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Abstract: This paper proposes a solution to the problem of computing optimized point-to-set
control strategies for hybrid systems with mixed inputs and uncertainties in the continuous-
valued dynamics as well as the reset functions. The solution is based on the idea to account for
the uncertainties by tightening the guard and invariant sets, and thus construct a substitute
hybrid automaton with deterministic transition dynamics. It can be ensured that a solution
for this new model also solves the problem for the original system, i.e. the latter is robustly
transferred between initial point and target set.
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1. INTRODUCTION

The optimal control of hybrid systems with transitions
conditioned upon both guard sets and external triggers
has attracted interest recently (Liu and Stursberg (2018,
2019); Adamek et al. (2008)). In contrast to the relative
popular class of piecewise affine (PWA) systems, where
the change of the discrete state is only an immediate
consequence of the continuous state crossing hyperplanes
which partition the state space, the class of hybrid systems
considered here is more general: As in the definition of
hybrid automata in Henzinger (1996); Lynch et al. (2003),
for this type of system the change of the discrete state is
enabled by the fact that the continuous state lies inside
of a guard set. Whether and when the transition indeed
takes place is decided by a discrete input. In addition,
the transition may cause an instantaneous change of the
continuous state through reset functions. The optimal
control problem of such hybrid systems requires not only
to determine the optimal continuous controls, but also to
determine the optimal times to trigger enabled transitions
by discrete inputs. The work in Liu and Stursberg (2019)
has proposed a method to cast the transition logic into a
set of linear constraints among binary and real variables,
and thus to solve the optimal control problem quite
efficiently (by solvers like CPLEX (2009)).

The important extension considered in this paper is that
the continuous as well as discrete dynamics (more pre-
cisely the reset functions) are subject to uncertainties.
So far robust control of hybrid systems with focus on
optimization-based approaches has only considered sim-
pler system classes: In Kerrigan and Mayne (2002), PWA
systems with additive disturbances were under study, and
robust controllers were obtained by backward computation
of robust controllable sets. The work in Lin and Antsaklis
(2003) extended the idea of backward computation for the

case of parametric model uncertainties. For the same class
of PWA systems, the authors in Necoara et al. (2004)
and Silva et al. (2003) aimed at setting up min-max prob-
lems, or to employ multi-parametric linear programming
(see Borrelli et al. (2003)), or to use a branch-and-bound
strategy tailored to worst-case uncertainty and thus ensure
robustness. Specific to the considered class of hybrid sys-
tems with transitions conditioned by guard sets, the work
in Moor and Davoren (2001) proposed a robust switching
law for the case when no continuous input is applied. The
work in Adamek et al. (2008) focused on another class
of uncertainty, where the discrete transition structure is
probabilistic.

In this work, however, both parametric uncertainties and
additive disturbances affecting the the continuous dynam-
ics are considered, as well as uncertain reset functions
assigned to transitions. For the task of computing robust
control trajectories, we employ and extend ideas that were
used for simpler systems in Langson et al. (2004); Mayne
et al. (2005); Ghasemi and Afzalian (2017), namely to
construct reachable tubes around nominal trajectories.
Through tightening of the invariants and guard sets of the
hybrid systems by use of such tubes, and by optimizing the
nominal trajectories for a modified hybrid automaton, we
show that optimal point-to set control tasks can be solved
reliably despite the presence of the uncertainties.

This paper is organized as follows: in Sec. 2, the class of
uncertain hybrid system and the robust controller synthe-
sis problem are defined. Sec. 3 explains the procedure of
set tightening to obtain robustness by consideration of a
single transitions. Then, based on the findings of Sec. 3, a
deterministic hybrid system is constructed in Sec. 4, and
we prove that the robust controller synthesis problem of
the uncertain hybrid system can be reduced to an optimal
control problem of a deterministic substitute model. A
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numerical example is presented in Sec. 5, followed by
conclusions.

2. PROBLEM FORMULATION

This section describes the type of system and the control
task under consideration. First, let P denote the set of
all polytopes P in Rnx with P = {x | C ∈ Rnp×nx , d ∈
Rnp×1 : C · x ≤ d}.

Now consider a class of uncertain hybrid systems formu-
lated in discrete time and with mixed inputs according to
HA = (T, U,X,Z, I, T , G, V, r, f) containing:

• the discrete time domain T = {tk | k ∈ N ∪ {0},∆ ∈
R

>0 : tk := k ·∆};
• the continuous inputs u(tk) ∈ U ⊆ Rnu ,
• the continuous states x(tk) ∈ X ⊆ Rnx ;
• the finite set of discrete states Z = {z(1), · · · , z(nz)};
• a set I = {I(1), . . . , I(nz)} of invariants I(i) ∈ P ;
• the finite set of transitions T ⊆ Z × Z , where the
transition from z(i) to z(j) is denoted by τ(i,j) ∈ T ;

• the set G of guard sets, of which any element G(i,j) ∈
P is assigned to τ(i,j) ∈ T , and we require that
G(i,j) ⊆ I(i) and that for no pairs of transitions from
z(i) the guard sets intersect;

• the finite set V of discrete inputs, where any element
v(i,j) ∈ {0, 1} in V refers to one transition τ(i,j) ∈ T ;
we use a vector vk := v(tk) to denote the choice of
discrete inputs at time tk;

• an uncertain reset function r : T ×X → X to update
the continuous states x̃ upon a transition τ(i,j) ∈ T
according to the following scheme:

x = F(i,j) · x̃+ e(i,j). (1)

with a matrix F(i,j) and a vector e(i,j), both being
uncertain: F(i,j) is randomly selected from a given
polytope F(i,j) ∈ P defined by:

F(i,j) =

{

F(i,j) =

ρ(i,j)
∑

l=1

γl · F
(l)
(i,j),

ρ(i,j)
∑

l=1

γ≥0
l = 1

}

.

(2)

with F
(l)
(i,j) denoting the vertices of F(i,j), and ρ(i,j)

is the number of these vertices, and γl ∈ [0, 1]. The
vector e(i,j) is randomly taken from a given polytope
E(i,j) ∈ P ;

• an uncertain flow function f : X×U×Z → X defining
the discrete-time continuous-valued dynamics to:

xk+1 = A(i) · xk + B(i) · uk + w(i),k (3)

with xk+1 := x(tk+1) and z(i) ∈ Z. The matrices
A(i) and B(i) are uncertain, but are randomly selected
from given polytopic sets A(i) and B(i):

A(i) =

{

A(i) =

ρ(i,A)
∑

l=1

γl · A
(l)
(i),

ρ(i,A)
∑

l=1

γ≥0
l = 1

}

,

B(i) =

{

B(i) =

ρ(i,B)
∑

l=1

γl · B
(l)
(i),

ρ(i,B)
∑

l=1

γ≥0
l = 1

}

, (4)

with coefficients γl ∈ [0, 1]. The additive disturbances
w(i),k can assume arbitrary values from a setW(i) ∈ P
containing the origin.

The set of admissible executions of the model HA consid-
ering the uncertain components of the continuous dynam-
ics and reset functions is defined as follows:

Definition 1. (Admissible execution of the uncer-
tain model HA) Let a finite time domain TN =
{0, 1, . . . , N} ⊂ T and an initial hybrid state (x0, z0)
with z0 := z(s) ∈ Z, x0 ∈ I(s), and x0 /∈ G(s,j) for
all τ(s,j) ∈ T be given. Then, for given input sequences
φu = {u0, u1, · · · , uN−1} and φv = {v0, v1, · · · , vN−1},
an admissible execution is a pair of state sequences φx =
{x0, x1, · · · , xN} and φz = {z0, z1, · · · , zN} complying to
the following rules: for k ∈ {0, . . . , N − 1}, xk ∈ φx,
and zk = z(i) ∈ φz , the successor states xk+1 ∈ φx and
zk+1 ∈ φz must satisfy:

• if vk = 0, then there must exist A(i) ∈ A(i), B(i) ∈
B(i), and w(i),k ∈ W(i) to obtain xk+1 ∈ I(i) according
to (3) and zk+1 = z(i);

• if vk = v(i,j) = 1 and if A(i) ∈ A(i), B(i) ∈ B(i), and
w(i),k ∈ W(i) exist to obtain an intermediate state
x̃k+1 ∈ G(i,j) according to (3), then there must exist
F(i,j) ∈ F(i,j) and e(i,j) ∈ E(i,j) to have xk+1 = Fi,j ·
x̃k+1 + ei,j ∈ I(j) according to (1), and zk+1 = z(j).

Obviously, for given inputs at time k, any value of the
uncertain components A(i), B(i), w(i), F(i,j), and e(i,j) may
contribute to and determine the hybrid successor state, as
long as the necessary containment in the invariants and
guard sets are observed – thus, any controller designed for
a model of type HA must consider the complete set of
possible executions according to Def. 1.

Turning to the control task to be addressed within this
paper, now consider the optimal transfer of HA from an
initial hybrid state (x0, z0) into a set of goal states while
taking the uncertainties into account. For the hybrid goal
states, assume the pair (Xg, zg) with zg ∈ Z and Xg ∈ P
as well as Xg ⊆ Ig. Furthermore, let a continuous state
xg ∈ X denote the volumetric center of Xg.

Furthermore, let a cost functional J (x0, xg, N) be speci-
fied to quantify the performance of transferring the system
into the goal within a finite time domain of TN .

Definition 2. (Point-to-set control task for HA) For
an initial hybrid state (x0, z0) of HA, a time domain TN ,
as well as a set of goal states (Xg, zg), find the pair of
sequences of continuous inputs φu = {u0, u1, · · · , uN−1}
and discrete inputs φv = {v0, v1, · · · , vN−1} such that

• the resulting pair of state sequences φx = {x0, x1,
· · · , xN} and φz = {z0, z1, · · · , zN} satisfy Def. 1,

• the terminal states satisfy xN ∈ Xg and zN = zg,
• and the cost functional J (x0, xg, N) is minimized for
a nominal evolution.

Note that an equivalent problem for the case without
uncertainties was already addressed in Liu and Stursberg
(2018, 2019)), proposing a particular structure to take care
of the theoretically exponential increase of the number
of possible φz and φv over N . For the variant of hybrid
systems with uncertainties considered in this paper, the
additional challenge is to guarantee that the selected
pair of φu and φv realizes the path into (Xg, zg) for all
possible realizations of the uncertainties. To succeed in
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this task, we employ principles inspired the so-called tube-
based predictive control for continuous-valued dynamics,
see Langson et al. (2004); Mayne et al. (2005). Along
this line, we show that, based on tubes of reachable sets,
the control problem in Def. 2 can be cast into a problem
for a modified model HA with deterministic sequence of
discrete states, to which the method in Liu and Stursberg
(2019) can be applied.

3. REACHABILITY TUBES TO HANDLE
UNCERTAIN TRANSITIONS

In order to explain the principle of using reachability tubes
to robustly controlHA, this section focuses first on a single
transition as part of the sequence φz which solves the
problem of Def. 2. More precisely, we consider a transition
τ(i,j) ∈ T , and show how to ensure the semantics in Def.
1 in terms of: 1.) the continuous state evolving inside of
z(i) (called the pre-transition phase), 2.) transitioning from
z(i) to z(j), and 3.) further evolving inside of z(j) (the
post-transition phase). If this procedure is later applied
to all transitions in T , this will lead to a substitute hybrid
system HA with deterministic sequence φz .

3.1 Pre-Transition Phase

First, let the polytopic sets leading to the uncertainty in
both, reset function and flow function, be decomposed into
two parts, namely a nominal part (indicated by •), and a
disturbance set containing the origin:

F(i,j) = F̄(i,j) ⊕ F(i,j), E(i,j) = ē(i,j) ⊕ E(i,j);

A(i) = Ā(i) ⊕ A(i), B(i) = B̄(i) ⊕ B(i). (5)

Here, the symbol ⊕ denotes the Minkowski addition. Note
that the set W(i) contains the origin by definition and
needs not to be decomposed. Next, a nominal flow function
as well as a nominal reset function is defined (excluding all
uncertainties in f and r) to obtain the nominal continuous
state and input:

x̄k+1 := Ā(i) · x̄k + B̄(i) · ūk; (6)

x̄ = F̄(i,j) · ¯̃x+ ē(i,j). (7)

Now assume for step k that the state xk from (3) and the
nominal state x̄k from (6) are located inside of invariant
I(i). Then, by applying a continuous input uk and a
nominal ūk in (3) and (6) respectively, the difference
between xk+1 and x̄k+1 can be determined according to:

xk+1 − x̄k+1 =Ā(i)(xk − x̄k) + B̄(i)(uk − ūk) + w(i),k

+∆(A,i),k · xk +∆(B,i),k · uk (8)

with ∆(A,i),k ∈ A(i) and ∆(B,i),k ∈ B(i).

Suppose further that a closed-loop controllerKi ∈ Rnu×nx

is defined such that ĀK,(i) := Ā(i) + B̄(i) ·Ki is stable. If
xk is measurable and uk chosen to:

uk = ūk +Ki · (xk − x̄k), (9)

then the difference between xk+1 and x̄k+1 in (8) can be
written as:

xk+1 − x̄k+1 =ĀK,(i)(xk − x̄k) + w(i),k +∆(A,i),k · xk

+∆(B,i),k · uk. (10)

Furthermore, as xk ∈ I(i) and ∆(A,i),k ∈ A(i), and both
I(i) and A(i) are polytopic, the following applies according
to Bünger (2014):

∆(A,i),k · xk ∈ Conv
({

A
(l)
(i) · I

(q)
(i) | l ∈ {1, . . . , ρ(A(i))} ,

q ∈ {1, . . . , ρ(I(i))}
})

, (11)

where l and q are the indices running over the ρ(A(i))

vertices, or respectively ρ(I(i)) vertices of the respective
polytopes, and Conv is the function to determine the
convex hull over the combinations of vertices. Similarly,
the value of ∆(B,i),k · uk in (10) can be bounded by:

∆(B,i),k · uk ∈ Conv
({

B
(l)
(i) · U

(q) | l ∈ {1, . . . , ρ(B(i))} ,

q ∈ {1, . . . , ρ(U)}
})

. (12)

For abbreviation, we write Conv(A(i)I(i)) and Conv(B(i)U)
to denote the convex set on the right hand side of (11),
and (12) respectively. With it, a disturbance invariant set
Di can be determined according to (10) by satisfying:

ĀK,(i)Di ⊕ (W(i) ⊕ Conv(A(i)I(i))⊕ Conv(B(i)U)) ⊆ Di.
(13)

The set Di exists, since ĀK,(i) is stable and contains the
origin, see Mayne et al. (2005). The relation (13) means
that, if xk − x̄k ∈ Di applies, then xk+1 − x̄k+1 ∈ Di

also follows from using the control law (9) despite all the
uncertainties in the flow function, and the following holds:

Lemma 1. If for two given states xk and x̄k ∈ I(i) applies
that xk ∈ x̄k ⊕ Di, then using the control law (9) implies
that the relation xk+1 ∈ x̄k+1 ⊕Di holds for all ∆(A,i),k ∈
A(i), ∆(B,i),k ∈ B(i) and w(i),k ∈ W(i). ✷

By use of Lemma 1 and when denoting the Pontryagin
difference by ⊖, the following fact can also be established:

Proposition 1. If the nominal state satisfies x̄k ∈ I(i) ⊖
Di and if the nominal input satisfies ūk ∈ U ⊖KiDi, then
there always exists uk := ūk +Ki(xk − x̄k) ∈ U such that
xk+1 ∈ I(i) for all ∆(A,i),k ∈ A(i), ∆(B,i),k ∈ B(i) and
w(i),k ∈ W(i). ✷

The proofs of Lemma 1 and Proposition 1 follow the lines
in Mayne et al. (2005) and the fact that (I(i) ⊖ Di) ⊕
Di ⊆ I(i). The proposition means that, as long as the
evolution of the nominal x̄k lies inside of I(i)⊖Di (i.e. inside
of a tightened invariant), and if the nominal continuous
input ūk is selected from set U⊖KiDi (i.e. from a tightened
input set), then we can always find uk ∈ U to obtain the
next continuous state xk+1 inside of I(i) despite all the
uncertainties. This is also illustrated in Fig. 1.

In addition, as all the sets in (13) are in P , the compu-
tation of Di can be assumed to be tractable according to
Blanchini (1999). Furthermore, it is desired that Di is as
small as possible in order to reduce conservatism.

With respect to the semantics of HA in Def. 1, the state
x can be kept inside of I(i) during the evolution in z(i) by
forcing the nominal state x̄ to be inside of I(i) ⊖Di.

3.2 The Transition

Next, if the transition τ(i,j) is triggered in step k, it must
hold that v(i,j),k = 1 and the following two conditions must
be satisfied:
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x̄k

x̄k+1

x̄k+2

xk

xk+1

xk+2

Di

Di

Di I(i)

Fig. 1. By applying (9), the difference between x and x̄
is recursively lying inside of Di (denoted by the blue
polytope) despite all the uncertainties.

(1) An intermediate state x̃ obtained from (3) must lie
inside of G(i,j);

(2) the state xk+1 resulting from (1) must be inside of
I(j).

For the first condition, it is known from Proposition 1 that
by applying the control law (9) the state xk lies inside of a
tube Di around the nominal state x̄k during evolution in
I(i). As the guard G(i,j) is fully contained in I(i), the tube
around the nominal state must also exist when x̄k evolves
inside of G(i,j). The Proposition 1 can thus be extended
to:

Lemma 2. By applying (9), if x̄k ∈ G(i,j) ⊖Di is satisfied,
then xk ∈ G(i,j) holds. ✷

Proof. According to Lemma 1, the relation xk ∈ x̄k ⊕Di

holds when x̄k ∈ I(i) ⊖Di. Thus, as x̄k ∈ G(i,j) ⊖Di, and
{G(i,j) ⊖ Di} ⊆ {I(i) ⊖ Di}, the relation xk ∈ G(i,j) must
apply. ✷

The lemma implies that x̃ ∈ G(i,j) exists despite the un-

certainties, if a nominal intermediate state ¯̃x, as obtained
from (7), is inside of G(i,j) ⊖Di. Thus, the first condition
is guaranteed to be satisfied by restricting the position of
the nominal intermediate state ¯̃x.

Next, due to the uncertainties on the reset function (1),
a difference between the states x̄k+1 and xk+1 may be
obtained according to:

x̄k

x̄k

¯̃x

¯̃x

x̄k+1

x̄k+1

xk

xk

x̃

x̃

xk+1

G(i,j)

G(i,j)

I(i)

I(i)

I(j)

I(j)

Fig. 2. For the case that ¯̃x ⊕ Di is not fully contained
in G(i,j) (upper part), the transition τ(i,j) may not be

correctly triggered due to the deviation between ¯̃x and
x̃; If ¯̃x⊕Di ⊆ G(i,j) (lower part), then the transition
τ(i,j) is guaranteed to be triggered correctly. The blue
polytope represents the disturbance invariant set Di.

xk+1 − x̄k+1 = F̄(i,j)(x̃− ¯̃x) + ∆F(i,j)
· x̃+∆e(i,j) , (14)

where ∆F(i,j)
∈ F(i,j) and ∆e(i,j) ∈ E(i,j). By Lemma 2, the

difference between x̃ and ¯̃x is bounded to Di. As x̃ must be
inside of G(i,j), the value of ∆F(i,j)

· x̃ must be bounded by

Conv(F(i,j)G(i,j)). Hence, the difference of x̄k+1 and xk+1

in (14) is bounded by:

xk+1 − x̄k+1 ∈ F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j))⊕ E(i,j).
(15)

With the help of this bound, Lemma 2 can be extended
to:

Lemma 3. If the nominal state after the transition τ(i,j)
satisfies x̄k+1 ∈ I(j)⊖(F̄(i,j)Di⊕Conv(F(i,j)G(i,j))⊕E(i,j)),
then the relation xk+1 ∈ I(j) holds for the state obtained
from τ(i,j) despite all the uncertainties in (1). ✷

The proof to Lemma 3 is similar to that of Lemma 2.
According to Lemma 3, the second condition listed at
the beginning of this section is satisfied by restricting the
position of the nominal state x̄k+1.

3.3 The Post-Transition Phase

After reaching the discrete state z(j), the further evolution
inside of I(j) has to be ensured. Obviously, this can be
again achieved by applying a similarly control law as in
(9), considering a disturbance invariant set Dj for z(j).
However, such a recursive robustness guaranty relies on
the condition that the difference of the states xk+1 and
x̄k+1 is in Dj according to Lemma 1. But according to
(15), the difference is known to be inside of F̄(i,j)Di ⊕
Conv(F(i,j)G(i,j)) ⊕ E(i,j), which is not depending on Dj ,
see Fig. 3.

To avoid that robustness is lost at this point, the following
criterion is formulated.

Definition 3. (Robust Transition) Any transition τ(i,j) ∈
T of HA may only be executed, if the condition:

F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j))⊕ E(i,j) ⊆ Dj (16)

is satisfied, otherwise it is prohibited.

x̄k+1

x̄k+1

xk+1

xk+1

x̄k+2

x̄k+2

xk+2

xk+2

I(j)

I(j)

Fig. 3. For the case xk+1 /∈ x̄k+1 ⊕ Dj due to (15), the
further evolution of the real continuous state in z(j)
may not be bounded by the Dj around the nominal
state (upper part); for xk+1 ∈ x̄k+1⊕Dj (lower part),
such a bound applies. The blue polytope represents
the disturbance invariant set Dj .
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Lemma 4. Let the transition τ(i,j) satisfy (16) and let the
control law (9) be applied in both z(i) and z(j). If x− x̄ is
then bounded to Di before the transition τ(i,j), then x− x̄
is also bounded to the set Dj after the transition τ(i,j). ✷

Proof. If xk − x̄k ∈ Di applies before the transition
τ(i,j), then xk+1 − x̄k+1 ∈ F̄(i,j)Di ⊕ Conv(F(i,j)G(i,j)) ⊕
E(i,j) ⊆ Dj holds true after the transition according to
(15) and (16). Then, using Lemma 1, it follows that the
difference will be recursively bounded to Dj by applying
the control law (9) in the further steps. ✷

Eventually at this stage, the sequence of system evolution
in z(i), of the transition τ(i,j), and of the further evolution
in z(j) was successfully cast into a set of constraints on
the nominal state and inputs as well as the condition (16).
In the next section, a substitute hybrid automaton HA
with deterministic behavior for the nominal trajectory is
constructed based on these constraints for all transitions
in T . It is then shown that the control task for HA in
Def. 2 can be transformed into a corresponding problem
for HA.

4. HYBRID AUTOMATON WITH DETERMINISTIC
BEHAVIOR

We construct a modified hybrid automaton HA =
(T, Ū ,X, Z, Ī, T̄ , Ḡ, V̄ , r̄, f̄) based on the original one HA.
The sets T , X and Z are identical to those in HA, while
the other components of HA are determined according to
the following rules:

• a set Ū = {Ū(1), . . . , Ū(nz)} of continuous input sets,
where for any z(i) ∈ Z, the continuous input set is

Ū(i) := U ⊖KiDi;

• a set Ī = {Ī(1), . . . , Ī(nz)} of invariants, where the
invariant of any discrete state z(i) ∈ Z is obtained to

Ī(i) := I(i) ⊖Di;

• the finite set of transitions T̄ , obtained from deleting
those of T , which do not satisfy (16);

• the set Ḡ of guard sets contains one polytopic set
Ḡ(i,j) := G(i,j)⊖Di assigned to any transition τ̄(i,j) ∈

T̄ ;
• the finite set V̄ of discrete input variables, where any
element v̄(i,j) ∈ {0, 1} in V̄ refers to one transition

τ̄(i,j) ∈ T̄ ;
• a deterministic reset function r̄, which updates the
continuous state ¯̃x according to (7);

• a deterministic flow function f̄ defines the continuous
dynamics according to (6).

Note that all the uncertain components of HA are ex-
cluded here, and an admissible execution of the determin-
istic automaton HA is defined as:

Definition 4. (Admissible Execution of HA) For HA,
let a finite time set TN = {0, 1, . . . , N} ⊂ T and an
initial hybrid state (x̄0, z0) satisfying z0 := z(s) ∈ Z,

x̄0 ∈ Ī(s), and x̄0 /∈ Ḡ(s,j) for all τ̄(s,j) ∈ T̄ be given.
For selected input sequences φū = {ū0, ū1, . . . , ūN−1} and
φv̄ = {v̄0, v̄1, . . . , v̄N−1}, the pair of state sequences φx̄ =
{x̄0, x̄1, · · · , x̄N} and φz = {z0, z1, · · · , zN} is admissible,
if and only if for any k ∈ {0, . . . , N} the pair (x̄k+1, zk+1)

follows from (x̄k, zk), x̄k ∈ Ī(i), zk := z(i) according to the
following semantics:

1.) ¯̃x := Ā(i) · x̄k + B̄(i) · ūk ∈ Ī(i),

2.) if Ḡ(i,j) ∈ Ḡ exists such that ¯̃x ∈ Ḡ(i,j) and if

v̄(i,j),k = 1 applies, then x̄k+1 : = F̄(i,j) · ¯̃x + ē(i,j)
∈ Ī(j) and zk+1 := z(j); otherwise, x̄k+1 := ¯̃x and
zk+1 := z(i) is assigned.

Then, by defining the new hybrid goal state (X̄g, zg),
where X̄g := Xg ⊖ Dg (xg is still the volumetric center
of X̄g), as well as assigning x̄0 := x0, the following cost
functional J (x0, xg, N) is selected:

J (x0, xg, N) =

N
∑

k=1

{(x̄k − xg)
TQ(x̄k − xg)

+ (ūk−1 − ug)
TR(ūk−1 − ug)}+ qg ·Ng, (17)

where Q and R are semi-positive-definite weighting ma-
trices, and qg ∈ R≥0. The variable Ng := min{k ∈
{1, . . . , N} | x̄k ∈ X̄g, zk = z(g)} encodes the first point
of time at which the continuous state has reached the goal
set. Note if Q = R = 0 and qg 6= 0, such cost functional
matches the concept of time optimal control.

The control problem of the deterministic HA can then be
defined as:

Definition 5. For HA initialized to (x̄0, z0), z0 := z(s),

let a time set TN and a goal (X̄g, z(g)) be given. Then,
determine input sequences φ∗

ū and φ∗
v̄ as the solution of:

min
φū,φv̄

J (x0, xg, N)

s.t.: For all k ∈ {0, . . . , N − 1} :

φū with ūk ∈ Ū(i), when x̄k ∈ Ī(i), ∀ z(i) ∈ Z,

φv̄ with v̄(i,j),k ∈ {0, 1};

φx̄, φz admissible for HA;

x̄N ∈ X̄g, zN = zg.

If now the parameters of the initial and goal sets as well
as that of the cost functional in Def. 5 are chosen identical
to that of Def. 2, a solution of the previous one can be
referred to the latter problem, see below. Note first that
the problem in Def. 5 is of the same type as the one
considered in Liu and Stursberg (2018, 2019), i.e., it can
also be solved by using the methods proposed there (also
briefly reviewed at the end of this section). The following
result can be obtained:

Theorem 1. If, for the same parameterization of Def. 2 and
Def. 5, a feasible solution is obtained for the problem in
Def. 5, then this solution also solves the control task in
Def. 2. ✷

Proof. For the initial continuous state, the difference
x̄0 − x0 = 0 ∈ Ds applies. The optimized inputs ū∗

k in φ∗
u

obtained from the solution of the problem in Def. 5 are
all selected from the tightened input sets Ū , The optimal
continuous states x̄∗

k in φ∗
x are all located in the tightened

invariant sets Ī, as well as the transitions to be executed
in φ∗

z are all satisfying the condition (16). Thus, according
to Proposition 1 as well as Lemma 2, 3, 4, the satisfaction
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of the semantics in Def. 1 is always ensured during the
evolution in each z∗k, as well as for each transition in φ∗

z

when using the through control law (9). In addition, for the
last state x̄∗

N in φ∗
x̄, as xN − x̄∗

N ∈ Dg applies according
to Lemma 1, and x̄∗

N ∈ Xg ⊖ Dg applies according the
last constraint in the problem in Def. 2, it is ensured that
xN ∈ Xg. ✷

Accordingly, by controlling the original HA over the time
domain TN , we only have to: 1.) solve the problem in
Def. 5; 2.) assign v(i,j),k := v̄∗(i,j),k and calculate uk

according to (9) at each step k. Then the goal states
(Xg, zg) are ensured to be reached at the end of the
horizon, while satisfying the semantics in Def. 1. For the
solution of the problem in Def. 5 according to the method
in Liu and Stursberg (2018, 2019), we first decompose the
semantics in Def. 4 into two parts, namely:

(1) for discrete state evolution:

If zk = z(i), ¯̃x /∈ Ḡ(i,j), then zk+1 := z(i);

If zk = z(i), ¯̃x ∈ Ḡ(i,j), v̄(i,j),k = 0, then zk+1 := z(i);

If zk = z(i), ¯̃x ∈ Ḡ(i,j), v̄(i,j),k = 1, then zk+1 := z(j).
(18)

(2) for continuous state evolution:

If zk = z(i), ¯̃x /∈ Ḡ(i,j), then dynamic (6) applies;

If zk = z(i), ¯̃x ∈ Ḡ(i,j), v̄(i,j),k = 0, then (6) applies;

If zk = z(i), ¯̃x ∈ Ḡ(i,j), v̄(i,j),k = 1, then (7) applies; .
(19)

Next, by introducing one binary variable per time step for
each invariant set, guard set, and the terminal set in HA,
both of the (18) and (19) can be equivalently cast into a
set of linear constraints formulated for the binary and real
variables, employing the modeling principles introduced
in Williams (2013). The last term in the cost functional
J (x0, xg, N) can also be reformulated into a sum over a
set of binary variables without any approximation. See the
specifications in Liu and Stursberg (2018, 2019) for details
on this modeling procedure, and on the solution as mixed-
integer programming problem with linear constraints.

5. NUMERICAL EXAMPLE

The uncertain HA considered here for illustration of the
procedure consists of 4 discrete states with a set of possible
transitions, as shown in the lower part of Fig. 4. In the
lower part of this figure, the invariants of the model are
marked in red, the guards are in green, and the selected
terminal set Xg ⊆ I(2) is marked in yellow. The flow
function f and reset function r of the states and transitions
are parametrized with different bounds of uncertainties.
The initial state is x0 = [10, 4.5]T ∈ I(1) and a horizon
of N = 20 is available to realize the transition from the
initial state into the goal set.

The controller Ki for each discrete state is selected to
be the minimum time controller according to Langson
et al. (2004), such that Ānx

K,(i) = 0 applies. The minimal

disturbance invariant set Di is computed with the help of
the Matlab Invariant Set Toolbox proposed in Kerrigan
(2001). When constructing the deterministic model HA,
each invariant set, guard set, the terminal set as well as the

z(1)

z(1)

z(2)

z(2)

z(3)

z(3)

z(4)

z(4)

G(1,2)

G(1,3)

G(1,4)

G(3,2)

G(4,3)

G(4,2)

Xg

x0

Fig. 4. Relevant sets and the transitions of the model HA.

continuous input set are tightened according to the distur-
bance invariant set, see Fig. 5. By evaluating the condition
(16) for each transition in HA, only the transition τ(1,2)
fails to satisfy it, and is thus prohibited. Thereafter, by
solving the problem in Def. 5 for the resulting deterministic
hybrid automaton HA, the optimal trajectory is found by
first transferring from z(1) to z(4), and then to z(2), see Fig.
5. The time required for the computation is 0.66sec on a
3.4GHz processor using Matlab-2015a.

Based on the solution of the problem in Def. 5, the original
automaton HA is controlled by the control law (9) in each
step, and for 50 different realizations of the uncertainties
the trajectories is shown in Fig. 6 are obtained. It can be

z(1)

z(2)

z(3)

z(4)

Xg

x0

Fig. 5. Deterministic model HA obtained by tightening
each invariant set, guard set, and the terminal set of
HA; The trajectory in black is the optimal nominal
state sequence of the problem in Def. 5.
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z(1)

z(2)

z(3)

z(4)

x0

Fig. 6. The set of blue trajectories are the state sequences
under different realizations of the uncertainties. The
set of magenta lines represent the resets of the con-
tinuous states for the transitions; the set of magenta
points contained in the terminal set Xg are the last
states of the trajectories. The black trajectory is the
solution of the problem in Def. 5.

seen in this figure that all continuous states along these
trajectories evolve inside of the invariant and that the
transitions are correctly triggered in the guard set, despite
the uncertainties. In addition, all 50 trajectories reach the
terminal set at the end of the horizon.

6. CONCLUSION

This work has extended principles of tube-based con-
trol and constraint tightening, which were established
for purely continuous dynamics, to hybrid systems with
guarded transitions and mixed inputs. As the main result,
point-to-set transitions for this class of hybrid systems can
be computed by the proposed techniques in an optimized
fashion, while reaching the goal set is guaranteed despite
uncertainties of the flow and reset functions. The key idea
is to optimize the nominal trajectory, to compute control
laws to let the continuous dynamics converge towards the
nominal trajectory (thus counteracting the uncertainties),
and to reduce the size of guards and invariant sets to en-
sure that the sequence of discrete states (corresponding to
the nominal trajectory) is realized for any possible distur-
bance. The computational procedure involves to compute
a modified hybrid automaton HA with tightened sets, for
which an optimized trajectory is obtained, that in turn is
feasible and goal-attaining for the original system.

In current work, we aim at extending the control tech-
nique to uncertain nonlinear flow functions, and to hybrid
automata with invariants and guard sets which can vary
over time.
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