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Abstract: The reliability of data centers can be severely affected when battery failure occurs in
the Uninterruptible Power Supply (UPS). Thus it has become a central issue for the industry to
discover failure-impending batteries in UPS. In this paper, we consider this important problem
and present a data-driven method for predictive battery maintenance. The major contributions
are as follows. Flirst, we develop a changepoint detection technique for efficient data labeling.
Second, new features are designed to fully utilize the dataset. Third, we build a predictive
classification model which can discriminate between healthy and failure-impending batteries.
Our method has been built and evaluated on 209,912,615 records from Tencent data center
involving nearly 300 batteries monitored over 2 years. The experiment on test set shows that
our method is able to predict battery replacement with 98% accuracy and averagely 15 days in
advance, which outperforms the previous maintenance policy by more than 8%.
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1. INTRODUCTION

With the rapid development of information technology
and related industries, the Uninterruptible Power Supply
(UPS) has become a reliable guarantee for the operation
of Internet Data Centers (IDCs). UPS power solution (ei-
ther AC-UPS or DC-UPS) can provide a backup, uninter-
rupted, constant power supply in the event of input power
failure thus plays an important role in the sustainability
and safety of the entire data center.

According to Scott et al. (2017), the Valve-Regulated
Lead-Acid (VRLA) batteries are the most popular UPS
battery type currently due to their energy density,
rechargeability and economy. In most cases, the VRLA
batteries are used in a series connection, once there exists a
faulty battery, the performance and lifetime of the battery
pack will deteriorate dramatically (An and Gao (2014)),
which endangers not only the health of UPS but also the
reliability of data center. Fortunately, most VRLA battery
failures are predictable, which mainly result from slow
processes that typically progress over months or years,
such as grid corrosion and frozen positives (Barré et al.
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(2013)). This makes it possible to perform predictive bat-
tery maintenance using monitoring data.

However, there are some difficulties one may encounter
when conducting this work. First, since batteries used in
UPS are normally operated under conditions of floating
charge, the monitoring data is much less informative than
that collected in a lab. Second, there lacks industry stan-
dard for battery replacement, the maintenance depends
mainly on expert knowledge. Third, battery failure is a rare
occurrence, which means the data we obtained is highly
unbalanced, making the task of finding high quality models
challenging.

In this paper, we introduce a novel data-driven technique
for predictive maintenance of VRLA batteries in UPS
based on historic battery replacement data from an expert-
maintained environment. First, We collect over 200 million
records from 292 batteries monitored over 2 years from
Tencent data center. The data points are labeled via a
proposed changepoint detection method. Next, we expand
data dimensionality by constructing new features to take
full advantage of information contained in the dataset.
Finally, we build a predictive classification model which
can discriminate between healthy and failure-impending
batteries. We show that our model is not only able to
predict impending replacements weeks in advance, but
can also detect potential battery failures that go beyond
expert knowledge. This work has already been deployed in
Tencent data center.
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The rest of this paper is organized as follows. We briefly
review the related work in Section 2, describe the predic-
tive pipeline in Section 3. Experiment analysis is presented
in Section 4. Finally, Section 5 concludes the paper and
introduces several future works.

2. LITERATURE REVIEW

Typically, there are two types of method for battey failure
detection and maintenance.

One is manual inspection; that is, experts conduct on-site
tests to infer the health status and remaining lifetime of
batteries (Salameh et al. (2017)). Discharge test is the
most direct and accurate way to detect battery capacity.
However, it requires complicated measurement procedures,
high technical requirements and disconnection of the bat-
teries from DC system, which introduces risks to the UPS.
Conductivity test inferring battery health by utilizing a
dedicated portable conductivity measuring device. This
method can only provide a rough evaluation of battery
health for that conductivity is only one of numerous factors
that may affect a battery’s health.

Another type is online automatic detection, i.e., an auto-
matic system, such as a battery testing instrument with
some designed algorithm, is used to detect battery health.
Methods include: (a) Open-circuit voltage (Snihir et al.
(2006); Lee et al. (2008)), which is a relatively accurate
indication of remaining capacity. But the battery must
be detached from the system to measure open-circuit
voltage, which is not allowed by most of UPS. (b) Inter-
nal resistance. Sato and Kawamura (2002); Zhao et al.
(2010) proofed that there is a direct link between inter-
nal resistance and remaining lifetime for VRLA batteries.
However, the internal resistance varies between battery
batches and manufactures, making it challenging to formu-
late the method. (¢) Some uncommon methods like fuzzy
control theory (Wang and Suo (2013)), wavelet transform
algorithms (Zhang et al. (2016)). These methods are not
perfect enough in theory and hardly practical.

Among these monitoring methods, researches about the
state of health (SOH) (Shahriari and Farrokhi (2013))
aim to find out how many times a battery can be charged
and discharged while supplying the required power. Also,
remaining useful life (RUL) prediction (Ren et al.
(2018); Gregory W. Ratcliff (2019)) is another concern.
Basically, most studies make use of cycle characteristics to
estimate battery health as well as its remaining life.

Unlike the situation discussed above, batteries in UPS
work much differently. Normally, UPS units are operated
under condition of floating charge, the cycle characteristics
cannot be obtained unless power supply fails which is a
rare occurrence. To the best of our knowledge, very few
studies have explored health evaluation and maintenance
of batteries in UPS.

3. PREDICTIVE MAINTENANCE OF VRLA
BATTERIES

3.1 Data Collection

We firstly collect 238,758,894 records from 292 batteries
monitored over 30 months (June 2016 to December 2018)

in Tencent data center (Tianjin), in which 32 batteries
have been replaced. The data is collected with minute-
level granularity containing the following: (1) timestamp,
(2) serial number of battery, (3) serial number of battery
pack and (4) basic battery attributes as presented in Table
1.

Attribute Notation Acquisition Frequency
Current 1; per minute
Voltage Vi per minute

. k (th 11 -
Resistance R, per week (the collected R¢s re

main the same for one week)

Temperature T} per minute

Table 1. Data acquisition information. The
subscript denotes minute-level time t.

Next, we exclude records with missing attributes (accounts
for about 8% of the raw data) or general knowledge errors
(e.g., negative value of resistance). Then we restrict analy-
sis to samples collected under condition of floating charge.
Finally, we obtain a dataset consisting of 209,912,615 sam-
ples. Table 2 exhibits some statistics of the dataset.

Voltage(V) Resistance(m(2) Temperature(°C)

Mean 13.58 2.32 22.11
Std 0.17 0.81 1.34

Min 9.07 0.86 17.65
Max 16.61 33.12 30.12

Table 2. Some statistics of collected dataset.

3.2 Computer-aided Data Labeling

A battery is labeled as failed after an event that leads to
replacement occurs, we call this event an Event of Interest
(EoI). An Eol is usually one of the following type:

(1) Natural Aging. The ohmic resistance of VRLA bat-
tery smoothly increases with the aging of battery,
causing battery capacity attenuation. According to
industry-wide standard, a VRLA battery is sug-
gested to be detached from system when its resistance
reaches 5 m{).

(2) Internal Fault. An internal fault may lead to dramatic
deterioration of battery health, which endangers not
only the battery pack but also the safety of UPS.

Fig. 1 gives an example of natural aging and internal fault,
respectively.

However, battery replacement only occurs during manual
inspection every 4 months. In order to find the exact
time of Eol, we have to check historical data manually.
To eliminate repeated and heavy manual labor in this
step, we develop an algorithm that automatically discover
the time point when a battery begins to degenerate. We
name this time point changepoint. Following is a detailed
description of the algorithm.

For the case of Natural Aging, as the resistance increases
smoothly, we set the changepoint . =ty — 30 x 24 x 60
minutes where t; is the time when R, P reaches 5 mf). For
the case of Internal Fault, the floating voltage of battery
will decrease and fluctuate drastically in the early stage of
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Fig. 1. Examples of events leading to battery replacement.
(a) Natural Aging. The resistance reached 5 m{) in
the middle of November 2018. (b) Internal Fault. The
fault occurred in early August 2018.

failure, which is indicative of a battery replacement. We
firstly define an indicator of floating voltage decrease,

w
D; = Zwi -min{V;_; — Median[Vi;_onry.— ), 032,

i=1
(1)
where M, W € Z, are time spans, Median[Vi_anry:(t— )
is the median of {Vj|i = t — 2M,¢t — 2M + 1,--- ,t —
M — 1}, and {w;|i = 1,--- ,W} are the weights satisfying
ZiVL w; = 1. In our case M is set to be 30 x 24 x 60

minutes and W is set to be 7 x 24 x 60 minutes. Then the
changepoint t. is defined as

te = mtin{t|Dt > 30.}, (2)

where o, is the mean of the empirical standard deviations
of the floating voltage of all samples labeled as healthy.
Fig. 2 illustrates how this algorithm works in the latter
case.

Since changepoint indicates when a significant change
of battery performance occurs, we are able to narrow
down the hunting zone of Eol to several days around
changepoint, bringing significant time saving and efficiency
promotion in data labeling. After this step, we obtain
209,465,400 healthy samples and 447,215 failed samples.

3.3 Feature Design

The collected dataset is in large amount but low dimen-
sionality. To fully utilize the power of big data, we expand
the data dimension by some feature design methods.

13799
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Basic Features. The data collected from battery mon-
itoring device contains some basic attributes: current,
voltage, ohmic resistance and temperature. Consider-
ing that the floating current is always zero regardless
of the battery’s health, we employ the latter three
attributes as our basic features, namely V;, Ry, 1.
Battery Pack Related Features. Batteries in UPS are
used in a series connection, with each serial battery
pack consisting of a fixed number of individual bat-
tery cells. As the performance of battery pack is
seriously affected by faulty cells, intuitively we ex-
pect that battery pack attributes can reveal potential
failure of cells it contains.

Therefore, we design some features representing
battery pack statistics, such as the mean and em-
pirical standard deviation of voltage of battery cells
uY o), the mean and empirical standard deviation of
ohmic resistance of battery units p, oF. Formally,

L5~y

vV _ i

;%=N;%, (3)
JRRELAG

of =\ % W =), (4)
i=1

where N represents the number of battery units

contained in a battery pack and Vt(z) is the voltage
of battery cell i,i € {1,..., N} at time instant t. uF
and oft are formulated in the same way.

Furthermore, the relative performance to the intra-
pack average could be highly informative for inferring
a battery cell’s health. Thus we employ two indicators
named relative voltage RV; and relative resistance
RR; to our predicting model. They are given as

RV, =V -, (5)

RR, = R, — pj". (6)
Time Series Features. The monitoring data are gath-
ered over time. There are several observations that
hint the necessity of constructing time series features:
(i) Some attributes show high time dependency. (ii)
The model will not be able to predict replacement
if we consider only attributes from the last minute
of the battery before replacement as observations for
the failed class.

Therefore, we calculate both the rate of change and
the gradient of some attributes for consecutive days.
Formally, the voltage change rate at time instance ¢
is defined as

VCy =V, — Mean[V(t,Tc):(t,TchD)], (7)
where T, is the time period used to calculate the
change rate, D is the number of time instances
contained in one day.

The voltage gradient at time instance ¢, denoted by
V G4, is obtained by solving the following least squares
regression problem:

t
. 12
min 3 Vi-(ao+a- )P, (®)
i=t—T,
where T, is the time period used to calculate the
gradient. We assign VG; = ap after an optimal
solution is achieved. The resistance change rate RC}
and the resistance gradient RG; are defined similarly.
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Fig. 2. Changepoint detection in the case of internal fault. The upper figure shows basic attributes V;, R; of the battery
throughout its life cycle. The lower figure demonstrates the corresponding indicator Dy, the yellow dash line refers
to the threshold 3o., which is set to be 0.099 in our case.

4) Combined Features. In order to introduce nonlinear-
ity into our model, feature combination approach is
adopted to create a new feature VDR, = V;/R;.

Finally we expand the feature space to 14 dimensions.

Type Feature Name Notation
Voltage Vi
Basic Feature Resistance Ry
Temperature T:
Pack Voltage Mean ,uy
Pack Voltage Std O'y
Battery Pack Relative Voltage RV}
Related Feature Pack Resistance Mean uf
Pack Resistance Std Uﬁ
Relative Resistance RRy
Voltage Change Rate VCi
Time Series Voltage Gradient VG
Feature Resistance Change Rate RCY
Resistance Gradient RGy
Combined Feature Attribute Ratio VDR

Table 3. Summary of Features.

3.4 Class Balancing

As battery replacement is a rare occurrence, the data to be
used for training predictive model is highly imbalanced. In
our case, the ratio of healthy and failed samples is nearly
468:1. However, most classification algorithms minimize
the overall errors, the trained model will exhibit poor
performance when fed with our imbalanced data. To tackle
this problem, we undersample the healthy class using the
approach described in Botezatu et al. (2016). The key idea
is to cluster the healthy samples into k clusters, then select
n data points nearest to the respective cluster centroid for
each cluster as representatives. In our case, k is chosen to
be 50 and n is 10,000. Finally we obtain a balanced dataset
for the next step.

8.5 Model Training and Online Deployment
We train a classification model for battery replacement

offline using the dataset generated in the previous step.
We expect the model to deliver high quality prediction on

both training data and unseen testing data. Formally, let
D = {(zi,v:)}Y; denote the train set, where x; € X is the
14-dimensional variable containing battery information
during time instant ¢;_yax(r.,7,} to ti- yi € {0,1} is a
binary variable indicating whether the battery represented
by «; needs replacement. Our goal is to learn a function:
f X — {0,1} that minimizes the loss Z@IL L(f(x:),v:),
which quantifies the prediction accuracy.

We conducted comparative experiments of Random Forests
(Breiman (2001)), Gradient Boosting Decision Tree (Fried-
man (2001)), Artificial Neural Network (Sarle (1994)) and
Logistic Regression (Cox (1958)) models for our classifica-
tion task, and finally choose Gradient Boosting Decision
Tree (GBDT) for online deployment due to its accuracy, ef-
ficiency and ease of implementation. The balanced dataset
obtained in last step is used as train set, parameter tuning
and 3-folds cross validation are applied to achieve better
performance. The learning rate is set to be 0.05 and the
number of boosting stages is set to be 300.

Figure 3 shows the online deployment schema of our
predictive battery maintenance method. Once our model
find a latent failed battery, expert will conduct on-site
examination. If the classification outcome is TP, i.e. the
battery do has impending failure, a replacement request
will be submitted to the control center. Otherwise, the
instance will be stored for future training.

Classification

14-dim Feature Model New Sample
= — u
...—> <—Retrain—...
(! | u
Failed
\2
Raw u
Battery "M Expert P
Data m"jil Verify
|
|z
¥

TTT Replacement
E E E Request

Data Center
with UPS

Fig. 3. Online deployment Schema.
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4. EXPERIMENTAL ANALYSIS

In this section, we present our experimental results and
show the superiority of our proposed method. To evaluate
the performance of classifiers (maintenance polices), we
measure precision, recall, and F-score as defined below.

tp tp 2
P=—— R=—"— F=—1———
tp+ fp tp+ fn P14+ R

4.1 Comparison with Expert-Designed Policy

Previously, UPS batteries in Tencent data centers were
maintained under an expert-designed policy. The policy
consists of 6 simple rules based on battery attributes
collected by monitoring devices. For example, if R; >
5mf), the policy gives an outcome of Replace.

We collect over 20,000,000 new battery samples from
Tencent data center as test set. Both expert-designed
policy and our proposed policy are performed on the
test set. The results demonstrate that our method brings
significant improvement in identifying failure-impending
batteries over the previous maintenance policy. Please
refer to Table 4 for details.

Expert- Proposed
Designed Policy
Policy
Precision  0.981 0.962
Replaced Recall 0.687 0.999
F-score 0.808 0.981
Precision  0.818 0.987
Healthy Recall 0.990 0.972
F-score 0.896 0.979

Table 4. Precision, Recall, F-score of two main-
tenance policies on test set

Furthermore, our policy is able to detect an impending
failure fifteen days in advance on average, allowing
administrators to plan properly for replacements. Figure
4 gives an example of replacement prediction.

-
o
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Fig. 4. Example of replacement prediction. The lower
figure shows basic attributes V;, R; of the battery.
The upper figure shows the replacement confidence
correspondingly given by two maintenance polices.

As shown in the lower subgraph, the battery deteriorated
dramatically in late November and was replaced in De-
cember. Expert-designed policy predicts the replacement
two weeks in advance, few days before the deterioration.
Our proposed policy identifies the impending replacement
nearly a month ahead of expert-designed policy and hence
shows a major advantage.

4.2 Benefits of Feature Expansion

We employed feature expansion technique in Section 3.3 to
capture as many patterns as possible and hence obtained
an intelligent predicting model. To illustrate the benefits
of feature expansion, we calculate importance of each
feature within model. According to Breiman (2017)’s work,
importance of feature j in a boosted tree model is given
by:

1 M
m=1

where M is the total number of trees, jjg(Tm) is impor-
tance of feature j in a single decision tree T,,, which is
defined as:

L—1

THTw) =Y IF1(v = j), (10)

t=1
where L is the number of terminal nodes, v; represents the
splitting attribute associated with node ¢, and I? is the

corresponding improvement in Gini index resulted from
the splitting.

We present the six most important features in Figure
5. The result reveals that only one of them (Voltage) is
collected directly from monitoring device, which indicates
the benefits of feature expansion.

Pack Resistance Std _
Relative Voltage _

Relative Resistance I
Attribute Ratio
Voltage

Voltage Gradient

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Importance

Fig. 5. The six most important features in construction of
our predicting model.

Also, we trained the model by applying aforementioned
feature design techniques step by step, and present F-
scores for replaced class in the following.

As shown in Figure 6, we receive a F-score of 0.678 when
utilize only basic features. By adding battery pack related
features, the F-score increases to 0.889. Then it is im-
proved by time series features to 0.925 and finally reaches
0.981 when combined features are taken into account.
The results demonstrate the significance of feature design
process.

13801



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

F-Score
° o o o o
> iy = > ®
G
G _
S

aC)
N ey v 0

Feature Design Steps

Fig. 6. Improvements in F-score by adding features step
by step.

5. CONCLUSION

In this paper, we present a data-driven approach for
predictive maintenance of VRLA batteries in UPS based
on historic battery replacement data and GBDT model.
We have collected nearly 200 million training samples
from batteries in Tencent data center and developed a
changepoint detection method for efficient data labeling.
Moreover, we have applied feature expansion technique
to fully leverage the power of big data. Eventually, the
experiment results show that our approach outperforms
the current maintenance policy by more than 8%. This
work have many practical benefits. First, the model works
automatically and no extra effort is necessary. Second, the
model can be easily implemented on VRLA batteries from
any manufacture as long as basic battery attributes are
collected. This work has been deployed in Tencent data
center (Tianjin) and performs well so far.

In the future, it is interested to generalize our model to
predict replacement of batteries from different manufac-
ture, as well as predict other facility replacement in data
center.
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