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Abstract: Collision Avoidance (COLAV) for autonomous ships is challenging since it relies on
track estimates of nearby obstacles which are inherently uncertain in both state and intent.
This uncertainty must be accounted for in the COLAV system in order to ensure both safe and
efficient operation of the vessel in accordance with the traffic rules. Here, a COLAV system
built on the Scenario-based Model Predictive Control (SB-MPC) with dynamic probabilistic
risk treatment is presented. The system estimates the probability of collision with all nearby
obstacles using a combination of Monte Carlo simulation (MCS) and a Kalman Filter (KF),
taking the uncertainty in both position and velocity into account. A probabilistic collision cost
is then used in the MPC to penalize risk-taking maneuvers. Simulation results show that the
proposed method may provide increased robustness due to increased situational awareness, while
also being able to efficiently follow the nominal path and adhere to the traffic rules.

Keywords: COLREGS, Collision avoidance, Autonomous ships, Model Predictive Control,
Probabilistic risk assessment, Kalman Filter, Monte Carlo simulation

1. INTRODUCTION

A big challenge in the maritime transport sector is the
safety aspect. Significant consequences in the form of hu-
man casualties, environmental damage and destruction of
properties are caused by vehicle collisions every year. Ship
collisions and groundings caused 5573 casualty events in
the period from 2011 to 2017, according to the European
Maritime Safety Agency (EMSA, 2018). Humans are re-
ported to be the main cause in excess of 75 % of the
time (Macrae, 2009; Chauvin, 2011; Levander, 2017). The
emergence of autonomous ships may therefore increase
safety, by eliminating the human factor.

Autonomous ships utilize a tracking system to receive
information about nearby obstacles, which may include
commercial and recreational vessels. The performance of
the COLAV system is therefore limited to the quality of
the track estimates, which fuse uncertain obstacle kine-
matics and sensor data. Other factors such as the intent
and behavior of the obstacles to the ship maneuvers will
heavily affect this uncertainty, and make the situation
challenging. The quality of information is thus important
for deliberative COLAV algorithms, which are supposed
to take proactive actions in due time before the potential
collision hazard occurs.

Furthermore, the ship should comply with the Interna-
tional Regulations for Avoiding Collision at Sea (COL-
REGS) (IMO, 1972), which classify different collision sit-
uations, the vessels involved and the rules to follow in the

situations. Here, rules 8, 13-17 are the most relevant, and
defines the required vessel classifications and actions in
general, and the correct behavior in overtaking, head-on
and crossing situations. These situations, which are de-
scribed in rules 13-15, are graphically illustrated in Figure
1. Rule 8 states that actions to avoid collision should be
clear and taken in ample time. Rule 16 and 17 describe
the actions to be performed by the give-way vessel and
stand-on vessel, which involve the requirements to take an
early and clear action, and maintaining its current course
and speed if possible, respectively. However, for situations
involving multiple vessels, it may be necessary to violate
COLREGS in order to avoid collision.

There are many existing COLAV algorithms which have
COLREGS compliance at varying degree. However, only
a few of these are performing probabilistic risk assessment
in collision situations considering uncertainties present, as
this has mostly been ignored for such systems (Huang
et al., 2020). The COLAV problem will involve consid-
ering uncertainties present in the current situation, taking
these into account, and then choosing the risk minimiz-
ing action. Deterministic approaches will therefore have
limitations for efficient and robust COLAV systems. For a
general treatment of different collision risk measures, see
for instance Goerlandt and Montewka (2015) and Chen
et al. (2019). Relevant maritime COLAV algorithms which
incorporate some form of probabilistic risk measure are
summarized below.
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In Shah et al. (2016), an A* search method is applied to
collision free path planning which penalizes high collision
risk, COLREGS breaches and path deviation. The collision
risk is estimated by calculating collision probabilities using
sampling based techniques, considering the positional un-
certainty. A* search is also used in Blaich et al. (2015), to
plan a collision free path through an occupancy grid. Here,
occupancy probabilities for obstacles in two-dimensional
space are calculated using a numerical approximation,
considering their kinematic uncertainty. The search then
tries to find a path which minimizes the cost due to non-
zero occupancy probabilities, and the Euclidean distance
to the goal. COLREGS is not considered here.

In Park et al. (2019), MCS is used to estimate the collision
probability beween the own-ship and an obstacle, both
with time varying uncertainty. This is done by first forming
a Probability Density Function (PDF) at the tracked
obstacle position, with a covariance that is the sum of the
estimated vessel position covariances. The ratio of samples
drawn from this PDF that are inside a Collision Risk
Zone (CRZ), to the total number of samples, is used as
a collision probability estimate. The collision probability
estimate is then used to decide on replanning collision free
waypoints for the ship to follow, which also adhere to the
COLREGS.

Rajendran et al. (2018) plans a collision free path using
Theta* search, based on the current locally estimated
sea state, nearby static and dynamic obstacles, and own-
ship motion uncertainty. MCS is used to sample dynamic
obstacle positions and velocities based on their perception
uncertainty, and used together with a precomputed State
Transition Table (STT) to index an estimated Mean Time
Between Failure (MTBF) for the USV, which is then
used to estimate the probability of failure in reaching
a motion goal due to collision and local environmental
disturbances. This failure probability is then penalized in
the search cost function, together with path execution time
and COLREGS breaches.

Maneuvering intentions of an obstacle are estimated using
a KF in Cho and Kim (2017). The intentions are used
to calculate the collision probability with obstacles by
considering reachable sets. A COLAV system then makes
evasive maneuvers when the collision probability exceeds
a certain threshold, with no COLREGS consideration.

The proposed method is a probabilistic version of the
Scenario-based Model Predictive Control by Johansen
et al. (2016), i.e. Probabilistic SB-MPC (PSB-MPC).
Here, the probability of collision with nearby obstacles
is estimated, and used to minimize the collision risk on
the prediction horizon. A novel contribution is how the
collision probabilities are estimated through the use of
MCS combined with a KF for the attenuation of statistical
noise resulting from few MCS samples. The uncertainty in
both position and velocity for the obstacles are considered,
as obtained from a tracking system based on the KF. This
gives increased situational awareness for the autonomous
ship, as the kinematic uncertainty in both position and
velocity is an information source not being used in most
COLAV systems.

Fig. 1. COLREGS situations. From left to right: Over-
taking, head-on and crossing situations. The arrows
indicate the correct behavior in each situation.

This article is organized as follows: In Section 2, the
own-ship model used for guidance, control and prediction,
and the obstacle model used in the tracking system and
MPC predictions, are presented. The original SB-MPC is
reviewed in Section 3. The collision probability framework
used here is introduced in Sections 4-5, whereas the PSB-
MPC is introduced in Section 6. Results comparing the
PSB-MPC against the original SB-MPC are then given in
Section 7, before conclusions are summarized in Section 8.

2. MODELS

2.1 Ship Dynamics

A model with 3 degrees of freedom (DOF) is used to
describe the horizontal motion of the own-ship in surge,
sway and yaw (Fossen, 2011). The vessel position in the
North-East-Down (NED) coordinate system is given by
η = [x y ψ ]T . The variables x, y and ψ are the own-ship
north and east coordinates and the heading, respectively.
The ship velocity in the BODY-fixed coordinate system is
given as ν = [u v r ]T . Here, u and v are the surge and
sway velocity, respectively, while r is the yaw rate. The
vector τ = [X Y N ]T describes the generalized forces
and moments affecting the ship in surge, sway and yaw.
The equations of motion for the own-ship can then be
represented in vectorial form as

η̇ = R(ψ)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = τ +w (2)

whereR(·) is the rotation matrix from the NED frame {n}
to the BODY frame {b}, M is the inertia matrix, C(·)
the coriolis and centripetal matrix and D(·) the nonlinear
damping matrix. The environmental disturbances are not
considered here since they are compensated for in the au-
topilot, thus w = 0. The position and velocity of the own-
ship is assumed to be accurately measured, and thus its
uncertainty in position and velocity is neglected. The own-
ship is steered using Line of Sight (LOS) guidance (Fossen,
2011), with a feedback linearizing controller used for surge,
and a PD-controller for the heading. See Tengesdal (2019)
for details.

2.2 Obstacle Dynamics

The Constant Velocity Model (CVM) is common for pre-
dicting the trajectories of nearby obstacles (Bar-Shalom
and Li, 1995), and the general stochastic form is in discrete
time for obstacle i = 1, 2, . . . no given as
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xik+1 = Fxik + vik (3)

zik = Hxik +wi
k (4)

where xi = [xi yi V ix V iy ]T is the state vector consisting
of the 2D position and velocity, and where F and H
are the transition and measurement matrix, respectively.
Index k = 1, 2, . . . N denotes the time step. The vectors
vik and wi

k are the process and measurement noise at
discrete time instant tk, respctively. The vector zik contains
the noise corrupted position measurement at time tk for
instance obtained through a radar system or Automatic
Identification System (AIS) data. The transition matrix
F and measurement matrix H are given as

F =

1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 (5)

H =

[
1 0 0 0
0 1 0 0

]
(6)

where Ts = tk+1− tk is the sampling interval for the linear
model, which could be time varying. The process noise
and measurement noise are assumed to be zero mean,
white, mutually independent and Gaussian with known
covariance matrices Q and R, respectively. The process
noise covariance is given as

Q = σ2
a



T 3
s
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T 2
s

2
0

0
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T 2
s

2
0 Ts 0

0
T 2
s

2
0 Ts


(7)

where the process noise strength σa is chosen based on
the expected maneuverability of the vessel (Wilthil et al.,
2017). The CVM is used with the KF for tracking the
obstacles, which results in multivariate Gaussian PDFs
pi(x, tk) = N (x; x̂ik,Σ

i
k), where x̂ik and Σi

k are the obsta-
cle track estimate and associated covariance, respectively.
A deterministic CVM with the full state vector available,
obtained by omitting the noise terms, is used in the MPC
predictions. Note that the CVM assumption has limita-
tions in scenarios where maneuvers are expected, as for
instance in ship encounters.

3. ORIGINAL SCENARIO-BASED MODEL
PREDICTIVE CONTROL

The SB-MPC (Johansen et al., 2016) is a scenario-based
optimization method for COLAV, which solves the opti-
mization problem

l∗(t0) = arg min
l
Hl(t0) (8)

The index l represents a candidate control behavior, which
consist of a modification tuple (χlm, u

l
m) to the current

guidance references χd and ud in course and forward speed,

respectively. A finite set of control behaviors is typically
considered, for which the cost function

Hl(t0) = max
i

max
t∈D(t0)

(
Cli(t)Rli(t) + κiµ

l
i(t)
)

+ f(χlm, χm,last, u
l
m, um,last) + g(·)

(9)

is evaluated. Here, t0 is the current time and D(t0) is the
set of time steps in the prediction horizon T . The variables
Cli(t) and Rli(t) are the collision cost and ad hoc collision
risk associated with obstacle i at the prediction time t,
respectively. The term κiµ

l
i(t) quantify the COLREGS

violation, where κi is a tuning parameter and µli(t) ∈ {0, 1}
a binary indicator for breaching COLREGS. Finally, f(·)
and g(·) are the control reference deviation and grounding
costs, respectively. No grounding cost is used here, such
that g(·) = 0. See the original work (Johansen et al., 2016)
for more information about the cost terms. The control
reference deviation cost f(·) is here modified to

f(·) = Ku(1− ulm) +Kχ(χlm)

+ ∆u(ulm, um,last) + ∆χ(χlm, χm,last)
(10)

where

Kχ(χ) =

{
Kχ,portχ

2, if χ < 0.

Kχ,starboardχ
2, otherwise,

(11)

∆u(u1, u2) = K∆u|u1 − u2|, (12)

∆χ(χ1, χ2) =

{
K∆χ,port

(χ1 − χ2)2, if χ1 < 0.

K∆χ,starboard
(χ1 − χ2)2, otherwise.

(13)

The tuning parameters Ku, Kχ,−, K∆u and K∆χ,− de-
termine the penalization on the course and surge mod-
ifications, where − is a placeholder for either port or
starboard. This modification of f(·) is done in order to
penalize course changes to port more than starboard, to
make it easier for the algorithm to follow COLREGS. The
optimal control behavior then modifies the course and
forward speed references χd and ud from the guidance
system through χc = χl

∗

m + χd and uc = ul
∗

m · ud. The
objective of the present article is to replace the ad hoc
collision cost term Cli(t)Rli(t) with a probabilistic collision
cost.

4. COLLISION PROBABILITY DEFINITION

Probabilities are always relative to the domain of events
considered, and a clear definition is therefore needed to
avoid amibiquity and confusion. Here, the following events
are used to define the collision probability between the
own-ship and an obstacle.

Aik = A collision occurs between obstacle i and the

own-ship at some time tc ≥ tk.
(14)
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Bik = A collision between obstacle i and the own-ship

does not occur at any time tc ≥ tk.
(15)

which are mutually exclusive. Collision is the breach of
the safety zone, which is defined as a circular region
with radius dsafe around the own-ship. The probability
of collision with obstacle i at time tk then becomes

Pic,k = P{Aik} = 1− P{Bik} (16)

Note that this definition of collision probability is predic-
tive, as it allows for the collision to happen at any time
in the future. The collision probability Pic,k is found by

integrating the obstacle tracked state PDF pi(x, tk):

Pic,k =

∫
S
pi(x; tk)dx (17)

where S ⊂ R4 is a region which include all straight line
trajectories which make the obstacle cross and recide in
the own-ship safety zone at the Closest Point of Approach
(CPA) (Tengesdal, 2019). This makes the formulation
of a compact S difficult, due to time being an implicit
constraint. More specifically, the integration limits on the
obstacle velocities depend on both the starting position
(xik, y

i
k) of the obstacle, which is uncertain, and the time

interval for which the given trajectory starting at (xik, y
i
k)

gives an obstacle position inside the own-ship safety zone
at CPA.

An illustration of the issue is given in Figure 2, where
a sample trajectory based on the obstacle uncertainty in
position and velocity is shown. The own-ship is shown in
blue at the current time following a straight line trajectory,
and also at the CPA in dashed blue with the safety zone of
radius dsafe enclosing it. The obstacle is shown in green at
the current time with its 3σ position probability ellipse. If
the time to CPA gives an obstacle position on the indicated
red part of the trajectory, the trajectory is in S and may
result in a collision.

vos

dsafe

vi

vs

ps

Fig. 2. Illustration of the problem of determining if an
obstacle trajectory is in S. The sampled obstacle
trajectory is given by the sampled starting position
ps and velocity vs. The expected obstacle velocity vi

and own-ship velocity vos are also indicated.

5. COLLISION PROBABILITY ESTIMATION

The calculated collision probability between the own-ship
and obstacle i is here filtered recursively using a KF
(Kalman, 1960). Probabilities calculated through MCS to
approximate the integral (17) are used as measurements.
The KF is used to attenuate the statistical noise inherent
in the MCS with a finite number of samples, and to make
use of knowledge about the collision probability from the
previous time step. The simple model used in the KF is

Pic,k+1 = Pic,k + v̄ik (18a)

yik = Pic,k + w̄ik (18b)

where y is the measurement, v̄ ∼ N (v̄; 0, qP ) and w̄ ∼
N (w̄; 0, rP ) are the process and measurement noise, re-
spectively. The collision probability measurement yik is
obtained through MCS as

yik =
1

NMC

NMC∑
s=1

I{xs ∈ S}pi(xs, tk) (19)

where NMC is the number of samples drawn from the
obstacle tracked state PDF. This is done by sampling from
a standard normal distribution, followed by a transforma-
tion through the obstacle state estimate x̂ik and Cholesky
factorization of the obstacle state covariance Σi

k. The
indicator variable I{xs ∈ S} ∈ {0, 1} determines if the
straight line trajectory sample parameterized by xs makes
the obstacle cross and recide inside the own-ship safety
zone at the CPA, assuming that the own-ship also follows
a straight line trajectory at time tk. These assumptions are
made in order to have a tractable approach of calculating
the collision probability.

In general, an integral estimate obtained through MCS
is consistent by the law of large numbers, when the un-
derlying probability model is accurate (Evans and Rosen-
thal, 2009). In this case, the consistency of the collision
probability estimate produced by the MCS and KF are
conditioned on the validity of the assumptions of obstacles
being modelled as CVMs with Gaussian distributed states,
the validity of the model (18), and the own-ship being
assumed to also follow a straight line trajectory at the
time of probability calculation. Thus, it is typically a
conservative estimate, as factors such as the own-ship and
obstacles’ intention of avoiding collision and adhering to
COLREGS are not accounted for. The estimate will any-
how be used here as an indication of the collision risk. An
increased situational awareness by the autonomous ship
will be gained regardless, due to the tracking uncertainty
being used to have a probabilistic risk picture.

Simulation results for a simple scenario with one obstacle
are shown in Figure 3. Here, the own-ship is stationary at
coordinates (x, y) = (100, 0), whereas an obstacle start-
ing at (55,−55) with assumed known expected position
is travelling east with speed 4 m/s. The safety zone is
indicated as the red circle. The obstacle is shown at CPA,
directly south the own-ship at time t = 13.75 s, and also
at the end of the simulation. A number of NMC = 100
samples are used. The noise covariances are tuned to be
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Fig. 3. Test scenario

qP = 0.00005 and rP = 0.001, based on trial and error and
Normalized Innovation Error (NIS) considerations (Bar-
Shalom and Li, 2001). The filter was initialized with prior
probability and variance of 0 and 0.3, respectively. This
was partially based on an initial guess, and the assumption
that the own-ship starts relatively far from nearby obsta-
cles. The obstacle tracked state has a constant covariance
matrix of Σ = diag([ 25 25 4 4 ]), which causes the colli-
sion probability to have a maximum right above 0.3, and
decreasing as it passes the own-ship, due to the number
of possible straight line trajectories which can cross the
safety zone decreases.

Thus, from the results, the advantage in using MCS and
KF for collision probability estimation is apparent in the
reduction of statistical noise at lower computational cost
than pure MCS, as fewer samples are needed in the MCS
calculations.

6. THE PROBABILISTIC SCENARIO-BASED
MODEL PREDICTIVE CONTROL

A Probabilistic variant of the SB-MPC modifies the cost
function (9) to

Hl(t0) = max
i

 ∑
t∈D(t0)

Cli(t)P̂l,ic (t)e
−

(t+ tlcpa(t)− t0)

Tc +

max
t∈D(t0)

κiµ
l
i(t)

)
+ f(·) + g(·)

(20)

involving the accumulated probabilistic collision cost over
the horizon, exponentially discounted by the time until
the potential collision. Thus, the ad hoc risk term Rli is

replaced by the collision probability estimate P̂l,ic . The dis-
counting type was chosen mainly due to its simplicity and
common use for devaluating events or data, as for instance
in the recursive least squares method (Ioannou and Sun,
2012). The time constant Tc is a tuning parameter. The
variable tlcpa indicates the time until the CPA between the
own-ship and obstacle i occurs, calculated at the time t
using the corresponding predicted states. As the collision
probability is predictive, the time until CPA is added to
weight the collision cost by the time of occurrance. Note
that this is under the assumption of straight line trajec-
tories at the time of calculation. Moreover, because the
collision probabilities are summed, it is assumed that they
are independent from one time step to another. This is
conservative, as there will be dependencies due to obstacle
dynamics and the fact that at maximum one collision
between the own-ship and an obstacle can occur in the
horizon.

A reasonable alternative to this MPC formulation would
be to use a collision risk constraint instead, to retain the
risk to a certain limit. However, due to the consistency
issues mentioned in the previous section, the constraint
limit would be ad hoc. Further, as the collision probability
calculations are done in the open loop MPC predictions,
with no future feedback accounted for, the limit should
not be set too low. Moreover, issues with constraint
infeasibility would need to be solved with slack variables
to allow practical use.

The advantage of penalizing the collision cost as in the
original SB-MPC, is the guarantee of a feasible solution
and the intution of balancing the cost terms. With this ap-
proach one is able to choose the maneuver with minimum
probabilistic collision cost, which would not be possible
in a risk constrained PSB-MPC, as maneuvers are only
deemed feasible or not. However, in situations with high
collision risk for all control behaviors, the optimally chosen
maneuver may still be infeasible in practice and possibly
lead to collision, which would require extra handling with
this MPC formulation.

7. RESULTS

The PSB-MPC and SB-MPC were tested in a head-on
scenario, and a congested traffic scenario with multiple
obstacles. A sampling interval of Ts = 0.1 s was used
for the obstacle motion and as the step time in Euler’s
method to simulate the own-ship motion. A sample time
of Ts,MPC = 0.5 s was used for the MPC. The own-ship
was in each scenario planned to follow the straight line
going north, with forward speed ud = 9 m/s, starting in
the origin. The obstacles were randomly initialized inside
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a grid of 1000m × 800m, with obstacle velocities varying
from 2 m/s to vimax = 9 m/s. The process noise parameter
σa was uniformly randomly generated between 0 m/s2 and
0.03 m/s2 for each obstacle. This simulates scenarios with
vessels of lengths around 30 m, driving around cruising
speed and below. A measurement covariance of R =
diag([ 25 25 ])m2 was used to generate obstacle position
measurements at 0.4 Hz, with values based on the results
using a radar-based tracker in (Wilthil et al., 2017).

Kalman Filters were used to track each obstacle, with
the track estimates fed into the PSB-MPC and SB-MPC.
The corresponding covariance estimates were used in the
collision probability calculation of the PSB-MPC for the
entire time horizon. Thus, the tracked state covariance
was not propagated using a deterministic CVM in the
MPC predictions, but kept constant. This simplification
makes the collision probability estimate less conservative,
as the covariance would increase when propagated in time.
As nearby obstacles will in reality react to the own-ship
maneuvers, and measurements of their positions will be
used to reduce the uncertainty, this was deemed reason-
able. Further, single-point track initiation was used for
the obstacle estimates based on the results in (Mallick and
Scala, 2008), where the obstacle initial position and veloc-
ity are set to the first measurement and zero, respectively.
The a priori obstacle state covariance is set using the KF
measurement covariance matrix and maximum velocity
U imax, where it is here assumed that the maximum speed
is known a priori, and identical for all obstacles.

To illustrate the importance of considering kinematic
uncertainty in a COLAV system, the KF in the tracking
system was tuned conservatively in both scenarios with
a measurement covariance matrix 25 times larger than
the actual covariance R, and process noise parameter
σa = 0.5 m/s2 for all obstacles. This can be the case when
measurements from a radar device becomes unreliable due
to extreme weather conditions, and where one in addition
wants to account for fast obstacle maneuvers by having an
increased process noise. This combined with the chosen
track initialization, will cause more uncertain obstacle
course estimates, which has been shown to cause problems
in deterministic reactive COLAV systems (Eriksen et al.,
2018).

The collision probability filter was again initialized with
prior probability and variance of 0 and 0.3, respectively.
The parameters used for each COLAV method are summa-
rized in Table 1, and are partially based on (Hagen, 2017)
and trial and error. The COLAV methods are run every
fifth second in the simulations, with 39 control behaviors
with one planned evasive maneuver on the prediction hori-
zon.

Results comparing the original SB-MPC and the PSB-
MPC are shown in Figure 4 and 5. In each Figure, the
first part shows a north east plot for the own-ship with the
original SB-MPC (blue boat with black trajectory) and
the PSB-MPC (red boat with dashed black trajectory),
with the safety zone of radius dsafe enclosing them. Also,
the obstacles are shown as green boats, with numbered
trajectories of different colors. The second part shows the
distance from the own-ship to each obstacle, for both
COLAV versions, with the safe distance also indicated

in red. The obstacle and own-ship sizes are enlarged
for visualization purposes. The scenario in Figure 4 also
include a track plot.

The scenario in Figure 4 shows that the PSB-MPC is more
risk averse than the original SB-MPC by taking a COL-
REGS compliant maneuver with larger safety margins. In
contrast, the SB-MPC trusts the obstacle track estimate
blindly, which causes a small safety zone violation while
performing the COLREGS compliant maneuver. This is
because the SB-MPC believes the obstacle is travelling
south with a negative east speed for the first 37 seconds.
This is caused by the high obstacle track uncertainty
coming from a conservatively tuned KF and the Single-
Point track initialization, which causes a velocity variance
surpassing 20( m/s)2 in each direction initially.

Figure 5 shows that the PSB-MPC is capable of making
safe maneuvers in more complex scenarios. Here, the
original SB-MPC violates COLREGS slightly and makes
a poor decision to turn port, due to its overconfidence in
the obstacle track estimates. This is because obstacles are
initialized to zero speed, which makes a port maneuver
optimal in the SB-MPC as this gives the minimum ad
hoc collision cost. The PSB-MPC again accounts for
the estimated uncertainty and decide on a starboard
maneuver, due to its minimum probabilistic collision cost.

8. CONCLUSION

The PSB-MPC attempts to take dynamic collision proba-
bilities into account, which considers uncertainty in both
position and velocity, and is able to take safe decisions in
complex scenarios due to increased situational awareness.
The probabilistic collision cost gives larger safety mar-
gins, but this is conditioned on the quality of the track
estimates and collision probability estimates. Simulation
results show that its performance with regards to path
following is also on par with the original SB-MPC. Note
that the PSB-MPC formulated here is preliminary, and
aims to illustrate the benefits of introducing probabilistic
risk assessment in a COLAV system.

Moreover, as the method for calculating collision prob-
abilities is simplistic, based on straight line trajectory
assumptions, and relatively slow, work is needed in order
to make the calculations more efficient and also more con-

Table 1. Parameters for the COLAV methods.

SB-MPC PSB-MPC

Parameter Value Value

T 200 s 200 s
Ts,MPC 0.5 s 0.5 s
dsafe 40m 40m
κi 10.0 10.0
Kum 9.0 9.0
K∆um

8.0 8.0

Kχ,port 1.8 1.8
Kχ,starboard 1.5 1.5
K∆χ,port 1.2 1.2

K∆χ,starboard
0.9 0.9

Tc - 6 s
NMC - 100
qP - 0.00005
rP - 0.001
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Fig. 4. Head-on scenario with 1 obstacle.

sistent and realistic by considering obstacle manoeuvres
and probabilistic COLREGS compliance.
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Blaich, M., Köhler, S., Reuter, J., and Hahn, A. (2015).
Probabilistic collision avoidance for vessels. IFAC-
PapersOnLine, 48(16), 69–74.

Chauvin, C. (2011). Human factors and maritime safety.
Journal of Navigation, 64, 625 – 632.

Chen, P., Huang, Y., Mou, J., and van Gelder,
P. (2019). Probabilistic risk analysis for ship-
ship collision: State-of-the-art. Safety Science,
117, 108–122. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85064275718&doi=
10.1016%2fj.ssci.2019.04.014&partnerID=40&md5=
f14a25f3704e4b3167029568dd76e8a0.

Cho, Y. and Kim, J. (2017). Collision probability as-
sessment between surface ships considering maneuver
intentions. In Proc. OCEANS 2017 - Aberdeen, 1–5.
doi:10.1109/OCEANSE.2017.8084791.

EMSA (2018). The european maritime safety agency:
Annual overview of marine casualties and incidents.
URL http://www.emsa.europa.eu/emsa-documents/
latest/item/3406-annual-overview-of-marine-
casualties-and-incidents-2018.html.

Eriksen, B.H., Wilthil, E.F., Fl̊aten, A.L., Brekke, E.F.,
and Breivik, M. (2018). Radar-based maritime colli-
sion avoidance using dynamic window. In 2018 IEEE
Aerospace Conference, 1–9.

Evans, M. and Rosenthal, J. (2009). Probability and
Statistics: The Science of Uncertainty. W. H. Freeman.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14716



Fossen, T.I. (2011). Handbook of marine craft hydrody-
namics and motion control. John Wiley & Sons.

Goerlandt, F. and Montewka, J. (2015). Maritime trans-
portation risk analysis: review and analysis in light of
some foundational issues. Reliability Engineering &
System Safety, 138, 115–134.

Hagen, I.B. (2017). Collision Avoidance for ASVs Using
Model Predictive Control. Master’s thesis, NTNU.

Huang, Y., Chen, L., Chen, P., Negenborn, R.R., and
van Gelder, P. (2020). Ship collision avoidance meth-
ods: State-of-the-art. Safety Science, 121, 451 –
473. URL http://www.sciencedirect.com/science/
article/pii/S0925753519306356. Unpublished.

IMO (1972). COLREGS - International Regulations for
Preventing Collisions at Sea. Convention on the Inter-
national Regulations for Preventing Collisions at Sea,
1972.

Ioannou, P. and Sun, J. (2012). Robust Adaptive Control.
Dover Publications Inc.

Johansen, T.A., Perez, T., and Cristofaro, A. (2016).
Ship collision avoidance and COLREGS compliance
using simulation-based control behavior selection with
predictive hazard assessment. IEEE Transactions on
Intelligent Transportation Systems, 17(12), 3407–3422.

Kalman, R.E. (1960). A new approach to linear filtering
and prediction problems. Journal of basic Engineering,
82(1), 35–45.

Levander, O. (2017). Autonomous ships on the high seas.
IEEE Spectrum, 54(2), 26–31.

Macrae, C. (2009). Human factors at sea: common pat-
terns of error in groundings and collisions. Maritime
Policy & Management, 36(1), 21–38.

Mallick, M. and Scala, B.L. (2008). Comparison
of single-point and two-point difference track
initiation algorithms using position measurements.
Acta Automatica Sinica, 34(3), 258 – 265. URL
http://www.sciencedirect.com/science/article/
pii/S1874102908600117.

Park, J., Choi, J., and Choi, H. (2019). COLREGS-
compliant path planning considering time-varying tra-
jectory uncertainty of autonomous surface vehicle. Elec-
tronics Letters, 55(4), 222–224.

Rajendran, P., Moscicki, T., Wampler, J., Shah, B.C.,
von Ellenrieder, K., and Gupta, S.K. (2018). Wave-
aware trajectory planning for unmanned surface vehicles
operating in congested environments. In 2018 IEEE In-
ternational Symposium on Safety, Security, and Rescue
Robotics (SSRR), 1–7.
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