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Abstract: An in-line parameter estimation strategy for continuous inductive heating of
ferromagnetic steel strips is developed and investigated. During strip processing in a longitudinal
flux induction furnace, the parameters of the magnetization curve (B-H curve) of the strip
material are identified by a moving horizon estimator (MHE). The estimator uses a tailored
2D spatial-temporal model of the furnace which takes into account both the thermal and
the electromagnetic subsystem. Other model parameters are identified in a scenario, where
the magnetization curve of the strip is known. For model validation, the simulated strip
temperature at the furnace exit is compared with measurements. To approximate the solution
of the nonlinear Maxwell equations, the effective magnetization approach is applied. Here, a
sophisticated hysteretic magnetization model is avoided in favor of the computing time, while
magnetic saturation effects in the strip are still captured. The developed MHE is validated in a
simulation scenario based on a strip with a known magnetization curve.

Keywords: Moving horizon estimator, Parameter estimation, B-H curve, Effective
magnetization, Longitudinal flux induction, Nonlinear Maxwell equations, Parabolic PDE.

1. INTRODUCTION

Inductive (re-)heating (IH) systems for thin steel strips
have been developed for more than seven decades (Rudnev
et al., 2017). Already in the early 1940s, first investigations
and analytical calculations of longitudinal flux induction
heaters (LFIHs) for continuously moving strips were re-
ported by Baker (1945). In a conventional LFIH, a solenoid
coil surrounds the axially moving strip and the resulting
magnetic flux direction equals the direction of the strip
movement. Provided that the strip material is electrically
conductive, induced eddy currents complete their paths
within the cross-sections of the strip and generate heat in
the strip (Joule heating effect).

Heat treatment is the basic function of IH systems. An
extra benefit of IH can be the continuous identification
or monitoring of material properties of the strip. In par-
ticular, if the strip temperature is measured both at the
entrance and at the exit of an LFIH, magnetic properties
of the strip in terms of a relation between the magnetic flux
density B and the induced magnetic field strength H can
be estimated. This relation depends on to chemical compo-
sition, fabrication, and temperature of the ferromagnetic
strip (Bozorth, 2003). However, its accurate estimate is
very desirable in hot-dip galvanizing lines. Saxinger et al.
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(2018) reported that knowledge of magnetic properties at
elevated temperatures has to be taken into account when
calculating electromagnetic forces for active vibration and
position control in such production lines. Knowledge of
the magnetic behavior is also crucial when applying mi-
cromagnetic methods for the estimation of phase trans-
formations and mechanical properties in steel production.
To control the phase volume ratio of multi-phase steels,
an electromagnetic sensor (EMspec) developed by Shen
et al. (2019) requires relative permeability values of single
phases and partially transformed microstructures. These
values are calculated from a microstructure-permeability
model presented by Hao et al. (2010). The model uses a
linear magnetic material law with the single phase low field
permeability and electric resistivity values as inputs. The
so-called EMG IMPOC system uses measurements of the
gradient of the residual magnetic field strength to estimate
the tensile strength and the yield point of ferromagnetic
strips. The system needs the magnetic properties of the
strip as input parameters of the underlying electromag-
netic solver and for the calculation of the sensor output
(Skarlatos et al., 2016).

A thorough review of the relevant literature reveals an
absence of solutions where high-power IH furnaces are used
beyond heat treatment as soft sensors for magnetic mate-
rial properties at high temperatures. Hence, in this paper,
an in-line estimation strategy for a nonlinear magnetic
constitutive equation during strip processing at elevated
temperatures in an LFIH is developed. In particular, the
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goal is to estimate the scalar magnetization relation of the
heated strip material, most commonly expressed in terms
of a B(H) curve, where B and H denote norm amplitudes
of the magnetic flux density B(x, t) and the field strength
H(x, t), respectively. As a basis for this estimation, a finite-
element (FE) model of the LFIH is proposed. The model
takes into account time-harmonic Maxwell’s equations de-
scribing electromagnetic phenomena in the heating zone
of the LFIH and the heat conduction equation in the
strip in terms of partial differential equations (PDEs).
However, in the model, the nonlinear magnetic behavior
is approximated by means of effective quantities Beff and
Heff of a fictitious linear material and implemented in
terms of the Heff(Beff) function. The determination of the
Beff-Heff relation is based on the conservation of magnetic
energy stored in the strip. This approximation simplifies
the solution of the nonlinear Maxwell’s equations to the
solution of a set of linear equations. The proposed FE
model serves as a basis for the design of a real-time
moving horizon estimator (MHE) for the parameters of a
nonlinear material law, i.e. the B-H curve. The estimator
uses measurements of the heating power of the LFIH, the
strip velocity, the strip temperatures at the inlet and the
outlet of the LFIH as well as the ambient temperature in
the furnace. The estimation performance is validated in a
simulation scenario based on strips where the B-H curve
is known from experimental offline measurements.

The paper is structured as follows: In Section 2, the
development of a 2-dimensional FE model consisting of a
thermal and an electromagnetic subsystem is developed. In
Section 3, the derived model is parametrized and validated
using measurements. The MHE scheme is introduced in
Section 4. Estimation results obtained with the validated
model are presented and analyzed in Section 5. Final
remarks given in Section 6 conclude the paper.

Notation: Arguments of functions are omitted whenever
they are clear from the context. ∆T (x, t) denotes the
Laplacian and ∇T (x, t) is the temperature gradient with
respect to the spatial coordinates x = (x, y). ∂∗ denotes
the partial derivative with respect to ∗. Moreover, ∇× and
∇· represent the curl and the divergence operators.

2. MATHEMATICAL MODEL

The LFIH under consideration is used by voestalpine Stahl
GmbH for heat treatment of steel strips in a hot-dip
galvanizing line located in Linz, Austria. The simplified
geometry of the IH system is presented in Fig. 1. It shows
a quarter view of the LFIH. The system consists of two
water-cooled rectangular solenoid coils (length Lc, width
Wc), a screening jacket, and the steel strip (length Ls,
width Ws, thickness Bs), which is axially moving with the
velocity v(t). The strip enters the LFIH at x = 0 with
a mean temperature θ0(t) and leaves it at x = Ls with
the temperature θL(t) (cf. Fig. 2). At these positions, the
mean strip surface temperature can be measured. When
supplying alternating current (AC) to the coils, the strip
undergoes inductive heating.

For reasons of computational efficiency, a 2-dimensional
(2D) distributed-parameter model of the LFIH is formu-
lated. The 2D geometry of the longitudinal cross-section
of the LFIH is shown in Fig. 2. It comprises the spatial
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Fig. 1. A simplified quarter view of the LFIH.
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Fig. 2. 2D geometry of the LFIH (not to scale).

domain Ωs of the strip, Ωc of the coils and Ωa of the
surrounding air volume. The computational domain Ω =
Ωs∪Ωc∪Ωa covers the volume inside the screening jacket.
The 2D approximation is justified by the assumption of
a homogeneous magnetic field H and strip temperature T
along the direction z. It is known that LFIHs are normally
not sensitive to an off-center strip position within the
induction coil (see, e.g., Rudnev et al., 2017). Hence, a
potential off-center strip position is neglected in the math-
ematical model presented in the following subsections.

2.1 Heat Conduction PDE

The temperature evolution in the strip depends on the
time t and the spatial coordinates x = (x, y) ∈ Ωs. It is
modeled by the 2D parabolic PDE

ρcp
(
∂tT (x, t) + v(t)∂xT (x, t)

)
= λ∆T (x, t) + q̇IH(x, I) (1)

with the 2D temperature profile T (x, t), the mass den-
sity ρ, the specific heat capacity cp, and the thermal
conductivity λ. In view of moderate changes of the strip
temperature in the LFIH, cp and λ are assumed to be
constant. The source term q̇IH(x, I) on the right hand side
of (1) describes the volumetric heat generation due to IH.
It depends on x and the system input I(t). The system
input of the model is the RMS value of the sinusoidal AC
current with angular frequency ω. It is assumed that I(t)
can be measured and is controlled by a subordinate current
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control loop. Its maximum value Imax is restricted by the
maximum net heating power of the LFIH. In case that
I(t) cannot be measured, the heat source due to IH can
be estimated from the energy balance and by using only
the secondary current of the equivalent circuit diagram
of the underlying electromagnetic field problem, (see, e.g.,
Roetzer et al., 2020).

The PDE (1) is supplemented by Dirichlet boundary
conditions (BCs) for ΓD := {x ∈ R2 | x = 0, 0 ≤ y ≤
Bs/2} and Neumann BCs for Γ′N := {x ∈ R2 | y =
Bs/2, 0 ≤ x ≤ Ls} and Γ′′N := ∂Ωs \ (ΓD ∪ Γ′N ) as

T (0, y, t) = θ0(t) x ∈ ΓD (2a)

n̄ · ∇T (x, t) = α(T∞(t)− T (x, t))

+ εσSB

(
T∞(t)4 − T (x, t)4

)
x ∈ Γ′N (2b)

n̄ · ∇T (x, t) = 0 x ∈ Γ′′N . (2c)

In (2), α is the convective heat transfer coefficient, ε the
emissivity of the strip, σSB the Stefan-Boltzmann con-
stant, T∞(t) the ambient temperature, and n̄ the outward
unit normal vector. The consistent initial condition is
defined as T (x, 0) = T0(x) for x ∈ Ωs.

2.2 Heat Flux due to Inductive Heating

The computation of the volumetric heat source q̇IH(x, I)
requires the solution of Maxwell’s equations. In the fol-
lowing, the 2D electromagnetic field problem from Fig. 2
is formulated.

A challenging part when modeling IH of ferromagnetic
materials is the incorporation of the generally nonlinear
material behavior in the Maxwell equations. This is due to
nonlinearity, anisotropy, hysteresis, and saturation effects
that characterize the electromagnetic behavior of steel
strips. In the most general case, the flux density B(x, t)
and the magnetic field H(x, t) are coupled by a nonlinear
vector relation of the form (Meunier, 2008)

H(B) =

{ 1
µ0
B −M(B), x ∈ Ωs

1
µ0
B, else.

(3)

M(B) is the magnetization as a function of B(x, t) and
µ0 denotes the permeability of vacuum. Various sophis-
ticated models, e.g., the Preisach and the Jiles-Atherton
model, can be found in the literature to describe M(B).
The selection of such a model always involves a trade-off
between accuracy and computational costs. Subsequently,
in view of elevated strip temperatures, while still below the
Curie point, a soft-magnetic material with a narrow hys-
teresis loop is assumed. As a consequence, only a marginal
amount of heat is produced due to hysteresis losses such
that a nonlinear anhysteretic relation formulated in terms
of the norm amplitudes H and B is justified.

It is well known that for a time-harmonic excitation
of the coils in the frequency range f < 10 MHz the
displacement current density is negligible compared to the
conduction current density (Rudnev et al., 2017). With
this approximation and (3), Maxwell’s equations for the
LFIH simplify to

σ∂tA(x, t) +∇×
(
µ−1

0 ∇×A(x, t)
)

= F(B, I) (4a)

where

F(B, I) =

{Jimp(I), x ∈ Ωc
∇×M(B), x ∈ Ωs
0, x ∈ Ωa.

(4b)

A(x, t) is the magnetic vector potential which defines
B(x, t) = ∇ × A(x, t). The electrical conductivity is de-
noted by σ. A(x, t) evolves in the direction of the im-

pressed current density Jimp(I) = [0 0
√

2I(t) sin(ωt)/Ac]
T

with the cross-sectional surface Ac of a single coil.

For numerical simulations, (4) has to be complemented
with boundary conditions. Their selection is a crucial point
because the electromagnetic field extends in fact into an
infinite spatial domain. In this work, the spatial domain
Ω is extended by an exterior region (not shown in Fig. 2)
where so called infinite elements are employed, (cf., Jin,
2014).

Formally, the heat source due to IH is defined by the
Joule heat q̇IH(x, I) = J TE with the current density
J (x, t) and the electric field E(x, t). From Ohm’s law
J (x, t) = σE(x, t) for x ∈ Ωs together with Faraday’s
law of induction E(x, t) = −∂tA(x, t), it follows that

q̇IH(x, I) = σ |∂tAz(x, t)|2 . (5)

In (5), Az(x, t) denotes the out-of-plane component of
A(x, t). For the considered LFIH, the frequency of the
AC current is close to 100 kHz. Hence, the dynamics of
the electromagnetic system is significantly faster than
the dynamics of the thermal model (1)–(2). To avoid
an excessive computational load when solving this two-
time-scale problem, only the effective eddy current values
following from the steady-state (harmonic) solution of (4)
are used in (1). However, the computation of the steady-
state solution of (4) is complicated by the fact that (3)
defines a nonlinear relation. In the following subsection, an
approach is introduced that facilitates the consideration of
a nonlinear relation H(B).

2.3 Effective Magnetization Approach

As reported by Paoli et al. (1998), the main idea of the so-
called effective magnetization approach is the introduction
of a fictitious material that approximates the nonlinear
behavior of the ferromagnetic material. This fictitious ma-
terial is described by a linear effective Beff-Heff curve with
sinusoidal field quantities. There are several possibilities
to construct this effective curve from a given nonlinear
relation H(B). In this paper, the energy method of Paoli
et al. (1998) is used. It determines the relation Heff(Beff)
in such a way that the magnetic energy weff = HeffBeff/2
stored in the linear fictitious material is equal to the
magnetic energy w(B) stored in the strip.

The construction of the Beff-Heff curve is outlined in Fig. 3.
For a given flux density Beff = B, the calculation of Heff

follows from the requirement that w(B) = HeffBeff/2. This
yields the relation

Heff(B) =
2

B

∫ B

0

H(B)dB. (6)

In practice, the B-H curve is often obtained from experi-
mental measurements. Different methods for monotonicity-
preserving analytical approximations of experimental B-H
data are summarized by Pechstein and Jüttler (2006). In
the current paper, a modified ansatz of Brauer (1975) is
used to parameterize the original B-H curve by

H(B) = ξ1B + ξ2(exp(ξ3B)− 1), ξ = [ξi]i=1,...,3 (7)
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Fig. 3. An effective magnetization approach based on the
energy method.

with constant parameters ξi > 0, i = 1, 2, 3. The ansatz
ensures the monotonicity and H(0) = 0. Substitution of
(7) into (6) yields the effective curve as

Heff(B) = η1B + η2
exp(η3B)− 1

B
− η2η3 (8)

with η(ξ) = [ηi]i=1,...,3 and the bijective mapping η1 = ξ1,
η2 = 2ξ2/ξ3 and η3 = ξ3. For a linear original material,
i.e., ξ2 = 0, it follows Heff(B) = H(B) = ξ1B. The inverse
mapping ξ(η) is used in Section 4 to estimate the original
H-B curve.

The effective magnetization approach together with the
Coulomb gauge ∇·A(x, t) = 0 allows to rewrite (4) in the
time-harmonic form

jωσÂz(x) + µ−1
eff ∆Âz(x) =

{
Ĵimp,z(I), x ∈ Ωc
0, else,

(9)

with the effective permeability

µeff =

{
B

Heff(B) , x ∈ Ωs
µ0, else.

(10)

Âz(x) and Ĵimp,z(I) are z-components of the complex-
valued phasors of A(x, t) and Jimp(I) from (4), respec-
tively. Moreover, by time averaging of q̇IH(x, I) over one
period ∆t = 2πω−1, it follows from (5) that

q̇IH(x, I) =
1

2
σω2Âz(x)Âz(x)∗ (11)

with the complex conjugate Âz(x)∗ of Âz(x).

The electromagnetic subsystem (9)–(11) and the thermal
subsystem (1)–(2) constitute the mathematical model of
the LFIH. Its numerical solution is computed by the
FEM software Comsol Multiphysics. The backward
differentiation formula of order 2 with a constant sampling
time ts is used for numeric integration along the time
domain.

3. MODEL VALIDATION

Where possible, the 2D LFIH model is parametrized with
nominal dimensions and material parameters. However,
to improve the model accuracy, selected parameters are
additionally identified based on measurements recorded at
the considered industrial plant under normal production
conditions. The results of the model validation based on
this parameter identification are subsequently presented.

Let TL(t) = 2
∫ Bs

2

0
T (Ls, y, t)dy/Bs denotes the simu-

lated mean strip temperature at the exit of the LFIH.

By processing a steel strip with known B-H curve, the
electric conductivity σ, the heat transfer coefficient α, and
the strip emissivity ε are identified. With measurements
and input signals recorded during the period [0, τ ], the
minimization problem

min
p

1

τ

∫ τ

0

(θL(t)− TL(t))
2

dt, (12)

s.t. (1)–(2) & (9)–(11)

with p = [σ, α, ε] is solved using the Matlab routine
fmincon. The required underlying evaluation of the math-
ematical model of the LFIH is carried out in Comsol using
the interface LiveLink for Matlab. The optimum cost
function value found in (12) is less than 0.39 % of the time-
averaged measured temperature Tref in the time period
t = [0 τ ].

The optimum values from (12) are σ = 0.71× 106 S/m,
α = 398 W/m2K, and ε = 0.78. These values are hence-
forth used in the LFIH model. It has been validated by
comparison with measurement results, which are shown
in Fig. 4. Figure 4 (top) shows the measured and com-
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Fig. 4. Validation results: calculated TL(t) and measured
θL(t) strip temperature at the furnace exit (top), mea-
sured strip temperature θ0(t) at the furnace entrance
(middle), normalized RMS current I(t) (bottom).

puted normalized mean strip temperature at the LFIH
exit. The model accurately captures both the dynamics
and the steady-state values of the strip temperature. The
corresponding normalized input variables θ0(t) and I(t)
are given in the middle and bottom picture of Fig. 4,
respectively. The validated model is subsequently used to
estimate unknown B-H curves of the strip at elevated
temperatures.

4. IN-LINE ESTIMATION OF THE B-H CURVE

In the following, an MHE scheme for on-line identification
of the unknown B-H curve of the strip material is devel-
oped. By utilizing the validated LFIH model, the unknown
parameter vector ξ, see (7), is estimated by minimizing the
squared deviation between the calculated strip tempera-
tures T iL = TL(its) and the corresponding measurement
values θiL = θL(its). In each estimation horizon, N + 1
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measured data points are used. The time span between
two subsequent horizons is nts, with n < N .

The proposed MHE scheme is thus based on the solution
of the minimization problem

min
ηk

nk∑
i=nk−N

(
θiL − T iL

)2
, n,N ∈ N+ (13)

s.t. (1)–(2) & (9)–(11)

for a time-step k ∈ N0. Because of the computational
load entailed by the LFIH model, an exact solution of
(13) would prevent the real-time application of this MHE
scheme. Therefore, a suboptimal solution ηk of (13), found
by a single iteration of the Matlab routine fmincon, is
accepted. For this, the interior-point line-search algorithm
with the numerical approximation of the gradient of the
cost function in (13) is employed. The obtained values ηk
are used as initial guess in the subsequent horizon. Finally,
the parameters that control the B-H curve (7) are found
in the form

ξ̂k = ξ(ηk) =

 η1,k
1
2η2,kη3,k

η3,k

 . (14)

Both the horizon length N and the shifting distance n
are tuning parameters of (13). It is well known that the
convergence properties of MHE improves if the length N is
increased. Clearly, this also entails higher computational
costs. Therefore, a reasonable trade-off is required between
the convergence rate of the MHE and the computational
time. For the convergence analysis of a real-time MHE
scheme, the reader is referred to (Wynn et al., 2014).

Remark 1. The MHE optimization problem (13) uses an
arrival cost of zero, which means that information from
measurements prior to the beginning of the current horizon
is neglected. In general, the determination of the (full infor-
mation) arrival costs is a challenging task, especially when
dealing with constrained nonlinear systems. Different pos-
sibilities are reported in the literature in this context. To
approximate the arrival cost, Rao and Rawlings (2002)
used the extended Kalman filter, Qu and Hahn (2009)
proposed the unscented Kalman filter, and López-Negrete
et al. (2011) considered particle filters.

5. ESTIMATION RESULTS

In the following simulation experiment, a steel strip with
a known B-H curve is considered. The B-H curve is
known from laboratory measurements, which allows the
calculation of the nominal parameters ξi, i = 1, . . . , 3 used
in (7) by solving a nonlinear least squares problem. The
goal is to recalculate this B-H curve by means of the
MHE as proposed in Section 4. Hence, the MHE scheme is
initialized at the time t = 0 with the intentionally incorrect

values ξ̂i = 0.6ξi, i = 1, . . . , 3. For the estimation, real
measurements of the process variables during the time
period t = [0 tE ] are used. To evaluate the performance
of the proposed MHE approach, its estimation results
are compared with the nominal parameters. In (13), the
horizon size is set to N = 20 and the shifting distance is
chosen as n = 10.

The obtained estimation results are presented in Fig. 5.
The top half of Fig. 5 contains the evolution of the nor-

malized parameters ξ̂i, i = 1, . . . , 3. They are constant
and equal to their (incorrect) initial values for t < 0.2tE .
During this period, the MHE is switched off. At the time
t = 0.2tE , the MHE is switched on and the parameter

estimates ξ̂i evolve towards their nominal values ξi. Af-
ter a transient period of just 6 estimation horizons, the

estimates ξ̂2 and ξ̂3 deviate less than 5.2 % and 2.9 %,
respectively, from their nominal values. The parameter ξ1
is estimated with a slightly higher inaccuracy and slightly
more fluctuations, which has the following reasons. First,
the IH process typically causes saturation on the strip
material. In this case, the nonlinear term in (7) dominates
and the sensitivity of the strip temperature θi with respect
to ξ1 is low. Second, the chosen ersatz of the B-H curve
may fail to exactly reproduce the true B-H curve, which
inevitably entails an uncertain model-plant mismatch.
However, Fig. 5(d) demonstrates that the proposed MHE
achieves an excellent estimation accuracy in terms of the
B-H curve compared to laboratory measurements. This is
ensured despite the significant deviation of the initial B-
H curve from the experimental data and a very limited
magnetic field excitation in the strip in the range between
2.4× 103 A/m and 3× 103 A/m. The limited field excita-
tion indicated by the gray area in Fig. 5(d) corresponds
to the time evolution of the strip-averaged magnetic field
Hmean shown in Fig. 5(e).

A comparison of the simulated exit temperature error
ei = θiL−T iL is presented in Fig. 5(f). The observed initial
temperature deviation of about 3 % quickly decreases
after the MHE is activated. For t > 0.3tE , the relative
temperature error |θiL − T iL|/Tref never exceeds 0.5 %.

6. CONCLUSIONS

In this paper, an in-line estimation strategy for the mag-
netic properties of a steel strip in an inductive heating
(IH) system was developed and investigated. The proposed
moving horizon estimator (MHE) approach achieves an ac-
curate identification of the B-H curve at elevated tempera-
tures. The MHE is based on an optimization problem with
an objective function that sums up the error of the mean
strip exit temperature. As a basis for the optimization
problem, the 2D finite element (FE) temperature model
of the strip was developed and implemented in the FE
software Comsol. The heat source due to the IH system is
calculated from the nonlinear Maxwell equations. The ef-
fective magnetization approach allows an approximation of
the nonlinear Maxwell equations by a linear time-harmonic
formulation. In fact, a fictitious linear material is used
to approximate the nonlinear B-H curve of the original
strip material. This curve is mathematically described by
a linear and an exponential function, which allows a direct
calculation of the parameters of the fictitious material. The
proposed MHE scheme achieves an excellent estimation
performance and a high convergence speed, even if a sub-
optimal solution of the underlying optimization problem
is accepted. The in-line estimated B-H curve accurately
agrees with laboratory measurements.
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