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Abstract:
This paper proposes a distributed control framework to optimize the offset for a path in a traffic
network with arbitrary topology. Each intersection along the target path applies the model
predictive control to optimize their own phase sequence and green splits with the objective of
minimizing the sum of queue lengths. The first intersection on this path is regarded as the
main intersection and responsible for optimizing the start green time and duration of the first
phase on this path with a weighted objective according to the real-time traffic information,
while the other intersections take the constraints of offset imposed by intersections ahead into
consideration. The signal cycles of these intersections are fixed but allowed to be different. For
computation efficiency, the nonlinear optimization problem is approximately reformulated as a
mixed-integer linear programming problem. Numerical experiments on a calibrated network of
Caohejing District in Shanghai indicate that our proposed method can effectively decrease delay
time and waiting time especially at medium and high traffic loads.

Keywords: Traffic signal control; Online offset; Model predictive control; Distributed control
framework; Mixed-integer linear programming

1. INTRODUCTION

Traffic signals were first implemented in the urban traffic
network to guarantee no conflict movements at the same
time. With the increasing traffic demand and limited road
resources, besides the safety consideration, they are ex-
pected to improve the traffic flow and alleviate congestion
with appropriate signal settings, including the signal cycle
length, phase sequences, green time and intersection-to-
intersection offsets.

Great efforts have been made to study the settings of sig-
nalized intersections (Taale, 2002; Aboudolas et al., 2009;
Zhou et al., 2014), which come to the conclusions that: 1)
signal settings play a key role in shaping traffic streams and
network efficiency in general; 2) the coordination between
adjacent intersections with offsets shows advantage over
decentralized signal control in terms of increasing traffic
throughput. In the literature, Little et al. (1981) proposed
a off-line MAXBAND program for setting arterial signals
to achieve maximal bandwidth, that is, the length of the
time window a vehicle can travel along without stop by red
lights. Ying-Ying et al. (2008) established off-line offset op-
timization models by considering the relationship between
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the arriving and departing vehicles with the objective to
minimize the delay of vehicles. However, due to the random
nature of traffic system, the off-line signal settings with
one or several fixed numbers of offsets can not express the
volatility and random of traffic flow movement.

Some researchers turn to optimize the offsets with online
traffic information. In the well-known practical traffic
signal control systems SCOOT(Robertson and Bretherton,
1991) and SCATS(Sims, 1979), the online offsets are
adjusted with small values such that the timing plans
evolve to match the measured traffic data. Gong et al.
(2009) adopted the nonlinear cointegration theory and
model to optimize real time green light starting time
based on a series of strict applicability tests with the
practical data. Gomes (2015) proposed a new formulation
of bandwidth maximization problem in which a linear
program in the case of pulse arrival functions is developed
to reduce the computational complexity. These approaches
can provide effective online offsets for arterial roads but are
incapable of generalizing to networks of arbitrary topology,
while in urban traffic network, it is a common situation
that several paths not along the arterial roads are with
high traffic loads due to the recreational or social activities.

To accommodate networks with arbitrary topology, Coogan
et al. (2017) formulated the offset optimization problem
as a quadratically constrained quadratic program(QCQP)
with the objective of minimizing the queues at all intersec-
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tions in the network, where the cycle lengths of all inter-
sections are assumed to be the same and the intersections
are undersaturated. Ouyang et al. (2019) further presented
a novel algorithm to solve the above QCQP problem to
near-global optimality on a large-scale by using a tree
decomposition reduction to relax the nonconvex problem
and using randomized rounding to recover a near-global
solution. This centralized structure of offset optimization
by minimizing the queues of all links puts great burden
on the online computing. In addition, the assumption of
the same cycle length is unreasonable for the intersections
with different link length and number of lanes.

In this paper, we propose a distributed framework to
optimize the offset for a path with arbitrary topology
based on the model predictive methodology, where the
signal cycles for intersections along this path are fixed
but allowed to be different. The target path can be with
large demands or the major roads taken by vehicles in
the network. During the online optimization, the first
intersection along the target path is regarded as the
main intersection and optimizes its phase sequence and
green splits with the objective of minimizing the weighted
sum of queues. The following intersections independently
optimize the phase sequences and green splits in their own
signal cycles by considering the offset constraints from
the intersections ahead. For computation efficiency, the
optimization problems are approximately reformulated as
mixed integer programming problem. The performances
of our proposed method are evaluated via simulation in
Caohejing District of Shanghai.

The organization of this paper is as follows. Section 2
provides notations for network description and formulates
the model predictive control for a isolated intersection.
The distributed control framework and control process to
optimize the offset for a path online is developed in Section
3. Numerical results are presented and discussed in Section
4. Finally, conclusions are provided in Section 5.

2. MODEL PREDICTIVE CONTROL FOR A
ISOLATED SIGNALIZED INTERSECTION

2.1 Traffic network description

Consider a traffic network composed of a number of inter-
sections and links(roads) whose sets are denoted as N and
C, respectively. Each intersection n ∈ N consists of several
input links. Each link l ∈ C has a number of upstream
links Γ−1

l and downstream links Γl. There are certain
phases associated with each intersection, where each phase
is corresponding to a connection between one input link
and one output link of this intersection. As shown in
Fig. 1, a connection between input link l to output link
m is denoted as phase (l,m). One or more phases that can
occur simultaneously without conflict compose a stage for
a intersection. The sum of the durations of all stages equals
to the signal cycle length.

In the traffic network, all the vehicles are assumed to follow
their predetermined paths without rerouting until arriving
at their destinations. Their path information can be ob-
tained by the vehicle-to-infrastructure(V2I) technology in
real-time using several platforms (Dey et al., 2016), such
as Dedicated Short Range Communications (DSRC), 4G,

Phase 

Conflict point 

( , )l m

( , )l mLink l Link m

Fig. 1. A typical intersection with 12 available phases

Wi-Fi or Bluetooth. In this paper, we present a path p
by an ordered collection of links or phases, where l ∈ p
denotes path p goes through link l; (l,m) ∈ p expresses
path p goes through the phase (l,m).

2.2 Model predictive control for a isolated intersection

Model predictive control(MPC) is a closed-loop control
methodology by solving the optimization problem online
in a rolling horizon way. At each control step, based on
current system information, a optimal control sequence
over a finite predictive horizon is obtained, but only the
first control step of the optimal solution is implemented.
At next control step, the optimization problem is resolved
based on new initial condition. This framework has the
advantage in handling the deviation between the predicted
process and actual behavior due to system-model mis-
match or disturbances.

Due to the above characteristics, model predictive control
has been extensively studied for intersection control(Lin
et al., 2011; Zhou et al., 2014) because the traffic system
is essentially random. The optimization variables in the
literature are mainly the green splits of ordered phases.
In this subsection, for a isolated intersection with a fixed
signal cycle, besides the green splits, we simultaneously
optimize its phase sequence in a rolling way.

Take intersection n with four input links as shown in Fig. 1
for example. It contains a number of phases (12 phases in
Fig. 1) whose set is denoted as Pn. Among these phases,
there are several conflict points as indicated in Fig. 1, each
of which corresponds to a pair of phases that can not be
activated simultaneously. Write the set of conflict points
in intersection n as Θn and [(l,m), (l′,m′)] ∈ Θn. Denote
sl,m(t) as the signal value for phase (l,m) at time step t
and it is a binary variable, where 1 indicates phase (l,m)
is activated and 0 is not. Then at time step t, each conflict
point in Θn is presented by the following constraint:

sl,m(t) + sl′,m′(t) ≤ 1 (1)

Considering the frequent switching between phases tends
to confuse the drivers and cause potential danger in reality,
in every signal cycle with length Tn, the green time for each
phase is constrained to be consecutive by

τn−2∑
t=0

|sl,m(t0 + t+ 1)− sl.m(t0 + t)| ≤

2[1− sl.m(t0) · sl.m(t0 + τn − 1)] (2)
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where τn = Tn/∆t and ∆t is the time interval. Note that
Tn is the integer multiples of time interval ∆t.

With the signal value for phase (l,m), according to the
store-and-forward model, the traffic flow for phase (l,m)
is propagated by

xl,m(t+ 1) = xl,m(t) + σl,m(t)λl(t)∆t− yl,m(t) (3)

yl,m(t) = min(xl,m(t), cl,m(t)sl,m(t)) (4)

where xl,m(t) is the number of vehicles on link l heading
to link m at time step t, yl,m(t) denotes the number of
vehicles driving from link l to m within time step t, cl,m(t)
represents the saturation traffic flow for movement (l,m)
within time step t. λl(t) is the arrival rate of link l within
time step t. There have been many approaches developed
to estimate short-term traffic demand for signalised links
from either the model based or data-driven perspectives
in the literature(Smith and Demetsky, 1994; Vigos et al.,
2008). In this paper, we adopt the nonparametric regres-
sion method proposed by Smith and Demetsky (1994)
to estimate the arrival rates. In Eq.(3), σl,m(t) denotes
the turning ratio for the phase (l,m) within time step
t and

∑
m∈Γl

σl,m(t) = 1, which can be estimated from
the historical path information of arriving vehicles. Denote
the control cycle of intersection n as Tc,n and prediction
horizon as Tp,n, both of which are the integer multiple of
signal cycle Tn and Tp,n ≥ Tc,n. Then the signal control of
intersection n can be formulated as follows:

min z =

t0+tf∑
t=t0+1

∑
∀(l,m)

xl,m(t) (I)

s.t. Flow propagation constraints :

∀(l,m) ∈ Pn, t = t0, · · · , t0 + tf − 1 : Eq.(3− 4);

Signal conflict points constraints :

∀[(l,m), (l′,m′)] ∈ Θn, t = t0, · · · , t0 + tcf − 1 :

Eq.(1);

Consecutive green time constraints :

∀(l,m) ∈ Pn, i = 0, 1, · · · , Tc,n/Tn :

(i+1)τn−2∑
t=iτn

|sl,m(t0 + t+ 1)− sl,m(t0 + t)| ≤

2[1− sl,m(t0 + iτn) · sl,m(t0 + (i+ 1)τn − 1)]

Signal settings constraints from Tc,n to Tp,n :

∀(l,m) ∈ Pn, i = 0, · · · , Tp,n − Tc,n
Tn

, j = 0, · · · , τn :

sl,m(tcf − τn) = sl,m(tcf + iτn + j)

where tcf = Tc,n/∆t and tf = Tp,n/∆t. The objective
function z aims to minimize the sum of the queue lengths
in the input links of intersection n. The above optimization
problem I will be solved every control cycle with new initial
traffic states and only signal settings in the first cycle are
implemented.

3. ONLINE OFFSET OPTIMIZATION WITH
DISTRIBUTED MODEL PREDICTIVE CONTROL

In this section, we develop a distributed control frame-
work to optimize the offset for a path online based on
the model predictive control of isolated intersection and
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Fig. 2. The illustration of dynamic offsets for one path

approximately reformulate the optimization problem for
the controlled intersection to a mixed-integer linear pro-
gramming problem for computation efficiency.

3.1 Distributed control framework

A path is generally connected by a number of intersections
with continuously ordered phases. Denote the intersections
on path p as {ni, i = 1, 2, · · · } in order and the correspond-
ing phases as {(li, li+1), i = 1, 2, · · · }. We regard the first
intersection n1 as the main intersection. To be specific,
intersection n1 optimizes its signal settings according to
the optimization problem I in a rolling way with the
following objective:

z =

t0+tf∑
t=t0+1

δl1,l2xl1,l2(t) +

t0+tf∑
t=t0+1

∑
∀(l,m)/(l1,l2)

xl,m(t) (5)

where (l1, l2) is the first phase on path p and δl1,l2 ≥ 1.
Then its green time of phase (l1, l2) at each signal cycle
and the corresponding start time are obtained. Write the
green time of phase (l1, l2) at kth cycle as gl1,l2(k) and
its start time as bl1,l2(k) relative to the reference time T0.
Note that the reference time is the common signal cycle
start time of all intersections on path p.

Intersection n1 will send the optimized setting of phase
(l1, l2) to intersection n2, i.e., bl1,l2(k) and gl1,l2(k). Ac-
cordingly, intersection ni, i = 2, 3, · · · will send these
information to its adjacent intersection ni+1 but along
with the travel time of link li which is set as the offset
between intersection ni and ni+1 in this paper. The real-
time travel time of link li can be estimated by the Bureau
of Public Roads (BPR) function(Riemann et al., 2015)
based on the current traffic states by

Hli(k) = Lli/[uli(1− a(Qli(k)/Q̄li)
b)] (6)

herein, a, b are the model parameters; uli is the free-flow
speed of link li; Qli(k) is the total number of vehicles in
link li at start of kth signal cycle and Q̄li is the capacity
of link li.

The above one-way transmission is conducted after the
signal optimization of the first intersection n1 is finished at
its every control cycle. The shades of red in Fig. 2 illustrate
the time for information sharing, where the control cycle
is equal to the signal cycle, i.e., Tc = Tn1

. Besides the first
intersection n1, the other intersections need to consider
the offset constraints from the main intersection while
optimizing signal settings with their own signal cycle. To
design the green wave for path p, the phase (li, li+1),
i = 2, · · · , needs to be activated by intersection ni at time
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tni

li,li+1
(k) = bl1,l2(k) +

∑i

j=2
Hlj (k) (7)

and the green time length is gl1,l2(k). Then there exists the
following relationships along the time axis of intersection
ni:

αTni ≤ t
ni

li,li+1
(k) ≤ tni

li,li+1
(k) + gl1,l2(k) ≤ βTni (8)

where α, β(α ≤ β) are two positive integers and

tni

li,li+1
(k)− αTni < Tni

βTn2 − t
ni

li,li+1
(k) + gl1,l2(k) < Tni

Due to different values of tni

li,li+1
(k), gl1,l2(k) and the signal

cycles, there are several cases for the signal optimization
of intersection ni:

• β − α = 1: The green time of phase (li, li+1) is
inside one signal cycle of intersection ni as illustrated
in Fig. 2. Then in the model predictive control for
intersection ni, the signal settings of phase (li, li+1)
are constrained by

sli,li+1(t) = 1, t = t1, · · · , t2 (9)

where

t1 = floor(
tni

li,li+1
(k)

∆t
), t2 = floor(

tni

li,li+1
(k) + gl1,l2(k)

∆t
)

• β −α = 2: The green time of phase (li, li+1) is across
two signal cycles of intersection ni as illustrated in
Fig. 2. If the signal settings of these two signal
cycles are controlled in one optimization problem,
the constrains of phase (li, li+1) are the same with
Eq.(9). Otherwise, For the optimization of αth signal
cycle, sli,li+1

(t) = 1 with t ∈ [t1, t3] where t3 = (α +
1)Tni

/∆t−1; For the optimization of (α+1)th signal
cycle, sli,li+1

(t) = 1 in time interval t ∈ [t3 + 1, t2].
• β − α > 2: The green time of phase (li, li+1) across

more than two signal cycles of intersection ni, which
tends to deteriorate the performance of other phases
in intersection ni. In this paper, to avoid this case,
we constrain the green time of phase (l1, l2) in first
intersection n1 by∑(j+1)τn1−1

t=jτn1

sl1,l2(t) ≤ γmin(τn1 , τn2 , · · · ) (10)

where τn1
= Tn1

/∆t, j = 0, 1, · · · , Tc,n1
/Tn1

− 1
and γ ∈ (0, 1). These constraints can be add to the
optimization problem I for the signal optimization of
main intersection n1.

3.2 Distributed control process for online offset optimization

To sum up, at the beginning of each control cycle of main
intersection n1, the optimization problem I with the added
linear constraints Eq.(10) is solved by intersection n1 to
get its signal settings. After getting the solution, intersec-
tion n1 sends the settings of phase (l1, l2) that is going to
be implemented to intersection n2. Then intersection ni,
i = 2, 3, · · · , continuously sends these information along
with the estimated travel time of links l2, l3, · · · , li to
next intersection ni+1. Besides main intersection n1, each
intersection makes a record of the green time for exact
phase on the path with offset optimization. At next control

cycle of main intersection n1, the whole process will repeat
again.

From the perspective of intersection ni, i = 2, 3, · · · , they
optimize the signal settings with their own signal cycles
by solving the optimization problem I plus with the linear
constraints on phase (li, li+1). The exact formulations of
these constraints are determined by the values of tni

li,li+1
(k),

gl1,l2(k) and the signal cycles as discussed above, such as
Eq.(9).

Remark 1. Since each intersection is optimized at the
beginning of their own signal cycle, to make sure the
optimized setting of the first phase (l1, l2) in the main
intersection n1 can be timely catched by following intersec-
tions, the implemented signal length(the integer multiples
of signal cycle) of the main intersection at its every control
cycle needs to be lager than other intersections’.

3.3 Linearization of optimization problem

The above path-based dynamic offset optimization process
proposes a high online computing speed requirement. How-
ever, the optimization problem I that needs to be solved by
each intersection is essentially a mixed-integer program-
ming problem with nonlinear constraints: the minimum
function Eq.(4) and Eq.(2) with the absolute term, which
is difficult to be efficiently solved by existing optimizers,
such as Cplex and Gurobi(Atamtürk and Savelsbergh,
2005). Therefore, it is necessary to reformulate the orig-
inal problem I to improve the computational efficiency.
We first equivalently represent Eq.(2) with several linear
constraints:

sl,m(t0 + i) + sl,m(t0 + i+ j)− sl,m(t0 + i+ 1) ≤ 1 (11)

with j = 2, · · · , τn−1, i = 0, · · · , τn−j−1. For clarity, the
proof about the equivalence between Eq.(2) and Eq.(11)
is omitted here. The minimum function Eq.(4) is relaxed
by a set of linear inequalities together with the item to
maximize yl,m(t) in the objective. Then the original opti-
mization problem I can be reformulated as a mixed-integer
linear programming problem for computation efficiency as
follows:

min z =

t0+tf∑
t=t0+1

∑
∀(l,m)

xl,m(t)−
t0+tf−1∑
t=t0

∑
∀(l,m)

yl,m(t) (II)

s.t. Relaxations of flow propagation constraints :

∀(l,m) ∈ Pn, t = t0, · · · , t0 + tf − 1 :

yl,m(t) ≤ xl,m(t)

yl,m(t) ≤ cl,m(t)sl,m(t)

Signal conflict points constraints :

∀[(l,m), (l′,m′)] ∈ Θn, t = t0, · · · , t0 + tcf − 1 :

Eq.(1);

Consecutive green time constraints :

∀(l,m) ∈ Pn, t = t0 + iτn, i = 0, 1, · · · , Tc,n/Tn :

sl,m(t+ i1) + sl,m(t+ i1 + i2)− sl,m(t+ i1 + 1)

≤ 1, i2 = 2, · · · , τn − 1, i1 = 0, · · · , τn − i2 − 1

Signal settings constraints from Tc,n to Tp,n :

∀(l,m) ∈ Pn,

i = 0, · · · , Tp,n − Tc,n
Tn

, j = 0, · · · , τn :

sl,m(tcf − τn) = sl,m(tcf + iτn + j)
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Fig. 3. Road network with 38 signalized intersections and
519 links

4. NUMERICAL STUDY

4.1 Simulation settings

The simulation using the SUMO traffic simulator is per-
formed by a road network from Caohejing District in
Shanghai, which is downloaded from the OpenStreetMap.
Its simplified network is shown in Fig. 3, containing 38
signalized intersections and 519 links. The red bold links
in Fig. 3 denote the origins and destinations which are the
entrances or exits of the parking lots, exhibition center
or the residential areas in reality. With these origins and
destinations, we consider 30 paths in the simulation. Each
path is allocated with the low(400 veh/h), medium(700
veh/h) and high(1000 veh/h) traffic loads for performance
study, respectively. According to the path distribution,
Yishan Road and Caobao Road illustrated by the bold
blue lines in Fig. 3 are with the relatively high traffic loads.

In the simulation, we choose fixed-time control (denoted as
FTC) as the benchmark, where the possible phases of each
signalized intersection are activated in a predetermined
periodic way, similar to what is used in common practice.
Their cycle length and green splits are determined based
on Webster’s formula(Webster, 1958) using the average
traffic flow. In the simulation their cycle lengths are the
integer multiples of time interval ∆t (3s) and from 60
seconds to 120 seconds. To make fair comparison, we test
our method by comparing the following three methods.
Note that only the intersections on the Caobao Road and
Yishan Road are controlled and other intersections are
under FTC with the same signal settings in each method.
All the simulations are performed for one hour.

• Actuated signal control(Taale, 2002)(denoted as ASC):
ASC takes into account the actual traffic demand
and the presence of vehicles to determine the changes
of the traffic signals, where their stage settings and
phase sequences are the same with FTC. The presence
of vehicles on each lane is detected every 10 seconds
by the detectors at the stoplines. The maximum green
time for each phase is set to be 40 seconds.
• Distributed signal control with online offset opti-

mization (denoted as DSCO): DSCO is our proposed
method as described in Subsection 3.1 and 3.2. The
signal cycle length Tu of each controlled intersection is
preset and the same with FTC. The control cycle Tc,n
is equal to the prediction horizon Tp,n. The weight
δl1,l2 in the optimization objective for the first inter-
sections on above two controlled roads are set as 2.
The parameter γ in the green time length constraints
is set as 0.6.

Fig. 4. Average delay time per vehicle over simulation time
with low, medium and high traffic loads

Fig. 5. Average waiting time per vehicle over simulation
time with low, medium and high traffic loads

• Decentralized signal control with model predictive
control(denoted as DSC): DSC is applied to control
the intersections on Yishan Road and Caobao Road
separately by solving the optimization problem II at
each control cycle Tc,n to get their phase sequence
and green splits. The signal cycle Tu, control cycle
Tc,n and prediction horizon Tp,u for each intersection
are the same with DSCO for comparison.

4.2 Performance study

In Fig. 4 and Fig. 5, we plot the average delay time and
waiting time per vehicle under different control methods
with low, medium and high traffic loads, respectively.
Here the delay time essentially equals to the real travel
time minus the ideal travel time which is the time a
vehicle travels in free flow speed without signal control.
The waiting time is the time of a vehicle whose speed is
below 0.1m/s. The average values in Fig. 4 and Fig. 5
are taken over both the simulation time and number of
arriving vehicles.

At low loads, it can be easily seen from Fig. 4 and Fig. 5
that ASC provides the shortest delay time and waiting
time, and FTC gets the longest. This is due to the fact
that under ASC, the traffic states are detected every 10
seconds and the phases with no vehicles are allowed be
skipped, which is of common occurrence at low loads,
while other methods make decisions of signal settings every
signal cycle(≥ 60s). FTC actives the phases with preset
sequence and green time, incapable of considering the
random arrivals, which tends to allocate green time to
the phase with empty queues. DSCO and DSC also allow
the phases to be skipped in the optimization problem,
but the deviation between the predicted states and actual
behavior makes the signal settings not timely as ASC.
Comparing DSCO and DSC, we can find that at low
loads, DSC outperforms DSCO in terms of delay time
but the performance of waiting time is inverse. This
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can be explained by that the online offsets optimized in
DSCO increase the throughput along Yishan Road and
Caobao Road, and decrease the waiting time. However,
the optimized offset is very likely not be fully occupied
at low traffic loads, which further affects the performance
of other phases in the intersections behind on these two
paths due to the imposed restrictions.

At medium traffic loads, DSCO yields the best perfor-
mance in terms of both delay time and waiting time,
followed by DSC, ASC and FTC. Compared with FTC
and ASC which make the signal timing plans only based on
current measured traffic states, DSC optimizes the signal
settings using the model predictive control by taking the
traffic loads into consideration. DSCO further coordinates
the intersections along two main roads to dynamically gen-
erate the green wave and improve the network throughput.

At high traffic loads, the performance of different control
methods have the same tendency with the medium traffic
loads, except the comparison between FTC and ASC,
where FTC provides better performance than ASC. This is
because the advantage of ASC explained above is gradually
weakening as traffic loads increase since the possibility
of being idling will be greatly decreased at high traffic
loads. Under ASC, the stages with large traffic loads tend
to be continuously allocated the green time until the
maximum green time, making the vehicles of other stages
keep waiting. Another interesting observation from Fig. 4
and Fig. 5 is that the advantage of DSCO at medium
traffic loads is more obvious than at high traffic loads in
terms of delay and waiting time. This is possibly because
at high traffic loads, the vehicles are likely to be stuck
due to traffic jam, making the designed offset between two
adjacent intersections hard to be realized in reality, while
these situations are of rare occurrences at medium loads.

5. CONCLUSION

This paper proposes a distributed framework to optimize
the offset for a path with arbitrary topology based on
the model predictive methodology, where the signal cycles
for intersections along this path are fixed but allowed to
be different. During the online control, each intersection
separately optimizes the phase sequence and green splits
in their own signal cycles with specific objective and con-
straints, where the first intersection along the target path
is regarded as the main intersection with the weighted ob-
jective and other intersections with the offset constraints
from the intersections ahead. The simulation results on
two main roads in Caohejing District of Shanghai show
the advantage of our proposed method over other com-
pared methods in terms of delay time and waiting time,
especially at medium and high traffic loads.
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