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Abstract: In this paper, we propose a method for computing invariant sets of discrete-time
nonlinear systems by lifting the nonlinear dynamics into a higher dimensional linear model. In
particular, we will focus on the maximal invariant set. Some special types of nonlinear systems
can be considered as the projection of a higher dimensional linear system with a state immersion
transformation. For such systems, the equivalence between invariant sets of the nonlinear system
and its linear equivalent can be also established, which allows to characterize the maximal
invariant set of the nonlinear system using a lifted linear model. For general nonlinear systems,
we will use linear approximations because equivalent linear models cannot be achieved exactly.
To handle mismatch errors, we tighten the constraint set of the lifted linear model, which will
lead to an invariant inner approximation of the maximal invariant set.
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1. INTRODUCTION

Set invariance theory plays an important role in systems
and control for stability analysis and control design, see,
for instance (Blanchini, 1999; Blanchini and Miani, 2008)
and the references therein. In particular, it is widely used
in Model Predictive Control (MPC) (Mayne et al., 2000)
for constrained systems.

The problem of computing invariant sets has been studied
extensively for different types of systems. The early liter-
ature has been devoted to linear systems with polyhedral
constraints, see, e.g., (Gilbert and Tan, 1991) and the
references therein. In the presence of bounded disturbances
in linear systems, robust invariant sets were studied (see,
e.g., (Kolmanovsky and Gilbert, 1998; Rakovic et al., 2005;
Ong and Gilbert, 2006; Trodden, 2016)). Recently, the
authors in (Wang et al., 2019) have proposed an algorithm
to deal with nonlinear constraints. However, for nonlinear
systems, the computation of invariant sets is even more
difficult and complicated. Although some existing algo-
rithms for computing invariant sets of different types of
nonlinear systems are available, see, e.g., (Bravo et al.,
2005; Alamo et al., 2009; Fiacchini et al., 2010; Sassi and
Girard, 2012; Henrion and Korda, 2014; Korda et al.,
2014), obtaining an exact invariant set is still a difficult
problem for general nonlinear systems. The aforemen-
tioned algorithms for nonlinear systems are focused on
inner or outer approximations of invariant sets. However,
these approximations are not necessarily invariant sets. In
this paper, we attempt to get an inner approximation of
the maximal invariant set by using a lifted linear model of
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the nonlinear system. Although this inner approximation
is a subset of the maximal invariant set in general, it is in
fact also an invariant set. For special classes of nonlinear
systems, the technique allows to obtain the exact maximal
invariant set.

In order to obtain a lifted linear model, we need first
to perform linearization of the nonlinear system, which
is one of the most well-known research topics in systems
and control. Two classic linearization methods are Jaco-
bian linearization and feedback linearization, see (Khalil,
2002) for a comprehensive view. Another linearization
method is the state immersion method, which allows to
immerse a nonlinear system into a linear system in a
higher dimension, see, e.g.,(Monaco and Normand-Cyrot,
1983; Lee and Marcus, 1988; Menini and Tornambè, 2009).
Recently, a new immersion technique has been proposed in
(Jungers and Tabuada, 2019) for continuous-time systems
by the use of polyflows. This technique often outper-
forms the Taylor approximation in practice. Inspired by
the polyflows approximation, we have developed a similar
immersion method (Wang and Jungers, 2020) for discrete-
time systems. In this paper, we use such a method to de-
sign an algorithm for computing invariant sets of discrete-
time nonlinear systems.

The rest of the paper is organized as follows. This section
ends with the notation, followed by the next section
on the review of preliminary results on invariant sets.
Section 3 presents the proposed immersion-based method
for computing the maximal invariant of nonlinear systems.
In Section 4, we will discuss some computational issues of
the proposed method. Numerical examples are provided
Section 5. The last section concludes the work.
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Notation. The non-negative integer set is indicated by
Z+. In is the n × n identity matrix and 000n×m is the
n × m matrix of all zeros (subscript omitted when the
dimension is clear). For two set X and Y , X 	 Y denotes
the Minkowski difference. Given a map T , let T (X) denote
{T (x) : x ∈ X} and T−1(Y ) denote the preimage of the
set Y under the map T , i.e., T−1(Y ) := {x : T (x) ∈ Y }
(T is not necessarily invertible).

2. PRELIMINARIES

We consider discrete-time dynamical systems of the form

x(t+ 1) = f(x(t)), t ∈ Z+ (1)

where x(t) ∈ Rn is the state vector and f : Rn → Rn is a
continuous function over X. The system is subject to state
constraints:

x(t) ∈ X, t ∈ Z+, (2)

Let f t(x) = f ◦ · · · ◦ f︸ ︷︷ ︸
t times

(x) with f0(x) = x for all t ∈ Z+.

The following assumptions are made. (A1) The function
f(x) is continuous with f(0) = 0. (A2) The set X is
compact and contains the origin in its interior. (A3) The
system (1) is asymptotically stable at the origin in X, i.e.,
lim
t→∞

‖f t(x)‖ = 0,∀x ∈ X.

The definition of an invariant set is given below.

Definition 1. (Blanchini, 1999; Blanchini and Miani, 2008)
A nonempty set Z ⊆ Rn is a positively invariant set for
the system (1) if and only if x ∈ Z implies f(x) ∈ Z.

Invariant sets throughout the paper are all positively in-
variant sets. Computing an invariant set is a difficult prob-
lem even for linear systems, depending on the constraint
set. For nonlinear systems, the computation will be more
difficult and complicated. For instance, let us consider
the computation of the maximal invariant set (Gilbert
and Tan, 1991; Kolmanovsky and Gilbert, 1998), which
is defined below.

Definition 2. A nonempty set S is the maximal invariant
set for the system (1) if and only if S is an invariant set
and contains all the invariant sets in X.

A standard algorithm for computing the maximal invari-
ant set was first introduced in (Gilbert and Tan, 1991):

O0 := X,Ok+1 := Ok
⋂
{x : f(x) ∈ Ok}, k ∈ Z+. (3)

With these iterates, one can see that

Ok = {x ∈ Rn : f `(x) ∈ X, 0 ≤ ` ≤ k}, k ∈ Z+ (4)

Thus, the maximal invariant set can be expressed as

O∞ = {x ∈ Rn : fk(x) ∈ X,∀k ∈ Z+}. (5)

Under A1-A3, the existence of O∞ can be guaranteed and
the algorithm above terminates in a finite time. The proof
for the linear case is given in Theorem 4.1 in (Gilbert and
Tan, 1991) and it can be extended to nonlinear systems,
see, e.g., Proposition 1 in (Wang and Jungers, 2019).

The key step in the standard algorithm is to check whether
the condition Ok+1 = Ok, is reached as k increases from
0. However, for general nonlinear systems, to check this
condition, one needs to solve a number of nonconvex op-
timization problems and the complexity grows with the

iteration. Such an issue also arises in the computation of
other invariant sets in the the case of nonlinear systems. In
this paper, we will attempt to solve the issue of nonlinear-
ity via state immersion. More precisely, we propose to use
a lifted linear model of the nonlinear system to compute
invariant sets.

3. MAIN RESULTS

3.1 State immersion

First, we give a definition of immersibility of nonlinear
systems, see, e.g., (Monaco and Normand-Cyrot, 1983; Lee
and Marcus, 1988).

Definition 3. The system (1) is immersible into a linear
system in the form of

ξ(t+ 1) = Aξξ(t), y(t) = Cξξ(t), t ∈ Z+, (6)

where ξ ∈ Rnξ , y(t) ∈ Rn, Aξ ∈ Rnξ×nξ and Cξ ∈
Rn×nξ , if there exists a map T : Rn → Rnξ such that
f t(x) = CξA

t
ξT (x) for all x ∈ Rn and t ∈ Z+. For

notational simplicity, let us denote the linear system in
(6) by Π(Aξ, Cξ).

A necessary and sufficient condition for immersibility is
given in the following proposition.

Proposition 1. The system (1) is immersible into a linear
system in the form of (6) if and only if there exist M and
a sequence of matrices {γ` ∈ Rn×n}M`=0 such that

fM+1(x) =

M∑
`=0

γ`f
`(x),∀x ∈ Rn (7)

Similar arguments can also be found in (Monaco and
Normand-Cyrot, 1983; Lee and Marcus, 1988), although
the proof is slightly different, see Theorem 1 in (Wang
and Jungers, 2020). With the integer M and the matrices
γγγM := {γ` ∈ Rn×n}M`=0 satisfying (7), we can immediately
construct a linear system Π(Γ(γγγM ), [In 000n×(M+1)n]), where

Γ(γγγM ) :=


000 In 000 · · · 000
...

...
...

...
...

000 000 · · · 000 In
γ0 γ1 · · · γM−1 γM

 . (8)

The condition in (7) implies that the system (1) is im-
mersible into Π(Γ(γγγM ), [In 000n×(M+1)n]) with the transfor-
mation map FM (x) defined by

FM (x) :=

 x
...

fM (x)

 . (9)

However, there may exist redundancy in such a transfor-
mation. To remove redundancy, we will use linearly inde-
pendent transformations. A map T : Rn → Rm is called
linearly independent if its components {T1(x), · · · , Tm(x)}
are linearly independent. From this definition, a linearly
independent map T : Rn → Rm implies span{T (x) : x ∈
Rn} = Rm. Otherwise, there exists a vector c ∈ Rm such
that cTT (x) = 0,∀x ∈ Rn.

With a linearly independent transformation, a tight linear
model can be obtained, as stated in the following lemma.
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Proposition 2. Suppose A1 holds and the system (1) is
immersible into a linear system in the form of (6), there
always exist a continuous linearly independent map T :
Rn → Rm and an observable pair (C,A) such that
AT (x) = T (f(x)) and CT (x) = x for all x ∈ Rn. In
addition, A is Schur stable if A2 & A3 hold.

Proof: From Proposition 1, when the system (1) is im-
mersible to Π(Aξ, Cξ), there exist M and matrices γγγM :=
{γ` ∈ Rn×n}M`=0 such that (7) is satisfied. This implies that

FM (f(x)) = Γ(γγγM )FM (x) (10)

where Γ(γγγM ) is defined in (8) . Suppose there are m lin-
early independent functions that form a basis for the span-
ning set {x1, · · · , xn, · · · , fM1 (x), · · · , fMn (x)}, let T (x) be
the stacked vector of these functions. As all the functions
{x1, · · · , xn, · · · , fM1 (x), · · · , fMn (x)} can be expressed as
linear combinations of T (x), there exists a full column rank
matrix P ∈ R(M+1)n×m such that

FM (x) = PT (x),FM (f(x)) = PT (f(x)) (11)

Hence, from (10), T (f(x)) = P+Γ(γγγM )PT (x), where P+

denotes the pseudo inverse. Letting A = P+Γ(γγγM )P
and C = [In 000n×(M+1)n]P , we can get AT (x) =
T (f(x)) and CT (x) = x. When m = (M + 1)n,
A = Γ(γγγM ) and C = [In 000n×(M+1)n]. From the def-
inition of Γ(γγγM ), ([In 000n×(M+1)n],Γ(γγγM )) is observ-
able. To show that (C,A) is observable, we need to

show that O(A,C) :=

 C
...

CAm−1

 is full column rank.

Since T (x) is linearly independent, there exist N points
{x̃1, · · · , x̃N} such that span{T (x̃1), · · · , T (x̃N )} = Rm.
Thus, for any z ∈ Rm, there exist {α1, · · · , αN} such

that z =
∑N
i=1 αiT (x̃i), which implies that Pz =∑N

i=1 αiPT (x̃i) =
∑N
i=1 αiFM (xi), where the second

equality follows from (11). Since AT (x) = T (f(x)) and

CT (x) = x,

 Cz
...

CAMz

 =

 C
...

CAM

∑N
i=1 αiT (x̃i) =

Pz,∀z ∈ Rm, which implies that

 C
...

CAM

 = P.

Hence, rank(O(A,C)) = m and (C,A) is observable.
Finally, we show that A is Schur stable under A2 &
A3. As T (x) is linearly independent and T (X) is com-
pact and contains the origin in the interior, we can
choose N points {x̃1, x̃2, · · · , x̃N} inside X such that
span{T (x̃1), T (x̃2), · · · , T (x̃N )} = Rm. Hence, for any
z ∈ Rm, there exist {α1, α2, · · · , αN} such that z =∑N
i=1 αiT (x̃i), which leads to Akz =

∑N
i=1 αiA

kT (x̃i) =∑N
i=1 αiT (fk(x̃i)),∀k ∈ Z+. The asymptotic stability of

the system (1) implies that Akz → 0 as k → ∞ for any
z ∈ Rm. Therefore, A is asymptotically stable and thus
Schur stable. 2

3.2 Set invariance under immersion

For systems that are immersible into a linear system
(see Definition 3), we can also establish the immersion

on invariant sets of the nonlinear system and its linear
equivalent, as shown in the following proposition.

Proposition 3. Suppose there exist a continuous map T :
Rn → Rm and matrices A ∈ Rm×m, C ∈ Rn×m such
that AT (x) = T (f(x)) and CT (x) = x for all x ∈ Rn.
Given the constraint set X, let Z ⊆ X be an invariant
set for the system (1) and Ξ ⊆ {ξ ∈ Rm : Cξ ∈ X} be
an invariant set for Π(A,C). Then, (i) T−1(Ξ) := {x ∈
Rn : T (x) ∈ Ξ} ⊆ X is invariant for the system (1); (ii)
T (Z) ⊆ {ξ ∈ Rm : Cξ ∈ X} is invariant for Π(A,C).

Proof: (i) As CT (x) = x and Ξ ⊆ {ξ ∈ Rm : Cξ ∈ X},
we can see that T−1(Ξ) = {x ∈ Rn : T (x) ∈ Ξ} ⊆ {x ∈
Rn : CT (x) ∈ X} = X. Hence, we only need to show
the invariance of T−1(Ξ). For any x ∈ T−1(Ξ), we want to
show that f(x) ∈ T−1(Ξ), i.e., T (x) ∈ Ξ implies T (f(x)) ∈
Ξ. From the invariance of Ξ, we know that AT (x) ∈ Ξ.
This, together with the fact that AT (x) = T (f(x)), proves
the invariance of T−1(Ξ). (ii) Similarly, we will first show
that T (Z) ⊆ {ξ ∈ Rm : Cξ ∈ X}. For any ξ′ ∈ T (Z), there
exists an x ∈ Z ⊆ X such that ξ′ = T (x). From the fact
that CT (x) = x, we can see that Cξ′ = CT (x) = x ∈ X,
which implies T (Z) ⊆ {ξ ∈ Rm : Cξ ∈ X}. Then, we will
show the invariance of T (Z). As Z is invariant for system
(1), we know that f(x) ∈ Z. Hence, Aξ = AT (x) =
T (f(x)) ∈ T (Z). This completes the proof. 2

The results in Proposition 3 allow us to use the lifted linear
system to compute the maximal invariant set O∞ of the
system (1). Given any pair (A,C) with A ∈ Rm×m and
C ∈ Rn×m, let us define

OL∞(A,C) := {x ∈ Rm : CAkx ∈ X,∀k ∈ Z+} (12)

From Theorem 4.1 in (Gilbert and Tan, 1991), OL∞(A,C)
exists and can be finitely determined when (C,A) is
observable and A is Schur stable. Based on the discussions
above, the following theorem can be obtained.

Theorem 1. Suppose A1-A3 hold, let O∞ be defined as
in (5) for the system (1) with the constraint set X.
Assume that the system (1) is immersible into a linear
system Π(Aξ, Cξ) in (6). Then, there exist a continuous
linearly independent map T : Rn → Rm and an observable
pair (C,A) with A being Schur stable such that O∞ =
T−1(OL∞(A,C)), where OL∞(A,C) is defined in (12).

Proof: This result can be derived from Propositions 2 & 3
and hence the proof is omitted due to page limitation. 2

3.3 Approximate immersion and robustness

Since linear equivalents exist only for very particular
classes of systems, we will discuss approximate state im-
mersion and robustness issues. In general cases, we want
to find a transformation map T : Rn → Rm such that
T (f t+1(x))−AT (f t(x)) is within some given tolerance for
all x ∈ X and t ∈ Z+. With A1-A3, the system (1) can
be arbitrarily close to the projection of a linear system
by increasing the dimension of the lifted space, which is
formally stated in the following lemma.

Lemma 1. Suppose A1-A3 hold, for any given δ > 0,
there exist a continuous linearly independent map T :
Rn → Rm, an observable pair (C,A) with A being Schur
stable and a matrix B ∈ Rm×n such that

CT (x) = x, T (f t+1(x))−AT (f t(x)) ∈ BWδ (13)
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for all x ∈ X and t ∈ Z+, where

Wδ := {w ∈ Rn : ‖w‖∞ ≤ δ}. (14)

Proof: From A3, there always exist M and matrices {γ` ∈
Rn×n}M`=0 such that

‖fM+1+k(x)−
M∑
`=0

γ`f
`+k(x)‖∞ ≤ δ (15)

for all x ∈ X and k ∈ Z+. Hence, FM (fk+1(x)) −

Γ(γγγM )FM (fk(x)) ∈
(

000Mn×n
In

)
Wδ for all x ∈ X

and k ∈ Z+. Let T (x) be the m linearly indepen-
dent functions that form a basis for the spanning
set of {x1, x2, · · · , fMn (x)}. We can find a full column
rank matrix P ∈ R(M+1)n×m such that T (fk+1(x)) −

P+Γ(γγγM )PT (fk(x)) ∈ P+

(
000Mn×n
In

)
Wδ,∀x ∈ Rn, k ∈

Z+. Letting A = P+Γ(γγγM )P,C = [In 000n×(M+1)n]P

and B = P+

(
000Mn×n
In

)
, we can get (13). Then, we

will show that we can always find an observable (C,A)
with A being Schur stable. Since T (x) is linearly inde-
pendent, there exist N points {x̃1, x̃2, · · · , x̃N} inside X
such that span{T (x̃1), T (x̃2), · · · , T (x̃N )} = Rm. Hence,
for any z ∈ Rm, there exist {α1, α2, · · · , αN} such that

z =
∑N
i=1 αiT (x̃i). By increasing M , AT (x)−T (f(x)) can

be made arbitrary small for any x ∈ X. Following similar

arguments in Proposition 2, we can see that

 C
...

CAM

 z−

Pz can be made arbitrarily small for any z. Hence, we can

always find M such that

 C
...

CAM

 is full column rank,

which implies (C,A) is observable. Similarly, we can also
find a Schur stable A by increasing the dimension. 2

To account for the mismatch between the system (1) and
the linear system Π(A,C) that satisfies (13) in Lemma 1,
we compute a tightened subset of OL∞(A,C), instead of
OL∞(A,C). Given (A,B,C) and δ > 0, let us define

OL,δ∞ (A,B,C) := {x ∈ Rm : CAkx ∈ X 	
k−1∑
`=0

CA`BWδ,

∀k ∈ Z+} (16)

where Wδ is given in (14). From (Kolmanovsky and
Gilbert, 1998), the set OL,δ∞ (A,B,C) is nonempty when∑∞
`=0 CA

`BWδ ⊆ X and it is the maximal robust in-
variant set, that is, the maximal invariant set for the
disturbed system x+ = Ax+Bw where the disturbance w
is constrained in Wδ.

Theorem 2. Suppose A1-A3 hold, let O∞ be defined as
in (5) for the system (1). For any given δ > 0, let Wδ be
defined in (14). Consider a continuous linearly independent
map T : Rn → Rm, an observable pair (C,A) with A being
Schur stable and a matrix B ∈ Rm×n that satisfy (13), the
following results hold: (i) T−1(OL,δ∞ (A,B,C)) ⊆ O∞; (ii)
T−1(OL,δ∞ (A,B,C)) is invariant for the system (1), where
OL,δ∞ (A,B,C) is defined as in (16).

Proof: First, we show that T−1(OL,δ∞ (A,B,C)) ⊆ O∞.
For any x ∈ T−1(OL,δ∞ (A,B,C)) ⊆ O∞, we know that

CAkT (x) ∈ X 	
∑k−1
`=0 CA

`BWδ for all k ∈ Z+. From the
fact that T (fk+1(x))− AT (fk(x)) ∈ BWδ for all k ∈ Z+,

we know that T (fk(x)) ∈ AkT (x) +
∑k−1
`=0 A

`BWδ for all
k ∈ Z+. Hence, for all k ∈ Z+, fk(x) = CT (fk(x)) ∈
CAkT (x) +

∑k−1
`=0 CA

`BWδ ⊆ X 	
∑k−1
`=0 CA

`BWδ +∑k−1
`=0 CA

`BWδ ⊆ X, where the last inclusion follows
from the properties of the Minkowski difference, see, e.g.,
Theorem 2.1 in (Kolmanovsky and Gilbert, 1998). This
implies that x ∈ O∞. Therefore, T−1(OL,δ∞ (A,B,C)) ⊆
O∞. To prove the invariance of T−1(OL,δ∞ (A,B,C)), we
need to show that f(x) ∈ T−1(OL,δ∞ (A,B,C)), which

means that CAkT (f(x)) ∈ X 	
∑k−1
`=0 CA

`BWδ for all
k ∈ Z+. Since T (f(x)) ∈ AT (x) + BWδ, for any k ∈
Z+, CAkT (f(x)) ∈ CAk+1T (x) + CAkBWδ ⊆ X 	∑k
`=0 CA

`BWδ+CAkBWδ ⊆ X	
∑k−1
`=0 CA

`BWδ, where
the last inclusion again follows from Theorem 2.1 in
(Kolmanovsky and Gilbert, 1998). 2

4. COMPUTATIONAL ISSUES

From the discussions in the previous section, to obtain a
linear approximation and the associated transformation,
for the given δ > 0, we need to find M ∈ Z+ and
γγγM := {γ` ∈ Rn×n}M`=0 such that

‖gMk (x,γγγM )‖∞ ≤ δ, ∀x ∈ X, k ∈ Z+ (17)

where

gMk (x,γγγM ) = fk+M+1(x)−
M∑
`=0

γ`f
k+`(x). (18)

We will solve this problem numerically by griding or
random sampling. Suppose we take N initial states inside
X, denoted by ωN := {x1, x2, · · · , xN}, and generate the
trajectory {x, f(x), · · · , f tf (x)} with a sufficiently long
horizon tf ∈ Z+ for each x ∈ ωN , the following least
squares regression problem is formulated for any M ∈ Z+,

min
γγγM

∑
x∈ωN

tf−M−1∑
k=0

‖gMk (x,γγγM )‖22 + ρ‖γγγM‖2F (19)

where gMk (x,γγγM ) is given in (18) and ρ > 0. Let the
solution of Problem (19) be denoted by γ̂γγM . With this
solution, we can compute

δ̂M = max
x∈ωN ,0≤k≤tf−M−1

‖gMk (x, γ̂γγM )‖∞. (20)

From γ̂γγM , a linear system Π(Γ(γ̂γγM ), [In 000n×(M+1)n]) can
be obtained with the transformation FM (x). By checking
and removing the redundancy, we get a linearly inde-
pendent transformation map T : Rn ← Rm and a full
column rank matrix P ∈ R(M+1)n×m such that FM (x) =
PT (x),∀x, which implies that

T (x) = P+FM (x) (21)

where P+ denotes the pseudo inverse. Then, we can get
a linear system Π(AM , CM ) with AM = P+Γ(γγγM )P
and CM = [In 000n×(M+1)n]P , and a matrix BM =

P+

(
000Mn×n
In

)
. Note that FM (x) is already linearly inde-

pendent in many real applications. We will increase M and

repeat the procedure above until δ̂M is smaller than some
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given δ > 0. Let the solution from the computations above

be denoted by (M̂, δ̂M̂ , AM̂ , BM̂ , CM̂ ). As N increases, it
can be made arbitrary close to the actual solution.

For a given δ > 0, we can obtain Π(AM̂ , CM̂ ) and BM̂ , as

shown above. Then, we will compute O
L,δ̂M̂∞ (AM̂ , BM̂ , CM̂ )

using the standard algorithm (Gilbert and Tan, 1991). For
notational simplicity, let

Ωδ := O
L,δ̂M̂∞ (AM̂ , BM̂ , CM̂ ). (22)

If Ωδ is empty, we will have to reduce δ and repeat the
computations above again.

5. SIMULATION RESULTS

Example 1. We consider the following nonlinear system:

x+ = f(x) := [2x21 + x2, − 2
(
2x21 + x2

)2 − 0.8x1]T ,

where x = [x1, x2]T . This system is globally sta-
ble at the origin. With the transformation T (x) =
F1(x) it is globally immersible to Π(A,C) with A =
[0 0 1 0; 0 0 0 1;−0.8 0 0 0; 0 0.64 −1.44 0], C = [I2 0002×2]
Let us consider the state constraint set X := {x ∈
R2 : ‖x‖∞ ≤ 1}. We can easily compute OL∞(A,C),
expressed by {ξ ∈ R4 : Gξ ≤ 1114, ‖ξ‖∞ ≤ 1} with
G = [1.152 0 0 0.64;−1.152 0 0 −0.64; 0 0.64 −1.44 0; 0 −
0.641.44 0]. Then, the maximal invariant set O∞ of the
original system can be expressed as T−1(OL∞(A,C)) =
{x ∈ R2 : GT (x) ≤ 1114, ‖T (x)‖∞ ≤ 1}, which is shown
in Figure 1.

Fig. 1. The maximal invariant set O∞ of Example 1.

Example 2. Consider a controlled Lorenz system: ẋ1 =
10(x2 − x1), ẋ2 = 28x1 − x2 − x1x3 + u, ẋ3 = x1x2 − 8

3x3,

where x = [x1, x2, x3]T . As shown in (Wan and Bernstein,
1995), this system can be globally stabilized at the origin
with the linear control law u = −38x1. The closed-loop
system is given by ẋ1 = 10(x2 − x1), ẋ2 = −10x1 − x2 −
x1x3, ẋ3 = x1x2− 8

3x3. We consider the maximal invariant

set in X := {x ∈ R3 : ‖x‖∞ ≤ 30}. The closed-loop
system is then discretized by the Runge–Kutta–Fehlberg
method with discretization period 0.03. It can be verified
that the discretized system does not satisfy the condition
in Proposition 1 and thus is not exactly immersible into
any linear system. We obtain ωN by gridding over X with
N = 6.4×104 and set the trajectory horizon to be tf = 100
and the regularization weight to be ρ = 10−4. For different

values of M , we compute δ̂M and OL,δ̂M∞ (AM , BM , CM ). It

turns out the set OL,δ̂M∞ (AM , BM , CM ) is non-empty only

when M ≥ 18. The curve of δ̂M is shown in Figure 2.
As we can see from this figure, for small values of M ,

δ̂M is large, which leads to an empty robust invariant set

OL,δ̂M∞ (AM , BM , CM ) as defined in (16). To illustrate the
effect of M on the accuracy of the lifted linear model,
trajectories are also shown in Figure 2 for several choices
of M starting from the initial state [−25.8 − 5.6 29.7]T .

M

0 5 10 15 20

δ̂
M

0

5
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30

Fig. 2. Mismatch errors for different values of M : those

with empty OL,δ̂M∞ (AM , BM , CM ) are labeled by ×.
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Fig. 3. Trajectories for different values ofM with the initial
state [−25.8 − 5.6 29.7]T .

From Figure 2, to get a non-empty set, δ has to be smaller

than δ̂17 = 5.34 × 10−2. Without the preprocessing in
Figure 2, the value of δ can be obtained by bisection. In
the simulation, we set δ = 5 × 10−2 and obtain Ωδ =

OL,δ̂18∞ (A18, B18, C18), which is a 57-dimensional polytope
expressed as {ξ ∈ R57 : Hξ ≤ 111202}, where H ∈ R202×57.
Then, the invariant set for the original system T−1 (Ωδ)
is shown in Figure 4. To verify the invariance of the set
T−1 (Ωδ), we generate a random data set D inside X
with 106 points. For k ∈ Z+, let |D

⋂
Ok| denote the

number of points inside Ok. Similarly, |D
⋂
T−1 (Ωδ) | is

the number of points inside T−1 (Ωδ). From the Monte
Carlo simulation in Figure 5, we can see that O3 can be
approximately considered as O∞ and that T−1 (Ωδ) and
O3 have almost the same size. Finally, we validate the
invariance of T−1 (Ωδ) with the data setD directly. For any
x ∈ Din := D

⋂
T−1 (Ωδ), we check the feasibility of its

successor x+ with respect to T−1 (Ωδ). Let the feasibility
of any point x ∈ Rn be measured by max{HT (x) −
111202}. For the convenience of visualization, the points
in Din are sorted in descending order according to the
feasibility measure max{HT (x) − 111202}. Let D+

in denote
the successors of the states in Din. The feasibility measures
for Din and D+

in are given in Figure 5b, from which we can
conclude the invariance of T−1 (Ωδ). Note that T−1(Ωδ) is
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an invariant set of the discretized system but may not be
invariant for the original continuous system.

Fig. 4. The set T−1(Ωδ).
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Fig. 5. Monte Carlo verification for the invariance of
T−1(Ωδ).

6. CONCLUSIONS

We propose an immersion-based method for computing the
maximal invariant set of discrete-time nonlinear systems.
It characterizes the maximal invariant set using a lifted
linear model of the nonlinear system. For certain nonlinear
systems, the set computed from the linear model is the
exact maximal invariant set. For general cases, the lifted
linear system is not exactly equivalent to the nonlinear
system and the computed set is can be only considered as
an inner approximation of the actual maximal invariant
set. In spite of that, this inner approximation is in fact
an invariant set that can be made arbitrary close to the
actual maximal invariant set by increasing the dimension
of the lifted system. Finally, the proposed method is
demonstrated on two nonlinear examples.
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