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Abstract: This paper considers the model-free adaptive fault-tolerant control for a subway
train based on multiple point-mass model with the actuator fault under the constraints of speed
and traction/braking force. The complex subway train model is first transformed into a compact
form dynamic linearization (CFDL) data model with pseudo gradient (PG). The actuator fault
function is approximated with radial basis function neural network (RBFNN). Finally a fault-
tolerant controller only using saturated input/output (I/O) data is designed. The effectiveness
of proposed controller is illustrated by a simulation.
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1. INTRODUCTION

Advanced control schemes greatly guarantee the reliability
and safety of subway trains. In recent years, some control
schemes have been proposed for subway trains [Su et
al. (2015); Howlett et al. (2009); Yang et al. (2016);
Ning et al. (2015); Sun et al. (2017)]. However these
results assume that subway trains operate at normal
conditions. In practice, the subway train may have the
actuator fault, which poses a great threat to the safety
of the subway train. Thus it is necessary to design a
fault-tolerant controller for the subway train. Some fault-
tolerant control schemes have been proposed for trains
[Song et al. (2011a,b); Li et al. (2008); Song et al. (2014);
Wang et al. (2011); Li et al. (2017); Gao et al. (2015);
Liu et al. (2015); Zhuan et al. (2010); Guo et al. (2017)].
Those results can be divided into two classes. One is the
model-based method, and the other is data-driven one.
The most model-based fault-tolerant control schemes are
adaptive fault-tolerant control schemes. The data-driven
fault-tolerant control schemes mainly include the fuzzy
adaptive control schemes and neural network adaptive
control schemes.

Generally, most existing control schemes for subway trains
are based on the single point-mass model [Howlett et al.
(2009); Yang et al. (2016); Ning et al. (2015); Sun et al.
(2017)]. Compared with single point-mass model, multiple
point-mass model can distinguish the difference between
locomotives and carriages, and can describe the different
resistance of each vehicle [Song et al. (2011a,b)]. Thus, the
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expression of multiple mass-point model for the subway
train is more accurate than single point-mass model [Song
et al. (2014); Li et al. (2008); Wang et al. (2011)].

Since the basic resistance and additional resistance of each
vehicle are different, and the coefficients of these resis-
tances are also depended on the track and the operation
conditions of each vehicle, thus accurate modeling to a
subway train is often very difficult [Song et al. (2010,
2011a)]. Further, when a subway train operates many
years, the aging and the actuator faults are usually in-
evitable. Modeling these factors precisely is the another
challenge. Therefore, using an inaccurate train model and
the existing model-based control methods, to design a
train operation control system, whose control performance
would be questionable. In order to solve these issues, a
data-driven fault-tolerant control scheme will be utilized
for the subway train in this paper.

In some fault-tolerant control schemes, usually the un-
known nonlinear fault function is approximated by a neu-
ral network [Song et al. (2011a,b); Wang et al. (2011); Li
et al. (2017); Gao et al. (2015); Liu et al. (2015)]. The
BP neural network, radial basis function neural network
(RBFNN) and wavelet neural network, are the most pop-
ular networks used in this field . Because the RBFNN has
simpler structure and stronger learning ability, RBFNN
will be utilized to estimate actuator fault in this paper.

Model-free adaptive control (MFAC) is proposed for a
class of unknown nonlinear discrete-time systems [Hou et
al. (1998, 2011)]. The basic idea of MFAC is that, the
controlled plant model is first equivalently transformed
into a compact form dynamic linearization (CFDL) data
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model by using a new concept called pseudo gradient
(PG). The time-varying PG is then estimated merely using
the input/output (I/O) measurement data of the closed-
loop system of the controlled plant. Next the adaptive
control scheme is designed based on the equivalent CFDL
data model. Compared with other model-based control
schemes, the MFAC approaches have several advantages,
which enable it more suitable for practical control appli-
cations. First, MFAC just use the real-time measurement
data of the controlled plant to design the control system,
which implies that we can directly develop a controller
for an industrial practical process bypassing the time-
consuming modeling procedure. Second, only the time-
varying PG needs to be updated on-line by using the real-
time data generated in the control process, which means
that MFAC does not require any training process. Third,
MFAC is of a simple structure and is easily implemented
with a strong robustness. Fourth, under some practical as-
sumptions, the monotonic convergence and bounded-input
bounded-output (BIBO) stability of the control system
can be guaranteed [Hou et al. (2019)]. Finally, the CFDL
based MFAC has been successfully implemented in many
practical applications [Hou et al. (2017, 2019)].

Based on the above discussion, a model-free adaptive
fault-tolerant control (MFAFTC) scheme is proposed in
this paper. The main contributions of this paper are
summarized as following aspects:

(1) A MFAC based fault-tolerant controller is designed
for the actuator fault with multiple point-mass model of
subway train. Both the speed and traction/braking force
constraints are considered. (2) Compared with [Song et al.
(2011a,b); Wang et al. (2011); Song et al. (2010); Gao et
al. (2015)], the number of parameters need to be updated
is reduced and the information of the subway train model
is not utilized in the design of controller.

The remainder of this paper is organized as follows. In
Section II, the complex multiple mass-point subway train
model is transformed into an equivalent data model and
a fault compensation mechanism is designed. In Section
III, a fault-tolerant controller is designed for the subway
train. A simulation is provided in Section IV. The main
conclusion is expounded in Section V.

2. PROBLEM FORMULATION

This section will introduce a multiple point-mass subway
train model, its equivalent CFDL data model as well, and
a fault compensation mechanism utilized to compensate
the actuator fault.

2.1 Multiple Point-Mass Subway Train Model

Considering a multiple mass-point subway train model
consisting of n vehicles (p carriages and ¢ locomotives) con-
nected by n—1 elastic couplers, see Fig. 1, where vy (km/h)
is the speed of first vehicle, z;(km) is the distance between
the center of ith vehicle and the reference point, Ax; = I;+
Axg; is the length of the connector between the ith vehicle
and (i+1)th vehicle, I; is a constant, and Axg; is the length
of the ith spring connector, which is determined by

Azg; = x; — Tipr — dip1 — di — s, (1)

Vi
Xit+1 XirXi-1
di; Ax; d;
/, J/Axd,»
[ -
00 00 X

0 Distance(kin)

Fig. 1. Multiple mass-point model of subway train

where d;+1, d; and [; are constants, so the following can
be obtained.

ANigp = & — T4, (2)
ANZg; = &; — Tiq1- (3)
Then one can get that

i—1
= - Y Nig. (4)
j=1

The forces imposed by ith vehicle have traction/braking
force uy;(kN), in-train force f;_1(kN) and f;(kN), addi-
tional resistance f,;(kN), basic resistance fy;(kN), sup-
port force N;(kN) and gravity G;(kN). According to the
Newton’s second law, the multiple point-mass model could
be written as follows

ma T A1 Uf1
Mo T Ao Uf2
0 bil Ja1 Jo1
bil . fa2 fo2
T = e ) (5)
: Jn1 : :
fnfl 0 fan fbn

where m;(ton) is the mass of ith vehicle, \; > 0 is
a distribution constant of the ith vehicle. Assume that
A1 = Ay = .-+ = A\, = 1 in this paper. The expression of
fi is a nonlinear and uncertain function. It is noteworthy
that the in-train force obeys the “action and reaction” rule,
which motivates us to apply the summation on the both
sides of (5). Then the following multiple mass-point with
single-coordinate subway train model can be obtained.

Miy = Xuy — F, — Fy + F,, (6)

where M = > m;, A = [)\1,)\2,"'7)\n]T, ur =
T n

[Ufhuf?a te 7Ufn} , By = Z;‘lzl faia Iy = Zj:l fbi and

F = Z?:_ll A& gi Z;L:l +1m;j. Therefore, the nonlinear

and uncertain in-train force is offset and multi-input

multi-output (MIMO) system (5) of the subway train

is transformed into a multi-input single-output (MISO)
system (6).

The formulations of basic resistance f;; and additional
resistance f,; in (6) are given as (7) and (8), respectively.
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Joi = ag + a1v; + agv;, (7)
Jai = Wri 4 Wei + wyy, (8)
where ag;, a1; and as; are the resistive coefficients, w,.;, we;

and wy; are ramp resistance, curve resistance and tunnel
resistance of ith vehicle, respectively..

In practice, the traction/braking actuator may lose its
efficiency or even completely collapse during operation
due to various kinds of reasons, such as overvoltage in
traction transformer, overcurrent in traction converter,
and overheat in asynchronous motor and so on [Song et
al. (2014)]. The expression of the actuator fault could be
described as

Ugi = P1iUfi + P2i, 9)
where u,; is actual force applied to ith vehicle, py; € (0, 1]
and py; € R are health factor and additive fault coefficient
of ith vehicle, respectively [Li et al. (2017); Gao et al.
(2015); Guo et al. (2017)].

Therefore, the subway train model with actuator fault can
be given as
Miy =ANTug — F, — F, + F,,

_ T
where uq = [Uq1, U2, s Uan)
the subway train.

(10)

is actual force applied to

It should be noted that ag;, a1; and ag; in (7) and w4,
we; and wy; in (8) are difficult to obtain accurately [Song
et al. (2011a,b)], which leads to the precise mathematical
expressions of f,; and f; are not easy to establish. Further,
the mass of ith vehicle m; may change due to passengers
getting on and off the subway train. And the health factor
p1; and additive fault coefficient po; are also unknown in
subway train operation. Therefore, the exact expression
of (10) is difficult to obtain and it is unknown to the
designer. However, the subway train generates a large
amount of discrete time I/O data in operation, where input
data is traction/braking force and output data is speed
information. The I/O data of system will be used to realize
the fault-tolerant control of the subway train in this paper.

Discretizing multiple mass-point with single-coordinate
model (10), taking the traction/braking force uy(k) and
speed v1(k) as input and output, respectively, and con-
sidering the unavailable coefficients and the nonlinearity
of the subway train dynamics, the general dynamics with
actuator fault of a subway train can be formulated as
following general form

vik+D=g (v - -, vilk—no) wgl) - - gl —nu) folb)(11)
where g(-) € R is an unknown nonlinear function, n,
and n, are two unknown positive integers, fs(k) =
[fo1(k), fs2(k), -+, fsa(k)]T € R? is the unknown fault
function vector caused by the actuator fault, d is the
number of fault functions. The following assumptions are
introduced for the subway train system (11).

Assumption 1 [Hou et al. (1998, 2011)]. The partial
derivation of g(-) with respect to the (n, + 2)th variable
and the (n, 4+ n, + 3)th variable are continuous.

Assumption 2 [Hou et al. (1998, 2011)]. The system
(11) satisfies generalized Lipschitz condition, that is,

|
0, where Avi(k + 1) = vi(k + 1) — v1(k), AU (k )
[Dug(k), Afa(R)]T, Dup(k) = up(k) — ug(k
Afs(k) = fs(k) — fs(k— 1) and b is a positive constant.

Theorem 1. Consider the nonlinear system (11) satisfying
Assumption 1-2. If ||Aug(k)|| # 0, then there exists a
time-varying vector ¢1(k) € R™, called PG, and a time-
varying vector @pz2(k) € R?, such that system (6) can be
described as following CFDL data model,

|Avy(k 4+ 1) < b||AU(k)||, for any k and HAuf( )| #
1),

o1k + 1) = @1 () Dug (k) + pa(k) A fa(k),

where Sol(k) = [‘pll(k)’ Ty 4,01n(k)]7 902(k) =
p24(k)], [llp1(k), p2(R)]|| < b.

Since the speed of subway train should not exceed the
allowable maximum speed, and the traction/braking force
should not exceed the corresponding maximum force. The
constraints of speed and traction/braking force are given
as follows.

(12)
[@21(13)7 Tty

(k) > Vmaz >0

(k) = saty(vi(k)) = { ;)1723: Z%herwise (13)

Uiy wpi(k) > uy >0

uyi(k) = saty, (usi(k))= { Upi, Upi(k) <up <0 (14)
ugi(k), otherwise

where U4, is the maximum speed allowed, ©(k) is the
measured speed, u;; and wup; are the maximum traction
force and braking force provided of ith vehicle, respective-
ly. @y (k) is saturated force applied to ith vehicle.

Lemma 1. According to (13), one can obtain the expression
of relationship between @(k) and vy (k) as
Av(k) =

h(k)Avy (k), (15)

where 0 < h(k) < 1.

The objective of this paper is to design a fault-tolerant
controller for the multiple mass-point subway train under
the constraints of speed (13) and traction/braking force
(14) only using the measured I/O data of the subway train,
which can control actual speed of the subway train to track
the desired speed and overcome the impact of the actuator
fault on the subway train.

2.2 Fault Approzimation Mechanism

RBFNN has the capability of on-line approximation for
nonlinear function, which is utilized to compensate fault
function @a(k)Afs(k). For convenience, @a(k)Afs(k) is
represented as £(k).

The simple structure of RBFENN is shown in Fig. 2, where
R(K) = [o1(k), =(k)]" is the input, (k) = v} (k) — o, (k),
vy (k) is the desired speed of the subway train, ¥;(k) is
the radial basis function, w;(k) is the weight, £(k) is the
output layer that is expressed as

E(k) = w T (k)p(k) + <(k),

where w*(k) = [wi(k), -, w;(k)]T is ideal weight vector,
(k) = [k, -, (k)] is Gaussian function vector and

(16)
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Wj

Fig. 2. The structure of RNFNN

¢(k) is the error of compensation|[Li et al. (2017); Liu et
al. (2015)]. The expression of ¢;(k) is selected as

o) = eap (- LB cz-n?) |

20;

(17)

However, The ideal weight vector w*(k) is not easy to
obtain. The estimation of ideal weight vector w(k) =

[y (k), -, (k)]T is calculated as
A (k) = o (vy (k) — vi(k))b(k), (18)
where Aw(k) = w(k) —w(k —1).
So the estimation of £(k) can be expressed as
§(k) = " (k) (k) (19)

3. DESIGN OF FAULT-TOLERANT CONTROLLER

In this section, a MFAFTC scheme is designed for the
actuator fault with the RBFNN. Both the speed and
traction/braking force constraints are considered in the
design of the controller, which can guarantee the safety of
the subway train.

The following criterion function is introduced for design of
controller.

Q(ug (k) = (vi(k +1) = va(k + 1)) + pr ] Aug (k)]|*,(20)
where p; > 0 is a weight coefficient.

The first item of (20) refers to the square of difference
between the actual speed and the desired speed. Its nu-
merical value can reflect the ability of the subway train
to track the desired trajectory. And the second item can
reflect the stationarity of the subway train operation.

According to 9Q(ugs(k))/Ouys(k) = 0, the following con-
troller can be obtained.

b4 PR
up(k) =uslk =)+ = T

x(01(k + 1) —v1(k) — p2(k)Afs(F)),
where 1 € (0, 1] is a step-size constant.

(21)

The cost function of the estimation of ¢4 (k) is designed
as follows.

Q(p1(k) = (v1(k) = vi(k — 1) — @1 (k) Aug(k) — h(k)

xa® (k= 1)k — 1)) + pallpy (k) — @1(k - 1)]1*(22)
where py > 0 is a weight coefficient.

The first item of (22) includes the actuator fault compen-
sation, which can overcome the impact of actuator fault
to the subway train. And the (22) can solve the problem
that the estimation of ¢4 (k) is sensitive to some inexact
sampling data.

According to minimization of (22), the following simplified
PG estimation algorithm is used for the estimation

o1 ) = oa k= 1)+ —2 T D by )
P = e Al (kD nh) -

x0T (k= 1)k — 1) =@a(k — 1) Aug(k —1)),(23)
where 82 € (0,2] is a step step-size constant and ¢4 (k) is
the estimation of ¢4 (k).

Integrating (13), (14), (19) and (20)-(23), the MFAFTC
scheme is constructed as follows.

Ugi, upi(K) > ugy >0
’lfl,fl(k) = satu_f (Ufl(k)) =< Upj, Ufl(k') < up <0 (24)
ugi(k), otherwise

5190{(]“)
p1+ (k)]
x (vf (k + 1) = 01(k) — @ (k)y(k)),

Uf(k) = Uf(k — 1) +
(25)

. U BaNw (K —1) oy

)T (k= 1)k — 1)~ @1 (k — 1) Adig (k — 1)),(26)

P1i(k) = P1:(1),if|p1:(k)| < 8, 0r|[ Aty (k)| <6, (27)
4. SIMULATION

In this section, the performances of three controllers in-
cluding MFAFTC (24)-(27), PI in [Li et al. (2006)] and
the prototype MFAC in [Hou et al. (2011)] are compared
by simulation results, which is illustrated the effectiveness
of MFAFTC.

The number of vehicles is 6 (2 carriages and 4 locomotives),
the parameters of the subway train are shown in Table 1.
The each elastic coupler and basic resistance are given as
(28), (29) and (30), respectively. The sampling time is 1s.

Table 1. Parameters Setting for The Subway

Train
Comment Symbol  Value
Maximum traction force (kN) ut 60
Maximum braking force (kN) Up -60
Mass of each vehicle (ton) M 50
Running line (m) L 2391
Running time (s) T 140

Azgy = Axgs =Axgs =0.8sin(2k), (28)
Axgo=Axq4=0.25c0s(k). (29)
Fy = 1.02+0.00350; (k) +0.000426v2 (k). (30)

Assume that the actuator fault occurs at 70s and the
actuator fault is given as
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0.90
0.70
1.00
0.76
0.78
0.86

-5.30
3.52
3.39

—6.57
0.71

—2.88

uq (k) = uy(k) + (31)

The parameter settings of three controllers are cho-
sen by trial and error approach. The initial values
of input of MFAC and MFAFTC schemes are set as
uys(1) = [0.01,0.01,0.01,0.01,0.01,0.01]7 and uys(2) =
[9.41,0.01,0.64,0.64,0.01,0.35]7. Initialling the values of
output to v1 (1) = 0.01, v1(2) = 0.01 and v;(3) = 2.43. Set-
ting the initial value of PG as 1 (1) =10.58,0.95,0.73, 1.08,
0.09,0.08]7. In addition, setting the values of the re-
maining parameters as f; = 0.07, p1 = 3.52, B =
0.99, p» = 0.01. The parameters of PI are set as
Kp = [33.25,28.73,25.23,30.25, 30.66, 28.44]7 and K; =
[0.1,0.1,0.1,0.1,0.1,0.1].

The RBFNN is utilized to approximate the actuator fault
in MFAFTC. The value of weights are initialized as zero.
The number of the hidden layer neurons is a free design
parameter. It is set as 7 in this paper. The input of RBFNN
are set as R(k) = [v1(k),e(k)]T. The width o and center ¢
of Gaussian function are given as follows.

o=1[041 031 0.73 0.93 049 0.76 0.72]T.

_ 1 69.00 67.94 65.67 63.44 69.74 60.18 67.37
©= 1050 001 1.46 038 001 3.96 261 |

Fig. 3-7 show the simulation results of three control
schemes. The tracking performances of three control
schemes are shown in Fig. 3. Fig.4 gives the tracking errors
of three control schemes. The traction/braking forces of
MFAC, PI and MFAFTC are exhibited in Fig.5, Fig.6 and
Fig.7, respectively. From Fig.3 and Fig.4, we can get that
the speed tracking error and the range of speed fluctuation
in MFAFTC scheme are less than them in PI and MFAC
scheme, thus the tracking ability of MFAFTC scheme is
better than the others. The traction/braking force with
MFAFTC scheme has been constrained within the given
range, shown in Fig.7, but the tracking force with the
prototype MFAC exceeds the threshold due to the actuator
fault, which can been seen in Fig.5.

80

701
60 1

—Desired speed
= 50 ¢ Speed of MFAC
E - - Speed of PI
2 407 ----Speed of MFAFTC
= —Speed limitation
5 307 Il Slope
(=
wn 20t
10
0
-10 . | |
0 35 70 105 140
Time (s)

Fig. 3. Tracking performances
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0 35 70 105 140
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Fig. 4. Tracking errors
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Fig. 5. Traction/braking force of MFAC

‘ . . .
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40 f uf3l ]
—uf4

20 e ufS|
——uf6

\J

Maximum traction force
-40 - |—Maximum braking force

Traction/braking force (kN)
S

0 35 70 105
Time (s)

140

Fig. 6. Traction/braking force of PI

Integral of absolute error (IAE) is used to measure the
tracking ability of two control schemes, the IAE is defined
as follows.

T
TAE = [vi (k) = 1(k)]. (32)
k=1
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Traction/braking force (kN)

40t Maximum traction force
——Maximum braking force

0 35 70 105 140
Time (s)

Fig. 7. Traction/braking force of MFAFTC

According to (32), the results of IAE for MFAC, PI and
MFAFTC are 60.45, 57.10 and 21.65, respectively. It can
be concluded that the tracking ability of MFAFTC is much
better than that of MFAC and PI.

5. CONCLUSION

The MFAFTC scheme is designed for the multiple mass-
point subway train model with speed and traction/braking
force constraints in this paper. An equivalent CFDL data
model with PG is proposed for the multiple point-mass
with single-coordinate subway train model with the actu-
ator fault. The actuator fault function is compensated by
RBFNN. The simulation results are offered to verify the
effectiveness of proposed control scheme. In future, we will
consider the possible field application.
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