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Abstract: Moving horizon estimation (MHE) is a popular state estimation technique, partic-
ularly due to its similarity with model predictive control. The probabilistic formulation of the
conventional MHE is developed under the simplifying assumption that state disturbances and
measurement noise densities are Gaussian. However, many systems of interest are subjected
to uncertainties that have non-Gaussian densities. In current work, we formally extend an
existing probabilistic Bayesian formulation of MHE [Varshney et al., 2019] to simultaneous
state and parameter estimation for systems subjected to non-Gaussian uncertainties in the state
dynamics and measurement model. The efficacy of the proposed MHE has been demonstrated
by conducting stochastic simulation studies on a system subjected to non-Gaussian densities.
Analysis of simulation results reveals that the estimation performance of the proposed MHE
formulation is superior to estimation performances of the conventional Bayesian estimators that
can handle non-Gaussian densities and employ the random walk model for parameter variations.

Keywords: Moving horizon estimation, Bayesian estimation, State and parameter estimation,
Non-Gaussian disturbances

1. INTRODUCTION

Nonlinear state estimation is a prerequisite for advanced
process control and fault diagnosis tasks. Nonlinear state
estimation techniques combine predictions from uncertain
system dynamics and noisy measurements to obtain un-
known states and parameters. Bayesian state estimation
techniques provide a way to optimally combine the in-
formation available in the presence of such uncertainties.
Sequential Bayesian techniques such as extended Kalman
filter (EKF), unscented Kalman filter (UKF), etc. have
become very popular due to the ease of their implementa-
tion. However, all the existing methods rely on simplifying
assumptions about the probability distributions of the
underlying variables to obtain a tractable optimization
problem. A popular assumption in these techniques is that
uncertainties are modeled as Gaussian [Patwardhan et al.,
2012]. Such assumptions could be largely incorrect. This
has been shown by posterior probability density function
(pdf ) of concentration for a CSTR system in Chen et al.
[2004]. These approximations may be more violated when
constraints are present on the variables which force their
probability to be zero for certain regions [Robertson et al.,
1996]. However, such assumptions, even though largely
incorrect, have been applied in most of the estimation
techniques for simplifications irrespective of the original
problem.

Estimation problems involving non-Gaussian densities
have been recently solved using sampling based methods

such as particle filters (PF) [Arulampalam et al., 2002] or
ensemble Kalman filter (EnKF). An alternative approach
to sequential Bayesian approaches, which has become pop-
ular over the last decade, is moving horizon approach
[Lopez-Negrete et al., 2011]. Moving horizon estimation
(MHE) approach formulates the estimation problem as a
constrained optimization problem over a moving window
framework similar to the model predictive control strategy.
Also, the similarity with MPC formulation makes it rela-
tively easy to maintain when implemented in combination
with MPC. Further, as MHE is posed as an optimization
problem, state or disturbance constraints can be easily
added to the problem. Another advantage of the approach
is that it provides filtered as well as smoothed estimates of
states simultaneously within the same window. However,
conventional MHE approaches have either been formulated
in deterministic settings as weighted least squares problem
or in probabilistic settings for Gaussian disturbances only
[Rao, 2000]. MHE for systems subjected to non-Gaussian
densities has been recently explored by Varshney et al.
[2019]. However, approaches discussed so far only handle
state estimation problems and unknown parameters are
not considered in the problem statement.

Many parameters/inputs used in the nonlinear model are
seldom known accurately. Significant mismatch between
their actual values and the values assumed in the model
can severely degrade estimation performance. Towards this
end, general practice for parameter estimation is to assume
models about the dynamic variation of the parameters
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and augment the parameters as additional states [Simon,
2006]. In this approach, dynamics associated with unmea-
sured parameter/input are usually modeled as a random
walk process. Performance of the state and parameter
estimator critically depends on the tuning of this random
walk model. Such augmentation based parameter estima-
tion approaches have also been applied within the MHE
framework [Kühl et al., 2011, Shen et al., 2019]. Recently,
Isaksson et al. [2015] proposed a batch formulation for
state and parameter estimation in a manner similar to
MHE. They converted their MAP (Maximum-a-posterior)
formulation to ML (maximum likelihood) formulation by
the inclusion of a bias correction term. However, such bias
correction term addition would not be possible for systems
subjected to non-Gaussian noise. Therefore, to the best
of our knowledge, no probabilistic formulation of MHE is
available for state and parameter estimation for nonlinear
systems subjected to non-Gaussian disturbances. In our
earlier preliminary work [Varshney et al., 2019], we have
introduced a probabilistic framework of MHE for state
estimation of systems subjected to non-linear Gaussian
disturbances. In current work, we extend the formulation
of Varshney et al. [2019] to state and parameter estimation
for systems subjected to non-Gaussian disturbances. To
begin with, we formulate a batch probabilistic Bayesian
framework, which systematically incorporates the non-
Gaussian noise in the formulation without making any
simplifying assumptions. The resulting pdf is then max-
imized to obtain maximum-a-posterior (MAP) estimates.
For on-line tracking of slowly changing model parameters,
the batch formulation is further extended to moving win-
dow formulation. The efficacy of the proposed formulation
is demonstrated on a system subjected to non-Gaussian
densities.

The rest of the paper is organized as follows. Section 2
describes the nonlinear system considered in current work.
Proposed batch formulation and its extension to moving
horizon approach for non-Gaussian disturbances are given
in detail in Section 3. The simulation case studies and the
results obtained are discussed in Section 4. Finally, the
conclusions are detailed in Section 5.

2. SYSTEM DESCRIPTION

Consider the following discrete time system:

xk+1 = F(xk,uk,θ) +wk (1a)

yk = h(xk) + vk (1b)

In (1a), xk ∈ Rn represents the states of the system,
uk ∈ Rm represents manipulated inputs at instant k,
θ ∈ Rp represents unknown model parameters/ unmea-
sured disturbances while wk represents the process noise.
In (1b), yk ∈ Rr represents the measurements of a subset
of states, while vk ∈ Rr represents measurement noise.
Function F : Rn × Rm × Rp → Rn in (1a) represents the
nonlinear state dynamics while function h : Rn → Rr in
(1b) represents the nonlinear observation model. Both the
functions F,h could be non-differentiable or discontinuous.
Further, in the following sections, the known quantities
(uk) are dropped for notational simplicity in (1). The
filtering problem is to find a point estimate for xk and
θ governed by dynamics in (1a), using available measure-
ments y1,y2, . . . ,yk which are related to the states as in
(1b).

3. BATCH AND MOVING HORIZON ESTIMATION

To proceed with the development of the proposed batch
formulation, the following additional standard assump-
tions are introduced:

Assumption 1 Initial state of the system (x0) is a ran-
dom variable with known pdf, p(x0).

Assumption 2 wk and vk are independent white stochas-
tic processes with known pdf, p(wk) and p(vk) respec-
tively.

Assumption 3 Unknown model parameter (θ) is a ran-
dom variable with known prior pdf, p(θ).

Assumption 4 x0 & θ are independent of process dis-
turbances wk and measurement noise vk.

3.1 Batch Estimation Problem

Along similar lines of the formulation given by Varshney
et al. [2019], we consider the problem of estimating the

initial state, x0 , θ and the disturbance sequence WN−1
0 =

{w0,w1, . . . ,wN−1} using a batch of measurements avail-
able from instant 1 to N , i.e. YN

1 = {y1,y2, . . . ,yN},
and dynamic model (1). Towards this goal, we first

construct the posterior pdf, p(x0,W
N−1
0 ,θ|YN

1 ) by ap-
plication of Bayes’ rule to the joint density function
p(x0,W

N−1
0 ,θ,YN

1 ), which yields

p(x0,W
N−1
0 ,θ|YN

1 ) =

p(YN
1 |x0,W

N−1
0 ,θ)×p(x0,W

N−1
0 |θ)× p(θ)

p(YN
1 )

(2a)

= α1 p(Y
N
1 |x0,W

N−1
0 ,θ)︸ ︷︷ ︸

Term I

p(x0,W
N−1
0 |θ)︸ ︷︷ ︸

Term II

p(θ) (2b)

where α1 is a scaling constant that does not depend on
the unknown parameters, states and disturbances. We can
further simplify Term II in (2b). Using Assumptions 1, 2
and 3, the pdf in Term II can be expressed as follows:

p(x0,W
N−1
0 |θ) = p(x0)×

N−1∏
j=0

p(wj) (3)

Now applying Bayes’ rule to Term I in (2b), we can rewrite
the pdf as follows:

p(YN
1 |x0,W

N−1
0 ,θ) = p(yN ,Y

N−1
1 |x0,W

N−1
0 ,θ) (4a)

= p(yN |YN−1
1 ,x0,W

N−1
0 ,θ)p(YN−1

1 |x0,W
N−1
0 ,θ) (4b)

Further, with given set of θ, WN−1
0 and x0, recursive use

of state dynamics (1a) yields:

x1 =F(x0,θ) +w0, . . . ,xN = F(xN−1,θ) +wN−1 (5)

Eq. (5) allow us to write first density function in (4b) as
follows:

p(yN |YN−1
1 ,x0,W

N−1
0 ,θ) = p(yN |xN ,XN−1

1 ,YN−1
1 ) (6)

where, XN−1
1 = {x1,x1, . . . ,xN−1}. Using arguments

similar to (6), the second density function in (4b) can be
obtained as given below:

p(YN−1
1 |x0,W

N−1
0 ,θ) = p(YN−1

1 |xN ,XN−1
1 ) (7)

According to (1b), yk depends on xk alone and is
independent of past or future system variables. Therefore,
(6) and (7) can be written as follows:

p(yN |xN ,YN−1
1 ,XN−1

1 ) = p(yN |xN ) (8)

p(YN−1
1 |xN ,XN−1

1 ) =p(YN−1
1 |XN−1

1 ) (9)
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Using arguments similar to (8) for p(YN−1
1 |XN−1

1 ), (9)
can be further simplified as follows:

p(YN−1
1 |XN−1

1 ) = p(yN−1|xN−1) . . . p(y1|x1) (10)

According to (1b), yk = h(xk) + vk, it follows that,
yk depends only on vk for given xk. Thus, the final
expression for the pdf (10) requires the computation of
p(yk|xk) = p

(
h(xk) + vk|xk

)
, which can be computed by

using vk ∼ p(vk) as follows:

p(yk|xk) = p
(
h(xk) + vk|xk

)
= pvk (yk − h(xk)) (11)

Using (11), (10) and (4b), (4a) can be rewritten as follows:

p(YN
1 |x0,W

N−1
0 ,θ) = p(YN

1 |X
N
1 ) =

N∏
j=1

pvj (yj − h(xj)) (12)

Further, rearranging the terms in (2b) and substituting
(3) and (12) in (2b), we can re-write (2b) as follows:

p(x0,W
N−1
0 ,θ|YN

1 )

=α1p(x0)× p(θ)×
N−1∏
j=0

p(wj)×
N∏
j=1

pvj (yj − h(xj)) (13)

Since the conditional density (p(x0,W
N−1
0 ,θ|YN

1 )) in
Bayesian estimation is called the posterior density, the esti-
mate that maximizes this density is called the maximum a
posteriori (MAP) estimate. Constructing MAP estimates

of (x0,W
N−1
0 ,θ) requires maximizing p(x0,W

N−1
0 ,θ|YN

1 )

w.r.t. (x0,W
N−1
0 ,θ). Hence, the following maximization

problem is solved w.r.t x0,θ and WN−1
0 to obtain the

estimates:

max
x0,W

N−1
0

,θ

p(x0,W
N−1
0 ,θ|YN

1 )

= p(x0)× p(θ)×
N−1∏
j=0

p(wj)×
N∏
j=1

pvj (yj − h(xj))

s.t. xj = F(xj−1,θ) +wj−1 ∀ j ∈ {1, . . . , N} (14)

Thus, solving (14) yields the MAP estimates(
x0,W

N−1
0 ,θ

)
MAP

≡ {x̂0|N , ŵ0|N , ŵ1|N , . . . , ŵN−1|N , θ̂}
where ŵj|N represents smoothed estimate of wj . The

smoothed estimates with estimated parameter, θ̂, together
with recursive use of the state dynamics (1a) are used to
obtain the state trajectory MAP estimates as follows:

x̂1|N = F(x̂0|N , θ̂) + ŵ0|N , . . . ,

x̂N|N = F(x̂N−1|N , θ̂) + ŵN−1|N (15)

Remark 1. Since the batch estimation problem for state
and parameter estimation is formulated in the probabilis-
tic framework, it facilitates dealing with systems subjected
to state and measurement noise with non-Gaussian densi-
ties. When these densities are Gaussian, the optimization
(14) reduces to the weighted least squares problem.

3.2 Moving Horizon Formulation

When model parameters are time invariant, then the es-
timated model parameters can be used to formulate a
suitable state estimator for on-line monitoring and control.
However, when model parameters are changing slowly with
time, it becomes necessary to track the time varying model
parameters simultaneously to maintain the performance
of the state estimator. In this section, we modify the

batch formulation to a moving horizon formulation that
can track slowly changing model parameters while simul-
taneously estimating the states.

Consider the batch formulation translated in time to a
window [k−q, k] where k denotes the current time instant.
Under assumption that parameter vector, θ, remains con-
stant over the window [k − q, k], the batch optimization
problem, can be reformulated as follows:

max
xk−q,W

k−1
k−q

,θ

p(xk−q ,W
k−1
k−q ,θ|Y

k
k−q+1)

= p(xk−q)× p(θ)×
k−1∏
j=k−q

p(wj)×
k∏

j=k−q+1

pvj (yj − h(xj))

s.t. xj = F(xj−1,θ) +wj−1 for j ∈ {k − q + 1, . . . , k} (16)

Solving (16) leads to the MAP estimates of states,

parameters and disturbances:
(
xk−q,W

k−1
k−q ,θ

)
MAP

≡

{x̂k−q|k, ŵk−q|k, ŵk−q+1|k, . . . , ŵk−1|k, θ̂[k−q,k]} where,
ŵj|k represents smoothed estimate of wj . With recursive
use of model (1) together with these optimal estimates,
we can estimate the state trajectory (x̂k−q+1|k , . . . , x̂k|k).
In the context of on-line state and parameter estimation,
major difficulty is in constructing the prior densities,
p(xk−q) and p(θ). This issue has been further discussed
in the following section.

Remark 2. It is important to note that, unlike conven-
tional augmentation approaches for parameter estimation,
proposed MHE formulation does not assume any model
associated with the unknown parameter. Therefore, tuning
of the corresponding covariance for random walk model,
which is not a trivial exercise, is not required in the current
formulation. However, current MHE formulation requires
a prior probability density function for the unknown pa-
rameter, which is assumed to be uniformly distributed, in
the current work as discussed in the next section.

3.3 Computation of Arrival Cost

We can choose to construct the prior densities, or arrival
costs, as follows:

p(xk−q) = p(xk−q |Yk−q
1 ,θ) and p(θ) = p(θ|Yk−q

1 )

However, the pdf associated with arrival cost

p(xk−q|Yk−q
1 ,θ) is, in general, complex and difficult to

compute when the model is nonlinear and the state and
measurement densities are non-Gaussian. In literature,
various approaches have been used to obtain the arrival
cost [Lopez-Negrete et al., 2011, Robertson et al., 1996].
When state and/or measurement noise densities are non-
Gaussian, it is possible to construct approximations to
densities as Gaussian mixture models. However, in this
work, following Lopez-Negrete et al. [2011], it is proposed
to construct approximations to these densities as follows:

p(xk−q |Yk−q
1 ,θ) ≈ N (x̂k−q|k−q ,Pk−q|k−q)

p(θ|Yk−q
1 ) ≈ U[a,b]

where, U[a,b] is Uniform probability distribution function

over [a,b]. The choice of p(θ|Yk−q
1 ) for prior density of

θ translates to inclusion of bound constraints on θ in the
proposed MHE formulation (16). The estimates x̂k−q|k−q
and corresponding covariance Pk−q|k−q can be computed
by implementing a filter that can systematically deal with
non-Gaussian state disturbances, such as conventional
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EnKF or PF [Lopez-Negrete et al., 2011] or a moving
window based EnKF [Valluru et al., 2017], in parallel
with MHE. While EnKF & PF can systematically capture
the non-Gaussianity, their use can be computationally
expensive due to large number of particles. To alleviate
this issue, we also propose a modified EKF which can
deal with non-Gaussian noise scenarios. Proposed modified
EKF can deal with non-Gaussian densities for case studies
discussed in current work and has been briefly described
in Section 3.4. Since the densities are not Gaussian, we
propose to use EnKF for computing the arrival cost.
We additionally propose to use modified version of EKF
approach to approximate the arrival cost term for states
(Section 3.4). Further, as the parameters are changing,
the unknown parameters estimated by proposed MHE
approach are used to update the models used in both
EnKF and modified EKF. The proposed MHE with EnKF
and modified EKF approach for arrival cost of states
computation are termed as MHE-EnKF and MHE-mEKF,
respectively.

3.4 Modified Extended Kalman filter

EKF is generally applicable for Gaussian disturbances
[Patwardhan et al., 2012]. However, in current work, we
have modified the general EKF approach to accommo-
date non-Gaussian disturbances in the algorithm. In our
modification, mean and covariance of the original non-
Gaussian density is used to obtain a Gaussian approxi-
mation, which is then used in predicted and update steps
of conventional EKF. The case studies presented in Section
4, involves truncated Gaussian process noise and non-
Gaussian measurement noises. These are approximated as
Gaussian densities as follows:

Case I: Standard normal distribution of a normal vari-
able with mean zero and variance one, when truncated
at zero from below i.e. variable is ≥ 0, has the following
modified central moments (mean and variance) [Barr
and Sherrill, 1999]:

µ̃ =

√
2

π
, Q̃ =

(
1−

2

π

)
(18)

Case II: Central moments (mean and variance) for Gaus-
sian mixture model given by (24) is as follows [Söderström,
2002]:

µ̃ = P1 × µ1 + (1− P1)× µ2, (19)

R̃ = P1 × (σ2
1 + µ21) + (1− P1)× (σ2

2 + µ22)

−(P1 × µ1 + (1− P1)× µ2)2 (20)

Above re-computed mean and variances for state and
measurement noises are used to approximate the non-
Gaussian densities as Gaussian distribution which are then
further used during the implementation of conventional
EKF. It is to be noted that the proposed modification
facilitates use of EKF for specific densities considered in
Case I and Case II and may not be good approximation
for other non-Gaussian densities.

4. CASE STUDY

To demonstrate the efficacy of the proposed approach, a
two state system subjected to non-Gaussian disturbances
has been considered. This system has been adapted from

Prakash et al. [2010] to evaluate performance of proposed
MHE formulation for a system subjected to non-Gaussian
densities. Following are the two cases studied:

Case I: Truncated Gaussian process noise with Gaussian
measurement noise

Case II: Truncated Gaussian process noise with non-
Gaussian measurement noise

We compare the results of proposed MHE approach with
conventionally used augmentation techniques in modified
EKF and EnKF (termed as mEKFaug and EnKFaug), by
augmenting the states with the parameter to obtain an
augmented vector. Generally θ is modeled as random walk
model, i.e., θk+1 = θk + wθ,k where wθ,k is an artificial
noise term. In the case studies, the covariance matrix (QP )
corresponding to wθ,k has been tuned to get the best esti-
mate of θ. All the computations were performed in Matlab
version R2015b running on a computer with 16GB RAM
and Intel-core i7 processor. The optimization problem
has been solved using the ‘CasADi’ package in MATLAB
environment. To obtain meaningful comparisons between
the filtering approaches, multiple (Nr) simulation runs
were performed with the length of each simulation run
being N time instants. The simulation runs differed in the
realizations of process and measurement noises obtained
at different time instants. We compare the performance of
proposed MHE variants and mEKFaug or EnKFaug using
average root mean squared error (ARMSE) as performance
index defined as follows:

ARMSE(i) =
1

Nr

Nr∑
j=1


√√√√ 1

N

N∑
k=1

(xj
(k,i)

− x̂j
(k|k,i))

2

 (21)

where ARMSE(i) denote ARMSE for the ith state. Con-
sider the following nonlinear dynamic system (adapted
from Prakash et al. [2010]) for the two case studies being
demonstrated in current section:

x1,k+1 = θk x1,k + 0.2x2,k (22a)

x2,k+1 = −0.1x1,k +
0.5x2,k

1 + [x2,k]2
+ wk (22b)

yk = x1,k − 3x2,k + vk (22c)

4.1 Case I

In this case study we consider the system described in (22).
We further assume that {v(k)} is a sequence of indepen-
dent, zero mean, normally distributed random variables
with variance 0.01 while w(k) follows truncated normal
distribution obtained by truncating normal distribution
with unit variance at zero. Initial filter conditions for
EnKF and mEKF are given as: x0|0 =

[
1 0
]T
, P0|0 =

diag
[
1 1
]
. Other implementation parameters are given in

Table 1. As discussed earlier, the arrival cost in MHE
is approximated as Gaussian with mean as estimates of
states obtained from EnKF and modified EKF and the
appropriate covariance. After substitution of the pdf, and
taking log on both sides, the proposed MHE (16) is then
finally converted into following minimization problem:

min
xk−q,

Wk−1
k−q

,θ

{
||xk−q − x̂k−q|k−q ||2P−1

k−q|k−q

+

k−1∑
j=k−q

w2
j +

k∑
j=k−q+1

v2j

0.01

}
s.t. Eqs. (22), −wj−1 ≤ 0

0 ≤ θ ≤ 2, ∀ j ∈ {k − q + 1, . . . , k} (23)
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Table 1. Implementation Parameters

Parameter Value

Number of Particles for EnKF (Ns) 150

Tuned Covariance for parameter
for EnKFaug , mEKFaug (Qp)

0.99× 10−5

Horizon Length for MHE (q) 30

N , Nr 600, 50

50 100 150 200 250 300 350 400 450 500 550 600
0

1

2

3

4

5

6

7

8
MHE-EnKF

EnKF
aug

True

(a) Tracking of state x1

50 100 150 200 250 300 350 400 450 500 550 600
-1

-0.5

0

0.5

1

1.5

2

2.5

3
MHE-EnKF

EnKF
aug

True

(b) Tracking of state x2

Fig. 1. Case I: Estimates of states obtained from MHE-
EnKF and MHE-mEKF for a typical simulation run

It should be noted that constraint −wj ≤ 0 along with w2
j

in (23) corresponds to use of truncated Gaussian density
for wj .

Table 2 presents the ARMSE values for the state estimates.
ARMSE values obtained from MHE-mEKF and MHE-
EnKF are comparable, thus estimates obtained from both
MHE variants are similar irrespective of the prior density
obtained from different filters. Also, it can be seen that
ARMSE obtained from both MHE variants are signifi-
cantly lower than ARMSE values obtained from EnKFaug

and mEKFaug alone. Further, to compare proposed MHE
approach with augmented approach, tracking of proposed
MHE-EnKF and EnKFaug for both states has been shown
in Fig. 1. It should be noted that MHE estimates are
computed after j > 30, i.e., when the time index is equal
to or higher than the window length.

Fig. 2 presents the tracking of the unknown parameter
obtained from MHE-EnKF and EnKFaug. It can be seen
that proposed MHE-EnKF tracks better than EnKFaug.
Similar results can be observed from the ARMSE values
of the parameter in Table 2. It can be seen that ARMSE
values of MHE-EnKF and MHE-mEKF are significantly
smaller than EnKFaug or mEKFaug.

4.2 Case II

In this section, in addition to truncated Gaussian process
noise, non-Gaussian measurement noise is also considered

Table 2. Case I: ARMSE values
Filter x1 x2 θ

MHE-mEKF 0.3864 0.1320 0.0108

MHE-EnKF 0.3883 0.1326 0.0108

EnKFaug 0.5451 0.1840 0.0123

mEKFaug 0.5318 0.1796 0.0118

50 100 150 200 250 300 350 400 450 500 550 600
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
MHE-EnKF

EnKF
aug

True

Fig. 2. Case I: Estimates of parameters obtained from
MHE-EnKF and MHE-mEKF for a typical simulation
run

in the case study. The pdf of the non-Gaussian measure-
ment noise is as follows:

p(vk) =
1

(2π)0.5

{
P1

σ1
exp

[
−(vk − µ1)2

2σ2
1

]
+
P2

σ2
exp

[
−(vk − µ2)2

2σ2
2

]}
(24)

where, P1 = 0.6,P2 = 0.4, µ1 = 0.5, σ1 = 0.1, µ2 = −0.5
and σ2 = 0.1. Initial filter conditions for EnKF and mEKF

are given as x0|0 =
[
0 0
]T
, P0|0 = diag

[
1 1
]
. All the

rest of the implementation parameters for both the filters
are same as discussed in Section 4.1. The final optimization
problem, after substitution of (24) in (16) and taking log
on both sides, is as follows:

min
xk−q,W

k−1
k−q

,θ

{
||xk−q − x̂k−q|k−q ||2P−1

k−q|k−q

+

k−1∑
j=k−q

w2
j

− 2

k∑
j=k−q+1

log

[
P1

(2π)1/2σ1
exp

[
−0.5(vj − µ1)2

σ2
1

]
+

P2

(2π)1/2σ2
exp

[
−0.5(vj − µ2)2

σ2
2

]]}
s.t. Eq. (22), −wj−1 ≤ 0, 0 ≤ θ ≤ 2, ∀ j ∈ {k − q + 1, . . . , k} (25)

Table 3 presents the ARMSE values for MHE-EKF, MHE-
EnKF, mEKFaug and EnKFaug. It can be seen that the
ARMSE values of both the proposed MHE variants are
similar. Also, ARMSE values of both MHE variants are
smaller than EnKFaug and mEKFaug. Further, Figure 3
shows the tracking of both states by proposed MHE-EnKF
and EnKFaug. Fig. 4 presents the tracking of the unknown
parameter and it can be seen that MHE-EnKF tracks
better than EnKFaug. Similar results can be observed from
the ARMSE values of the parameter in Table 3.

Table 3. Case II: ARMSE values
Filter x1 x2 θ

MHE-mEKF 0.3963 0.1435 0.0116

MHE-EnKF 0.3967 0.1422 0.0116

EnKFaug 0.5409 0.2333 0.0124

mEKFaug 0.5304 0.2306 0.0125
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Fig. 3. Case II: Estimates of states obtained from MHE-
EnKF and MHE-mEKF for a typical simulation run
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Fig. 4. Case II: Estimates of parameters obtained from
MHE-EnKF and MHE-mEKF for a typical simulation
run

5. CONCLUSION

In this work, we have extended our preliminary work
[Varshney et al., 2019] to a probabilistic MHE formulation
for simultaneous state and parameter estimation for non-
linear systems subjected to non-Gaussian disturbances.
Main advantage of proposed approach is that unlike var-
ious sequential Bayesian approaches (such as mEKFaug,
EnKFaug) which employ a random walk model for the
drifting parameters that requires tuning of the covariance
matrix, the proposed MHE approach does not require such
models. Further, a modified version of EKF is proposed
that works with Gaussian approximations of certain type
of non-Gaussian densities. Efficacy of the proposed MHE
formulation has been demonstrated on a two state system
subjected to disturbances following truncated Gaussian
and Gaussian mixture model. The arrival cost in the pro-
posed MHE formulation is computed by using either EnKF
or modified EKF. The results of stochastic simulation
studies demonstrated that, proposed MHE formulation
performs better than the conventional formulations that
are based on the random walk model for the parameter

variations. In future, the current work will be illustrated
on more different types of non-Gaussian densities and will
be extended to systems where the unknown parameters
are present in the measurement equations as well, along
with correlated disturbances.
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