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Abstract: Glycemia regulation algorithms which are designed to be implemented in several artificial
pancreas projects are often model based control algorithms. However, actual diabetes monitoring is
based throughout the world on the so-called Flexible Insulin Therapy (FIT) which does not always cope
with current mathematical models. In this paper, we initiate an identification methodology of those FIT
parameters from some standard ambulatory clinical data. This issue has an interest per se, or for a further
use in any closed-loop regulation system.
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1. INTRODUCTION

Type 1 diabetes is considered in this paper. It is an auto-immune
disease in which the pancreas does no more produce any en-
dogenous insulin. It is thus mandatory for patients with diabetes
to inject a suitable amount of exogenous insulin to regulate
their blood plasma glycemic level. This is done either manually,
based on the so-called Flexible Insulin Therapy (FIT), or thanks
to an automated insulin pump. The FIT includes the basal
insulin rate which enables to stabilize the glycemia level dur-
ing fasting; it also includes for instance the Carbohydrates-to-
Insulin Ratio (CIR) which assumes that the necessary amount
of additional insulin is proportional to the amount of ingested
carbohydrates.

The idea of closing the loop between a continuous glycemia
measurement and an insulin pump traces back to the 1960’s.
The hardware exists since at least two decades, but a fully auto-
mated system is not yet available. Some of the most advanced
hybrid solutions, i.e. with announcement of meals, are either
based on some advanced PID control (US FDA, (2018)) or on
MPC (Hoskins, (2018)).

Several models for the glycemia-insulinemia dynamics do ex-
ist and the identification of their parameters remains an open
problem. Here we stick to the model in Magdelaine et al.,
(2015), Magdelaine et al., (2020) as it is derived from the FIT
fundamentals.
Ambulatory clinical data (which are made away from medical
supervision) are subject to severe uncertainties affecting spe-
cially the declarations about the meals. Both the amount of
carbohydrates and the schedule of their ingestion are stated by
the patient. These declarations may appear to be inconsistent
with the glycemia measurements. Thus, identification remains
a major challenge and an open problem to get a reliable estima-
tion of the model parameters.

In this paper, we change the paradigm of identification as our
goal will not be to fit to rough clinical data, but rather to identify
the FIT parameters.

The outline of the paper is as follows. In Section 2 we review
the classes of inputs which may occur and which are classified
into four types of events, including fasting for instance. Section
3 is devoted to the most elementary discrete-time model and
to fundamental recalls on positivity of systems dynamics. At
this stage, the model ignores the dynamics of the digestion
and of the insulin diffusion. It only involves patient dependent
parameters including the sensitivity to carbohydrates. A special
focus is made on the identification of this parameter and worked
out on clinical data. A simple first-order dynamics is added in
Section 4 for the digestion. A main achievement is that it is
shown that the time constant of this first-order dynamics no
more depends on the patient, but it is related to the glycemic
index of the food which is also intuitively realistic. A global
identification is made in Section 5 on a larger time window of
24 hours, combining all types of input events.

2. THE CLASSES OF INPUTS

The considered system is subject to a control input, that is the
injected insulin rate, and to several disturbance inputs including
meals. Inputs are not random, but rather the sequence of four
types of events, including a meal or not, and including an
insulin bolus or not. It is shown that (locally) the system is
never fully identifiable due to these classes of inputs. One
has to have information over a period of time large enough
to include different types of events. Nevertheless, even with
a single event or a limited number of events, the system is
partially identifiable. This partial identification is investigated
in Sections 3 and 4 with a focus on the digestion subsystem.
The full set of input classes is considered in Section 5 for some
general identification methodology.

2.1 Event 1 : Constant insulin basal rate without insulin bolus
or meal

In this case, the insulin Ik injected at time k remains equal to
some constant value Ib during fasting.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 16290



This event is identified in practice on clinical data windows
which correspond to a constant insulin injection, do not include
any meal, and are such that the glucose concentration is mono-
tonic with respect to time.

2.2 Event 2 : Insulin bolus without meal

Assume now that a single insulin bolus occurs at some time k;
for the rest of the time, the glycemia dynamics is just fed by the
basal rate Ib, and there is no meal.
In practice, one has to search for clinical data windows which
correspond to a constant basal rate, with one or more insulin
boluses, which do not include any meal, and consequently are
such that the glucose concentration is decreasing with respect
to time.

2.3 Event 3 : Meal without insulin bolus

As in the case of Event 1, the insulin injection remains constant
to the level of the basal rate Ib, but there is a nonzero amount
Rk of carbohydrates which is ingested.
In practice, the interest is for clinical data windows which corre-
spond to a constant insulin injection, do not include any insulin
bolus, but include one or more meals, and are consequently
such that the glucose concentration is increasing with respect
to time.
From the given data, since the meals are declared data, they
may be rescheduled to fit to some glycemia increase. Since the
beginning of the meal only is stated, the amount of ingested
carbohydrates may also be expanded over some short or longer
time duration, especially when the model does not include any
digestion dynamics.

2.4 Event 4 : Meal with an insulin bolus

In this case we consider a single instant k for which Rk 6= 0
associated with an insulin bolus Ik− Ib.

2.5 Clinical data: a case study

Consider three days of clinical data (borrowed from Rennes’
hospital, France) as in Figure 1. The top figure displays a
(slightly varying) basal insulin infusion, together with boluses.
The middle figure instead gives the data about carbohydrates
intakes (full meals and re-intakes). Finally the bottom figure
shows the glucose concentration measurements. For a better
readability, we focus on 24 hours whose data are displayed
separately below.

The time response of the digestion and insulin subsystems have
been definitely neglected in our elementary first-order model.
Obviously the clinical data are not characteristic of a sequence
of impulsive responses of a first-order system as considered in
(1) below. One way to circumvent the lack of modelling of the
digestion and insulin subsystems will consist in stretching the
impulsive inputs over a finite range of time.

2.6 Processing of the impulsive inputs

The impulse input of carbohydrates is applied at the declared
starting time of a meal. This input is thus stretched out over
a range of time corresponding to an increase of glycemia in
Event 3, preserving the total amount of carbohydrates which
are digested.

Fig. 1. Clinical data over 24 hours

In a similar vein, in Event 2, the impulse insulin bolus is
stretched out over a range of time corresponding to a decrease
of glycemia, respecting the total amount of insulin which is
injected.

In the rest of this paper, the focus will be mainly on Event 3,
i.e. a meal or glucose re-intake without any insulin bolus.

3. MODELLING THE DYNAMICS OF GLYCEMIA

In this Section, we don’t consider the dynamics of digestion or
of the assimilation of the injected insulin.

As the assimilation of carbohydrates is not instantaneous, all
meals and carbohydrates intakes are expanded over an arbitrary
duration of the meal estimated of 20 minutes.

Although this is a rather rough model, the main achievement is
that it enables to estimate parameters such as the sensitivity to
insulin and the sensitivity to carbohydrates.

At this stage, the glycemia dynamics reads in continuous-time
Ġ = θ1−θ2I +θ3R, (1)

where I denotes the injected insulin rate and R is the rate
of ingested carbohydrates during some meal. The underlying
assumption is that the blood plasma insulin rate is supposed
to be equal to I and the blood plasma carbohydrates rate is
supposed to be equal to R as well.

The discrete time equivalent of (1) is then
Gk+1 = Gk +θ1−θ2Ik +θ3Rk. (2)

Let Ts denote the sampling time, so that the amount of insulin
Ik injected at time kTs is computed as Ik = Ts · I and the amount
of carbohydrates Rk is instead Rk = Ts ·R.

It may be argued that (1) and (2) are not positive models. In
particular, a large injected insulin rate I will drive a low valued
glucose concentration onto a negative value. This is avoided by
replacing θ2 by a nonlinear function θ2(G), or θ2(Gk), which
vanishes when G goes to zero (Califano et al., (2019)). At
this stage, it is worth to recast the properties of (1) and (2) in
the perspective of the positivity of general linear and nonlinear
systems, in continuous time as well as in discrete-time.

A control system is said to be positive if the positivity of all
inputs and of all components of the initial condition yields that
any component of the state remains positive at any time k > 0.
Equivalently, the first orthant is said to be positively invariant
under any positive input. Its characterization is as follows.
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Theorem 1. (Farina et al., (2000)). The linear continuous-time
system

ẋ(t) = Ax(t)+Bu(t)
is positive if and only if each entry of matrix B is non negative
and matrix A is Metzler, i.e. each off-diagonal entry ai j, for
i 6= j, is non negative.

Obviously, those conditions are not fulfilled by (1) in case θ2
is constant. When θ2 is a function of the glycemia instead, then
the dynamics becomes nonlinear and the following charateriza-
tions apply.
Theorem 2. The nonlinear continuous-time system

ẋ(t) = f (x(t),u(t))
is positive if and only if
(i) fi(0, ..,0,u) is non negative for any i and any non negative u,
and
(ii) fi(0, ...,0,x j,0, ...,0) is non negative for any i 6= j and any
non negative x j.

The latter conditions are fulfilled by (1) for any θ2(G) such that
θ2(0) = 0.

3.1 Identifiability in case of Event 3.

During Event 3, the injected insulin Ik is equal to some constant
basal quantity Ib. A single moment k is also considered at which
Rk 6= 0, so that over the interval [k,k+ j] j ≥ 2:

Gk = Gk−1−θ2Ib +θ1 +0
Gk+1 = Gk−θ2Ib +θ1 +θ3Rk
Gk+2 = Gk+1−θ2Ib +θ1 +0

...

(3)

then we obtain the Jacobian matrix :

∂G∗
∂ (θ1,θ2,θ3)

=


1 −Ib 0
1 −Ib Rk
1 −Ib 0
...

...
...

 .

The rank of this Jacobian matrix is equal to 2. It’s noted that
the third column is now ”essential”. We thus have that with a
meal at time k, the parameter θ3 and the combination θ1−θ2 Ib
which represents the basal indicator θ0, become identifiable. In
fact one gets that

θ3 =
Gk+1−2Gk +Gk−1

Rk
θ1−θ2 Ib = Gk−Gk−1.

These computations can be performed in practice on clinical
data windows [k,k+ j], j ≥ 2 which correspond to a constant
insulin injection, do not include any insulin bolus, but include
one or more meals, and such that the glucose concentration is
increasing with respect to time.

Declared data, as the starting time of a meal, are subject to ma-
jor inaccuracies. So the starting time of a meal has eventually to
be rescheduled to fit to the corresponding increase of glycemia
to avoid the identification of some negative parameter. After
such a treatment, the corresponding set of clinical data will be
suitable for identification.

3.2 Identification of the sensitivity to carbohydrates θ3, in the
case of glucose re-intakes (Event 3)

Let us now focus on glucose re-intakes, without insulin bolus,
as described is Section 2.3 and named “Event 3”. A “local”

identification of parameter θ3 can be processed on some of
those glucose re-intakes. As the glucose intake has no instan-
taneous effect but spreads out over about 20 minutes, all carbo-
hydrates (CHO) impulsive inputs are replaced by an equivalent
step input corresponding to the same amount of ingested glu-
cose. One of those identification results is displayed in Figure
2.

Fig. 2. Local identification of parameter θ3 from one single
glucose re-intake (Event 3).

Repeating this process on several glucose re-intake episodes
yields the following values for parameter θ3 and shows a good
stability of the identification at least for these glucose re-intakes
(corresponding for instance to a sweet drink). These values are
also meaningful as they are positive, as expected.

Table 1. Identification of θ3 for the Event 3

Event 3 θ3

n1 1.34
n2 1.77
n3 1.64
n4 1.14

One can expect that the time to assimilate a full meal is rather
longer than the time to assimilate a drink which is designed to
correct a previously overestimated insulin bolus. This requires
a specific dynamic for digestion including a time constant θ5
and this is done next.

4. A FIRST-ORDER MODEL FOR THE DIGESTION

The previous elementary and rough model is now completed by
considering a first-order dynamics for the digestion with its own
time constant. The identification of the latter time constant will
replace the above arbitrary duration of the meal of 20 minutes.

The main outcome is the dependence of this time constant
of the food glycemic index. This makes sense and improves
dramatically the fit of the model. Standard models consider
constant parameters, rather than depending on the glycemic
index of the specific food.

The glycemic index (GI) is an empirical index used to describe
the rise in the blood glucose level two hours after consuming
food (Monro et al., (2008)). The GI tells how fast and high
the blood glucose level will rise after eating carbohydrates
contained in a meal, in comparison with the ingestion of pure
glucose. The rise depends on the type of carbohydrates, for
example food with a high GI (simple carbohydrates) are easily
digested and cause a quick rise in blood glucose level whereas
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food with a lower GI (complex carbohydrates) get digested
more slowly and cause a slower rise in blood glucose level. The
GI ranks food in a scale from 0 to 100. A high GI corresponds
to a score over 70.

The first-order model (2) is thus replaced by the second order
one {

Gk+1 = Gk +θ1−θ2Ik +θ3Xk
Xk+1 = (1−θ4)Xk +θ4Rk.

(4)

The parameters θ1, θ2 and θ3 involved on the glycemia dynam-
ics are basically unchanged.

4.1 Identifiability of parameters θ3,θ4 in case of the Event 3.

With computations similar to the ones done in Section 3.1, it
is easily proven that the parameters θ3 and θ4 can be identified
from the data involving Event 3. Assume that we are away from
any meal so that the initial condition of the carbohydrates on
board X is zero.
Consider a single instant k for which Rk 6= 0, so that over the
interval [k,k+ j] j ≥ 2:

Gk+1 = Gk−θ2Ib +θ1 +0
Xk+1 = 0+θ4Rk
Gk+2 = Gk+1−θ2Ib +θ1 +θ3θ4Rk
Xk+2 = (1−θ4)Xk+1 +0,
Gk+3 = Gk+2−θ2Ib +θ1 +θ3θ4(1−θ4)Rk
Xk+3 = (1−θ4)Xk+2 +0

...

(5)

then we obtain the Jacobian matrix :

∂G∗
∂ (θ1,θ2,θ3,θ4)

=


1 −Ib 0 0
1 −Ib θ4Rk θ3Rk
1 −Ib θ4(1−θ4)Rk θ3(1−2θ4)Rk
...

...
...

...

 .

The rank of this Jacobian matrix is equal to 3. The two last
columns are ”essential”, which means that θ3 and θ4 are identi-
fiable. In fact θ3 and θ4 can be computed from (5).

4.2 Identification of parameter θ4

The identification process performed on the same samples as in
Section 3.2 yields the results displayed in Figure 3 and Table 2.

Table 2. Identification of θ3 and θ4 for the Event 3

Event 3 θ3 θ4

n1 1.31 0.06
n2 1.52 0.12
n3 1.72 0.09
n4 1.87 0.07

As expected, in Table 2 the sensitivity to carbohydrates θ3
remains essentially unchanged whereas θ4 represents a time
constant which is rather small. This is due to the fact that these
events are some carbohydrates re-intakes with a large glycemic
index, as it is for an orange juice for instance.

4.3 Glycemic index

The type of CHO influences directly the parameter θ4. So, the
same amount of CHO can give different dynamics depending

Fig. 3. Local identification of parameter θ3 and θ4 from one
single glucose re-intake (Event 3).

on the GI (Bellmann et al., (2018)). The practical identification
results of the parameter θ4 prove its correlation with the GI:
a low value is found for θ4 when the GI is low while a larger
value is identified for θ4 for higher GIs. Finally, parameter θ4
depends much more on the food which is ingested rather than
on the patient. On the clinical data window in Figure 4, θ4 was

Fig. 4. Local identification of parameter θ3 and θ4 from one
meal with an insulin bolus (Event 4).

found to be equal to 0.014. Three others meals were tested for
which θ4 ranges from 0.006 to 0.024. This corresponds to a
time constant 1/θ4 that ranges from 42 minutes to 167 minutes
in the case of a full meal. The same time constant 1/θ4 ranges
from 8 to 16 minutes in the case of a re-intake. These results
are actually consistent with the physiology.

The previous modelling procedure can be performed on the
insulin subsystem to model the insulin diffusion. In this case,
we end up with the following third order model in discrete time:{Gk+1 = Gk +θ1−θ2Yk +θ3Xk

Xk+1 = (1−θ4)Xk +θ4Rk
Yk+1 = (1−θ5)Yk +θ5Ik

(6)

where Yk represents the insulin on board at time k.

In the next Section, we come back to the elementary model (2)
and to the identification of the three parameters, considering a
larger window of 24 hours of clinical data.
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5. TOWARDS A METHODOLOGY FOR PARAMETER
IDENTIFICATION

5.1 Global identification

The following figure displays the rough clinical data over 24
hours, including the insulin rate and boluses, the declared
starting times of meals and the glycemia measurement from the
continuous glucose monitoring (CGM), and the response of the
model after the identification of the three parameters (using a
standard least squares method).

Fig. 5. Global identification of a 24h period from patient data

Table 3. Global parameters identification

Parameters Parameters values
θ1 -0.08
θ2 -6.19
θ3 -0.91

Obviously, the model captures the most essential features but it
is not able to track the details of the real dynamics. In addition,
the identified parameters have an unexpected negative value.
This is due to the following reasons.

(i) the model neglects the digestion dynamics and the time
constant of the insulin subsystem which allows the subcu-
taneous insulin to spread out into the blood plasma;

(ii) the carbohydrates data are not measured but only declared
by the patient. Furthermore they display the starting time
of a meal rather than the rate of the carbohydrates absorp-
tion;

(iii) some episodes in the clinical data appear to be erroneous
since in some cases the ingestion of carbohydrates is
synchronous with a decrease of the measured glycemia, or
some increase of the infused insulin is synchronous with
an increase of the measured glycemia. Those episodes will
lead to identify some negative parameters.

To circumvent these issues and obtain a better fit and more
reliable values for the model parameters, one has to define an ad
hoc methodology that is able to cope with the real life clinical
data. This is done next through a sequential identification of the
three parameters and using only so-called ‘local’ data.

5.2 Identification of θ3, in the case of glucose re-intakes
(Event 3)

Let us now focus again on glucose re-intakes, without insulin
bolus, as described is Section 2.3 and named “Event 3”. A

“local” identification of parameter θ3 can be processed on
some of those glucose re-intakes. As the glucose intake has no
instantaneous effect but spreads out over about 20 minutes, all
CHO impulsive inputs are replaced by an equivalent step input
corresponding to the same amount of ingested glucose. One of
those identification results is displayed in Figure 6.

Fig. 6. Local identification of parameter θ3 from one single
glucose re-intake (Event 3).

Repeating this process on several glucose re-intake episodes
yields the following values for parameter θ3 and shows a good
stability of the identification at least for these glucose re-intakes
(corresponding for instance to a sweet drink). These values are
also meaningful as they are positive, as expected.

Table 4. Identification of θ3 for the Event 3

Event 3 θ3

n1 1.34
n2 1.77
n3 1.64
n4 1.14

One can expect that the time to assimilate a full meal is rather
longer than the time to assimilate a drink which is designed
to correct a previously overestimated insulin bolus. Thus, the
estimation of parameter θ3 deserves a specific treatment in the
case of a full meal. This is done next.

5.3 Identification of θ3, in the case of a full meal intake
(Event 4)

A similar procedure of ‘local’ identification is now performed
on events of the type Event 4 to estimate parameter θ3 when
a full meal is digested. Once again, the impulsive input of
carbohydrates is expanded over a range of 30 minutes and the
insulin bolus is expanded as a step input over about 120 minutes
to reflect the duration of the insulin action (DIA).

Repeating such an identification on three different events in-
cluding a meal and an insulin bolus allows to estimate a (posi-
tive) value for parameter θ3 which is significantly smaller than
in the case of a glucose re-intake, see Section 2.3.

Table 5. Identification of θ3 from Event 4

Event 4 θ3

n1 0.46
n2 0.73
n3 0.44
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Fig. 7. Local identification of parameter θ3 from one single
meal, synchronous with an insulin bolus (Event 4).

These local identifications show the variability of the parameter
θ3 as the time constant involved in the digestion of a real meal
is about (three times) longer than the time constant involved in
the assimilation of a glucose re-intake (such as a sweet drink).

The next step consists in considering that θ3 is no more a
parameter to be identified, but is the constant identified as
above.

Global identification of θ1 and θ2 (θ3 being constant) Further
steps of identification will now be processed considering only
the two parameters θ1 and θ2. The parameter θ3 is definitely a
known constant.

These values of the parameters which have been obtained from
local identifications, event by event, are now plugged in the
model whose response is as displayed in Fig. 8.

Fig. 8. Model response, with the locally identified parameters.

In this hybrid case, by mixing a local and a global identification,
the fit is improved when considering the simulation over the full
range of time.

5.4 An ad hoc methodology for identification

Based on the discussion carried out in the previous Sections,
some specific steps must be taken to identify the parameters.
These steps can be summarized as follows.

• Select elementary events which are suitable for identifica-
tion.
• Identify the rises of blood glucose concentration due to the

ingestion of carbohydrates.

• Relocate the beginning of the meal input and extend the
ingestion of carbohydrates over a period of 20 minutes.

6. CONCLUSION AND PERSPECTIVES

A special attention was paid to the model parameters identi-
fication because they are meaningful by their own since they
determine the basal insulin infusion rate and other Flexible
Insulin Therapy parameters. They also determine the future
performance of any model based glycemia regulation in closed–
loop.
It was shown that some parameters do not depend on the patient
but rather on the glycemic index of the ingested carbohydrates.
The identification of the model will thus provide an indirect
estimation of this glycemic index.
To display tractable computations, an elementary model was
used for the glycemia dynamics. The basic methodological
principles remain valid when considering more realistic math-
ematical models and introduce a methodology for the clinical
data processing preliminary to parameter identification.
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