018). The actuator consists

Coil steering
f ux Magnet bias

f ux

Nonworking
air gap

Net
torque

Right
working
air gap

Left
working
air gap

B
z

yx

a
an

Fig. 5. Electromagnetic torsional parallel plate actuator
Csencsics et al. (2018).

of a permanent magnet (blue), generating a biasing flux
(blue line), which passes through the non-working and the
working air gaps and is guided by the ferromagnetic mover
(magenta) and yoke parts (green). With the mover in the
middle position and zero current, there is no net torque
on the mover as the biasing flux is equally distributed
over the right and left air gap. A current through the
actuator coils generates a magnetic steering flux (red
line), passing only through the outer yoke part and the
mover due to the high reluctance the permanent magnet
represents to an outer field. The steering and biasing
flux are superimposed in the working air gaps, yielding
an increased flux in the right air gap and a clockwise
net torque on the mover. Due to the permanent magnet
the actuator has a negative stiffness, which makes the
system open-loop unstable but can be compensated by a
mechanical flexure, suspending the mover. The second axis
of the systems is arranged perpendicular to the first one,
forming one magnetic circuit with the first axis. The total
force that acts on an electromagnetic actuator, including
the reluctance force, is obtained from Munnig Schmidt
et al. (2014) as

Fem = N I
∂Ψw

∂x
− 1

2

∂L(x)

∂x
i2. (21)

The first term represents the linear relation of force to
current, present in any electromagnetic actuator, while
the second term with the squared relation of force to
current is caused by the magnetic energy stored in the self-
inductance. In the case of the hybrid reluctance actuator
the self-inductance of the coils is hardly influenced by the
position of the mover, as the reluctance of the coils is
determined by the reluctance of the two working air gaps
in series. As one gap gets bigger the other gets smaller,
such that the second term in (21) can be neglected.
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Via the Maxwell stress tensor the resulting torque can be
calculated, see Wu et al. (2010), and results to

τem =
Ψ2
r − Ψ2

l

2µA
· a

2
= τem = Kem,I · i+ kem,I · θ (22)

with Ψr and Ψl the magnetic flux in the right a left air
gap, A the cross section of the air gaps, a the full plate
width (and a/2 the force lever arm), the motor constant
Kem,I and the actuator stiffness kem,I. The y dependent
local length of the working air gap for a plate tilted by θ
is defined by g− y tan(θ) (cf. Ito et al. (2019)), with g the
length of the working air gaps with the plate in the middle
position. Integrating y from β ·a/2 to a/2 , with β = an/a
obtained from the nonworking and entire width of the plate
(y-direction in Fig. 5), and using the normalized angle γ
from (15), the motor constant and actuator stiffness are

Kem,I(γ) =
µANλHclmaχ (artanh (χγ) − artanh (βχγ))

2g2γ
, (23)

kem,I(γ) =
µAλ2H2

c l
2
mχ

4(a2 + 4g2γ2)(1 − β2)

4g3
. . .

· · · × (1 + χ2γ2 + β2χ2γ2 − 3β2χ4γ4)

(1 − χ2γ2)2 (1 − β2χ2γ2)2
, (24)

with χ =
√
g/(g + 2lm + 2ln), (25)

where are N the sum of turns of both coils, λ a factor
to consider the flux leakage, Hc the coercivity and lm the
length of the permanent magnet, a the full plate width,
ln the length of the non-working air gap. The linearized
coefficients at zero deflection (γ = 0) are

Kem,I,0 =
µANλHclma(1 − β)

2 g (g + 2lm + 2ln)
, (26)

kem,I,0 =
µAλ2H2

c l
2
ma

2(1 − β2)

4 g (g + 2lm + 2ln)2
, (27)

resulting toKem,I,0 = 0.03 Nm/A and kem,I,0 = 2.3 Nm/rad
for the design parameters of the hybrid reluctance ac-
tuated FSM (Csencsics (2017)). Disregarding structural
modes of the mechanical structure, the resulting transfer
function from current input to angular position is essen-
tially a mass-spring-damper system

Gθ/i =
θ

i
=

Kem,I

J s2 + d s+ k − kem,I
(28)

with J the inertia of the mover, d the damping factor and
k the stiffness of the mechanical flexure. The effective stiff-
ness for the actuator for each operating point is obtained
from k − kem,I. The FSM is designed for a range of ±3◦,
with the dynamics showing a small signal tilting mode at
around 110 Hz. With a PID-based feedback controller the
system achieves a bandwidth as high as 1 kHz.

4. DISCUSSION

With (20) and (28) similar system dynamics are obtained,
only differing in their transducer coefficient and stiffness.
Figure 6 shows the normalized transducer coefficients. For
the electrostatic MEMS mirror either the left or the right
gap (E1 or E2 in Fig. 4) is driven with a voltage according
to the direction of the deflection. Therefore, the transducer
coefficient Kes,V has no continuous derivatives at zero
deflection. In contrast, the electromagnetic flux lines in
the FSM from Fig. 5 go through the mirror plate and
both gaps, causing a continuous derivative of Kem,I at zero

(a) (b)

Fig. 6. Transducer coefficients: (a) electrostatic and (b)
electromagnetic.

(a) (b)

Fig. 7. Forces with transducer stiffness softening and pull-
in: (a) electrostatic and (b) electromagnetic.

(a) (b)

Fig. 8. Transducer coupling factor with pull-in for κ = 1:
(a) electrostatic and (b) electromagnetic.

deflection. Figure 7 shows the normalized actuator stiffness
of both systems. The electrostatic parallel-plate transducer
has a pull-in at 44 % of the possible deflection range for
voltage control (71 % for charge control, Sattler et al.
(2002)), while the electromagnetic does not exhibit pull-in
considering a constant flux leakage factor λ (in contrary
to typical reluctance actuators Chen and Ho (2004)).
In reality, the hybrid reluctance actuator features a flux
leakage (Ito et al. (2019)) and the flux efficiency factor λ =
λ′(γ) is usually nonlinear. Applying the simulation results
of a similar hybrid reluctance actuator from (Cigarini
et al., 2019, Fig. 7) approximated as square function with

λ′(γ) = 0.23 γ2 + 0.72, (29)

the pull-in of the FSM does occur at 95 % deflection, as
shown in Fig. 7b. Plotting the coupling factor in Fig. 8
reveals, that pull-in for both systems happens at κ = 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9066



The comparison of the transducer coefficients normalized
to the inertia and maximum drive amplitude Kes,V,0 ·
vmax/J = 187 ·106 ◦/s2 and Kem,I,0 ·imax/J = 473 ·103 ◦/s2

reveals a 3 orders of magnitude larger angular acceleration
for the electrostatic actuator, which is due to the small
mass of the MEMS mirror of 70 ng compared to 61 mg for
the FSM.

Usually feedback control is required for fast trajectory
tracking and stabilizing the actuator to overcome these
nonlinearities and pull-in limits. For feedback of the re-
luctance actuator Csencsics et al. (2018) applies eddy cur-
rent sensors, while for the MEMS mirror control Kiessling
(2007) proposes self-sensing with additional electrostatic
combs.

In summary a holistic model for a linearized mechatronic
system with electromechanical transducer is developed,
which makes the analogies of electrostatic and electromag-
netic transducers clearly evident and is validated along
the example of two torsional parallel-plate actuated mirror
systems.

5. CONCLUSION

This paper proposes a novel holistic model for electrome-
chanical, or mechatronic, systems with lumped parameters
in the form of a structured signal-flow block diagram,
explicitly revealing the analogies between electrostatic
and electromagnetic transducer principles. Its applicability
and relevance for the modeling an arbitrary mechatronic
system is demonstrated for two systems with torsional
parallel-plate actuators based on an electrostatic and an
electromagnetic actuation principle, respectively. With the
obtained formalized transducer coefficients, stiffness and
coupling factors the model provides an enhanced insight
into the designed system, e. g. revealing the pull-in point,
as well as the interplay between the various system compo-
nents and domains. Future work is concerned with validat-
ing the holistic model for further mechatronic systems with
other actuator types, including voice coil, piezoelectric and
reluctance actuation, and drive modes in order to demon-
strate the generality of this unified modeling framework.
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