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Abstract: In this paper, a damage assessment framework based on the infrared technology
is proposed to assess the damage of the spacecraft. This framework mainly contains three
steps. Firstly, a damage reconstruction model based on sparse model is proposed to reconstruct
the damage image of different layers. To estimate the parameter of the model, variational
Bayesian is used for calculating the parameters. Secondly, a damage extraction method is used
to eliminate noise in the images. At the same time, this procedure can effectively make the
weak subsurface damage more clear. Finally, in order to compare the location of surface and
subsurface damage, image fusion method is used to achieve damage fusion. In the experiment,
the proposed framework is used for the Whipple shield detection, both images and evaluation
parameters show the effectiveness and high-accuracy of the new model.
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1. INTRODUCTION

The spacecraft is one of the important tools for people
to explore the space. However, the huge amount of space
debris (Fang et al 2019) in hypervelocity have an immea-
surable impact on the safe use of the spacecraft. Therefore,
the assessment of the aerospace material damage becomes
important. Infrared technology can be effectively used for
damage extraction of spacecraft because it is non-contact,
fast and convenient Huang et al. (2020). In the process
of data acquisition, an infrared camera is used to record
the thermal distribution of the material, and the collected
data contain the different damaged information and non-
damaged information (Maldague 2001), (Yin et al 2019).
Due to the difference of the medium between the damaged
areas and non-damaged areas, the heat distribution in dif-
ferent layers of damage may be different. These differences
can be applied to reconstruct different layers of damage.
In order to extract the characteristic of different layers
of damage to reconstruct damage information. In (Gao
et al 2001), a linear model is used to described the ther-
mal images, and independent component analysis (ICA)
(Chen et al 2018), principal Component Analysis (PCA)
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(Meng et al 2018) are used to reconstruct the damaged
information. In (Fan et al 2019), Flourier transform and
other methods are used to reconstruct the defects of the
topography images.

In addition, the sparse models are rapidly developed in
many fields. A multi-tasks sparsity model is applied to
achieve human-machine interaction. (Sun et al 2019).
In (Wang et al 2018), a joint sparse model based on
cone, which replaces the infinite space of pixels with
a non-negativity space of pixels, is used to classify the
hyperspectral image. Currently, sparse model can be used
to realize pattern recognition. In (Peng et al 2012), robust
PCA is proposed to decompose linearly correlated images.
Also, a multi-objective memetic algorithm is proposed to
extract the sparse components of the images in (Wu et
al 2018). In order to realize face recognition, a sparse
corruption non-negative matrix factorization method is
proposed in (Guo et al 2019). In (Yan et al 2017),
a sparse model is proposed to reconstruct the ghost-
free high dynamic range image. Cross-validation (CV)
methods (Ward 2009), (Lingraj et al 2018), Markov chain
Monte Carlo (MCMC) methods (Cai et al 2018), (Ginting
et al 2015) and variational Bayesian method (Zhang
et al 2015), (Qin et al 2019) can be used for sparse
decomposition. Hence, they can be used to mine damaged
information from infrared thermal image data.
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In this paper, a damage assessment framework is proposed
to realize the assessment of spacecraft. The main structure
of the spacecraft is the Whipple shield structure (Zhang
et al 2018). It is considered as a two-layer structure, which
can improve the the protection level of the spacecraft and
also can against hypervelocity impact of space debris. The
main contributions of our works are as follows:

(1) A damage assessment framework is proposed to assess
hypervelocity impact. It contains a damage reconstruction
model and an image processing model;

(2) In the proposed method, it is the first time to recon-
struct the damage image of hypervelocity impact by the
variational Bayesian method;

(3) An image processing framework is proposed to process
damage images of hypervelocity impact, which contains
the image smoothing and segmentation based on mean
shift algorithm (Zhang et al 2012), (Zhou et al 2013), and
image fusion method based on multi-scale transform (He
et al 2018), (Zhao et al 2019).

2. DAMAGE ASSESSMENT FRAMEWORK

Due to the complexity and diversity of the debris in the
space, it can cause many different damages to the space-
craft. Directly observable damages such as craters and
perforations may occur on the surface. It is also worth
mentioning that there may be bulges, peelings and other
damages in the invisible subsurface. To detect the dam-
age, infrared technology is considered to be an effective
technology, which achieves target recognition through the
difference of heat between damaged area and non-damaged
area. An infrared thermography damage detection system
is shown in Fig. 1. A signal generator is used to generate
the excitation signal, then the signal drives the flash ex-
citation equipments on the material. After that, the light
energy on the surface of the material is converted into
heat energy. Finally, an infrared camera is used to record
the heating process of material, and a series of recorded
infrared images constitute an infrared image sequence.

The thermal image sequence can be described by a matrix
block (Y ′ ∈ RI×J×Nt), where the first two dimensions
represent spatial information, and the last one represents
time information. As shwon in Fig. 1, there is a lot of
damage information in it. Hence, a detection framework
is proposed to extract the damaged area in this paper. As
shown in Fig. 2, this detection framework mainly includes
three parts. Firstly, a damage reconstruction model is
proposed to reconstruct the damage image. After that,
an image processing framework for further processing of
damage images is proposed, which includes two steps:
a damage extraction method is used to eliminate noise
and improve the clarity of subsurface damage. Also, a
damage fusion method is applied to compare the damage
of different layers.

3. PROPOSED METHOD

3.1 Establishment of model

In this Section a damage reconstruction model is proposed
to reconstruct images of the damage. XF , XB and XN are
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used to describe the characteristic of the damage on the
surface, that of the damage on the subsurface and that
of the non-damaged areas respectively. Then, the damage
reconstruction model is as follows:

Y =

NtF∑
tF=1

XF (tF )λF (tF )︸ ︷︷ ︸
DF

+

NtB∑
tB=1

XB(tB)λB(tB)︸ ︷︷ ︸
DB

+

NtN∑
tN=1

XN (tN )λN (tN )︸ ︷︷ ︸
B

+N (1)

where Y ∈ RK×Nt , K = I × J is converted from Y ′, Y =
[vec(Y ′(1)), vec(Y ′(2)), ..., vec(Y ′(Nt))], vec (Gao et al
2015) is the vectorization operator. XF ∈ RK×NtF , XB ∈
RK×NtB , XN ∈ RK×NtN . XB(tB), XF (tF ) and XN (tN )
are the columns vector of XB , XF and XN respectively.
λF ∈ RNtF

×Nt , λB ∈ RNtB
×Nt and λN ∈ RNtN

×Nt

represent their respective mixed parameter matrices, and
λF (tF ), λB(tB) and λN (tN ) are the rows vector of λF , λB

and λN respectively. N represents the noise matrix.

The low rank matrix B can be used to represent the
linear combination of the non-damaged area. In addition,
since the damage is only a small part of the overall
material, the linear combination of surface damage and
that of sub-surface damage can be expressed by sparse
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matrices DF , DB respectively. Through the singular value
decomposition (SVD), B = STT , where S ∈ RK×r,
T ∈ RNt×r. In order to calculate the sparse model,
each column of S and T is set to obey the Gaussian
distribution with mean of zero and precision of σj , the
probability density functions are as follows: p(S|σ) =
r∏

j=1

N(sj |0, σ−1
•j EK), p(T |σ) =

r∏
j=1

N(tj |0, σ−1
•j ENt), where

E is the unit matrix, σj obeys the Gamma distribution,

i.e. p(σi) = Gamma(u, 1
v ) ∝ σu−1

i exp(−vσi), where u and
v are hyperparameters.

Each element of DF and DB obeys the Gaussian dis-
tribution with mean of zero and precision of αij and
βij respectively, the probability density functions are

as follows: p(DF |α) =
∏
i

∏
j

N(dFij |0, α−1
ij ), p(DB |β) =∏

i

∏
j

N(dBij |0, β−1
ij ), where αij and βij obey Jeffrey’s pri-

or, i.e., p(αij) = (αij)
−1, p(βij) = (βij)

−1, i = 1, 2, ...,K,
j = 1, 2, ..., Nt.

The noise is Gaussian noise and the probability density
function is as follows: p(N |η) = N(N |0, η−1EKNt), where
p(η) = η−1.

In (1), the conditional probability of the observed signal
can be express as: p(Y |S, T,DF , DB , η)
=

∏
i

∏
j

N(Y |STT +DF +DB , η
−1EKNt) and the joint

probability of the model is as follows: p(Y, S, T,DF , DB, σ,
α, β, η) = p(Y |S, T,DF , DB , η)p(S|σ)p(T |σ)p(DF |α)
p(DB |β)p(σ)p(α)p(β)p(η)

3.2 Estimation of Model Parameters

In this paper, variational Bayesian inference based on
mean field theory (Qin et al 2019) is used to estimate
parameters. The posterior probability of each hidden vari-
able is calculated by minimizing KL divergence (Kullback
et al 1951). In the joint probability, the set of variables
is Z = (S, T,DF , DB, σ, α, β, η). Then, Q(Zk) is used to
represent the posterior, k = 1, ..., 8, the estimation process
is as follows:

lnQ(Zk) = ⟨ln p(Y,Z)⟩Z ̸=Zk
+ C (2)

where ⟨•⟩ represents expectation, C is a constant, each
hidden variable is independent of each other.

a) Calculation of S and T : Each row of S obeys the
Gaussian distribution, the mean can be expressed as:

⟨si•⟩T = ⟨η⟩ΣS ⟨T ⟩T (yi• − dFi• − dBi•)
T (3)

where ΣS = (⟨η⟩
⟨
TTT

⟩
+ γ)−1 represents variance of

S. γ represents a matrix, which the diagonal is σj . γ =
diag(σ1, ..., σr). In addition, each row of T obeys the
Gaussian distribution and its mean can be expressed as:

⟨tj•⟩T = ⟨η⟩ΣT ⟨S⟩T (y•j − dF•j − dB•j )
T (4)

where ΣT = (⟨η⟩
⟨
STS

⟩
+ γ)−1 represents variance of T .

Then, B = ⟨S⟩ ⟨T ⟩T , it is used to represent non-danaged
areas.

b) Calculation of σ: The posterior of σj is the Gamma
distribution, the mean is as follow:

⟨σ•j⟩ =
K +Nt + 2u⟨

sT•js•j
⟩
+
⟨
tT•jt•j

⟩
+ 2v

(5)

where
⟨
sT•js•j

⟩
= ⟨s•j⟩T ⟨s•j⟩ + K(ΣS)jj ,

⟨
tT•jt•j

⟩
=

⟨t•j⟩T ⟨t•j⟩+Nt(Σ
T )jj .

c) Calculation of DF and DB: From ( 2), each element
in DF and DB obeys Gaussian distribution, and their
mean can be expressed as follows:⟨

dFij

⟩
=

⟨η⟩
⟨η⟩+ ⟨αij⟩

(yij − ⟨si•⟩ ⟨tj•⟩T −
⟨
dBij

⟩
) (6)

⟨
dBij

⟩
=

⟨η⟩
⟨η⟩+ ⟨βij⟩

(yij − ⟨si•⟩ ⟨tj•⟩T −
⟨
dFij

⟩
) (7)

d) Calculation of α, β and η: The posterior probabil-
ities of αij , βij and η obey Gamma distribution, where
each mean is as follows:

⟨αij⟩ =
1⟨

d2Fij

⟩ =
1⟨

dFij

⟩2
+ΣDF

ij

(8)

⟨βij⟩ =
1⟨

d2Bij

⟩ =
1⟨

dBij

⟩2
+ΣDB

ij

(9)

⟨η⟩ = KNt⟨
∥Y − STT −DF −DB∥2F

⟩ (10)

where
⟨∥∥Y − STT −DF −DB

∥∥2
F

⟩
=∥∥∥Y − ⟨S⟩ ⟨T ⟩T − ⟨DF ⟩ − ⟨DB⟩

∥∥∥2
F
+ Tr(Nt ⟨S⟩T ⟨S⟩ΣT ) +

Tr(K ⟨T ⟩T ⟨T ⟩ΣS) + Tr(KNtΣ
SΣT ) +

K∑
i=1

Nt∑
j=1

ΣDF
ij +

K∑
i=1

Nt∑
j=1

ΣDB
ij . Tr(•) represents the trace of the matrix.

After initializing the parameters, the matrix of the model
is obtained by optimizing the parameters by iteration
(3), (4), (5), (6), (7), (8), (9) and (10). Finally, each
column in DF and DB can be used to represent an image,
and then the image SF and SB with the strongest color
contrast between the damaged and non-damaged areas are
selected to represent the damage information. By solving
the damage reconstruction mode, the damage images of
different areas can be obtained. However, data acquisition
and model solving can add noise in the images. Hence, the
damage images need to be further processed.

4. IMAGE PROCESSING FRAMEWORK

Damage in different layers can be described by recon-
structed images. However, since noise can be added to the
images in data acquisition and damage reconstruction, an
image processing framework is proposed in this section to
extract effective damaged areas and illustrate the location
of subsurface damage. Firstly, mean-shift algorithm is used
to extract effective damaged areas, the specific steps are
as follows:

(A) S = (ss, sc) is used to represent the image, in which
ss and sc represent spatial and color information, respec-
tively. When k = 1, initializing hs and hc, where hs and
hc represent the size of spatial window and color window,
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respectively. Also, initializing the minimum number of
local pixels M .

(B) Update each pixel:

SSk+1
i =

∑K
n=1 SnGhs,hc(Sn − SSk

i )∑K
n=1 Ghs,hc(Sn − SSk

i )
(11)

where

Ghs,hc(Sn − SSk
i ) =

C
h2
sh

3
c
g

(∥∥∥∥ sn−sskis
hs

∥∥∥∥) g

(∥∥∥∥ sc−sskic
hc

∥∥∥∥) is

used to represent a kernel function, C is a constant.

(C) When
∣∣SSk+1

i − SSk
i

∣∣ < ε, then Zi = (zis , zic) =

SSk+1
i , otherwise k = k + 1 and return to Step (B).

(D) If the pixels satisfy ∥zs − zis∥ < hs and ∥zc − zic∥ <
hc, they are merged into the same category. Each category
has NumCq pixels, where q = 1, 2, ..., Q. If NumCq < M ,

then combine the qth category and its neighborhoods. Q′

is used to represent the number of final categories.

(E) Calculate the value of the ith pixel:

S∗
i = {zic |zic =

∑
zis∈Cq

zic

/
NumCq ,

q = 1, ..., Q′, i = 1, ...,K}
(12)

The effective damaged areas can be obtain by mean-shift
algorithm. Moreover, in order to illustrate the location
of subsurface damage, multi-scale transform is used to
achieve image fusion. The details are as follows:

(a) t = 1, initializing color images lR
0
F = S∗

F , lR
0
B = S∗

B ,
low-pass filter fl and high-pass filter fh, the maximum
number of transformation T , where S∗

F and S∗
B represent

images of damage in different layers.

(b) The images are transformed along the row by fl and
fh: L

t
F (i, :) = lR

t−1
F (i, :) ∗ fl, H

t
F (i, :) = lR

t−1
F (i, :) ∗ fh,

Lt
B(i, :) = lR

t−1
B (i, :)∗fl andHt

B(i, :) = lR
t−1
B (i, :)∗fh. The

transformed images are represented as: LHt
F = (Lt

F : Ht
F )

and LHt
B = (Lt

B : Ht
B). Sampling LHt

F and LHt
B along

the column, and images ∗LHt
F and ∗LHt

B can be obtained.

(c) The images are transformed along the column: LHLt
F (:

, j) = ∗LHt
F (:, j) ∗ fl, LHHt

F (:, j) = ∗LHt
F (:, j) ∗ fh,

LHLt
B(:, j) = ∗LHt

B(:, j) ∗ fl and LHHt
B(:, j) = ∗LHt

B(:

, j) ∗ fh to obtain LHLHt
F =

(
LHLt

F
T
: LHHt

F
T
)T

and LHLHt
B =

(
LHLt

B
T
: LHHt

B
T
)T

. Down-sampling

LHLHt
F and LHLHt

B ,
∗LHLHt

F and ∗LHLHt
B can be

obtained, which include a part of the color image lR
t
F ,

lR
t
B and three parts of the texture image hR

t
F , hR

t
B ,

respectively ,where lR
t
• represents the color image, which

is initialized by the reconstructed image, Lt
•(i, :) and

Ht
•(i, :) represent color and texture images along the row,

respectively, and LHLt
•(:, j), LHHt

•(:, j) represent color
and texture images along the column, respectively.

(d) t = t+ 1, until t > T , otherwise return to Step (b).

(e) tt = T , initializing lR
T = a · lRtt

F + b · lRtt
B, where lR

tt

represents the fused color image, a and b represent fusion
coefficients, a+ b = 1.

(f) hR
tt = max {hRtt

F , hR
tt
B}, where hR

tt represents fused
the fused texture image. hR

tt and lR
tt form an image Rtt.
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(b) The sub-surface.

Fig. 3. The results of new method.

(g) Up-sampling Rtt to get ∗Rtt
col. Then, transform it along

the column Rtt
cl1 = ∗Rtt

col(:, j) ∗ fl, R
tt
cl2 = ∗Rtt

col(:, j) ∗ fh
to get an image Rtt

cl, where fl and fh represent inverse
transformation; After that, up-sampling Rtt

cl to get ∗Rtt
row.

Then, transform it along the row lR
tt
1 = ∗Rtt

row(:, j) ∗ fl,

lR
tt
2 = ∗Rtt

row(:, j)∗fh. Finally, lRtt
1 and lR

tt
2 form an image

lR
tt−1.

(h) tt = tt − 1, until tt < 1, the final fused image is
expressed R = lR

0, otherwise, return to Step (f).

Finally, fusion image is obtained. It can be used to il-
lustrate the location of subsurface damage, and analyse
damage degree of materials.

5. SIMULATION AND EXPERIMENTAL RESULTS

The specimen to be tested in this paper is the rear
wall of the Whipple shield at the impact velocity of 5.3
km/s. No perforation is found by direct observation even
though there are pits on the surface, while peeling damage
has been formed in the middle of the subsurface. In the
experimental setup stage, the flash excitation equipments
ares 5cm away from the material, and the infrared camera
(made by FLIR) is 80cm away from the material. In the
processing of data acquisition, setting the maximum power
of Easyheat as 2.4KW, the maximum current is 400A,
and the sampling frequency is 50Hz, the heating time is
8s. Finally, the collected infrared image sequence can be
described by a 512× 640× 544 matrix block.

Before the variational Bayesian process, since there is a
lot of redundant information in the image sequence, PCA
is used to extract effective frames with 95% importance.
After that, variational Bayesian is used to reconstruct
images of damage from model. Setting maximum number
of iteration to 100 times. Also, hyperparameters u and v
are set to 10−6. Then, damage of different layers are shown
in Fig. 3.

Fig. 3(a) shows the damage on the surface, through the
comparison of Fig. 3(a) and Fig. ??, the result shows that
the new method appear as granular in the figure, which can
clearly describe the damage. In addition, Fig. 3(b) shows
the damage on the subsurface, through the comparison
of Fig. 3(b) and Fig. ??, there is a highlight part in the
result of proposed method, which can accurately describe
the peeling damage on the subsurface.

In total, the proposed model can both reconstruct the
observable and unobservable damages on the surface and
subsurface respectively. It is an effective method to assess
the damage of the hypervelocity impact.
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Highlight part

Noises are eliminated

Fig. 4. The result of mean-shift.

The subsurface damage

The surface damage

Fig. 5. The result of fusion.

As shown in Fig. 3(b), although the highlighted part can
explain the damage on the subsurface, there is still weak
interference information around it. Therefore, the mean-
shift method is used to process the images. The kernel
function is set to Gaussian function, where hs = 6 and
hc = 6. Also, The minimum number of local pixels is set
to M = 9, termination condition is set to ε = 0.01. Then,
the results are shown in Fig. 4. In Fig. 3(b), there are two
yellow bright spots on the upper and lower edges of the
image, and another red bright spot is on the left edge.
These bright spots are noises formed in the process of
damage reconstruction and data acquisition. However, the
bright spots at different positions are eliminated in Fig. 4,
also the image only highlights the subsurface damage in
the middle. That means the redundant information is
removed by mean-shift method.

Then, to visually explain the damages of the spacecraft,
the image shown in Fig. 3(a) and Fig. 4 are fused by a
fusion method. Setting fl = [1, 1], fh = [1,−1], T = 2,
fusion coefficients are set to (a = 0.3, b = 0.7). Finally, the
result is shown in Fig. 5. The red part in the middle is the
unobservable damage on the subsurface, and the yellow
spot around it is the pit damage on the surface.

The images of each step of the proposed method illustrate
our method can be used to assess the damage of hyperve-
locity impact. Moreover, to objectively evaluate proposed
method, F-score and accuracy are used to describe the
performance of the method. In the evaluation process,
an infrared camera is used to collect the infrared photos
of the surface and subsurface of the material to form a
comparative standard image. After that, selecting a frames
containing the respective damage from image sequences
respectively. As show in Fig. 6(a), image i represents the
image selected from the image sequence of surface of the
material, and Fig. 6(b) is considered as the image selected
from the image sequence of subsurface of the material.
Then marking different areas of the image, as shown in
Fig. 6, Event 1 represents subsurface damaged area, event
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(a) Image i.
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(b) Image ii.

Fig. 6. Standard image.

2 represents surface damaged area and event 3 represents
non-damaged area. After that, F-score and accuracy are
used to illustrate the performance of the proposed method.
The formulas are shown in appendix and parameters are
shown in Table 1, the F-score of the proposed method is
1 and the accuracy is 100 %.

Table 1. Performance evaluation of the pro-
posed method.

TP TN FP FN F-score Accuracy

Surface 1 2 0 0 1 100 %

Subsurface 1 2 0 0 1 100 %

In addition, the surface damage is clearly reconstructed
by comparing Fig. 3(a) and Fig. 6(a). Also, by comparing
Fig. 3(b) and Fig. 6(b), the result shows that the heat dif-
fusion caused by the surface damage around the subsurface
damage is removed. The highlighted area in the center
is used to represent subsurface damage. These illustrate
that our proposed method can effectively assess the sur-
face damage and subsurface damage of the hypervelocity
impact.

6. CONCLUSION

This paper illustrates a damage assessment framework
for hypervelocity impact. The proposed method contains
three parts. To start with, a damage reconstruction model
is used to extract damage from image sequence. Moreover,
mean-shift method is used to process images to, describe
the damage more clear. Finally, an image fusion method is
used to fuse damage images of different layers to visualize
subsurface damage. In the experiment, the model is used
to detect the damage of the rear wall of the Whipple
shield. The effectiveness and accuracy of the model are
illustrated intuitively through images. In addition, the F-
score of the new method is 1.00 and the accuracy is 100%,
which objectively shows that the model can be used for
damaged information reconstruction.

REFERENCES

Yingwu Fang. Effects of space-based nanosecond pulse
laser driving centimeter-sized space debris in LEO[J].
Optik, 2019, 185:12-17.

X. Huang, C. Yin, H. Ru, S. Zhao, Y. Deng, Y. Guo, and
S. Liu, (2020). Hypervelocity impact damage behavior
of B4C/Al composite for MMOD shielding application.
Materials & Design, 186, 108323.

X.P. Maldague. Theory and practice of infrared technology
for nondestructive testing, John Wiley&Sons, New
York, 2001.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

836



C. Yin, T. Xue, X. Huang, Y. Cheng, S. Dadras, and
S. Dadras, (2019). Research on damages evaluation
method with multi-objective feature extraction opti-
mization scheme for M/OD impact risk assessment[J].
IEEE Access, 7, 98530 – 98545.

B. Gao, W.L. Woo, G.Y. Tian. Electromagnetic thermog-
raphy nondestructive evaluation: physics-based model-
ing and pattern mining[J]. Scientific Reports, 2016,
6:25480.

Y. Chen, L.L. Niu, R.B. Chen, et al. Sparse-group
independent component analysis with application to
yield curves prediction[J]. Computational Statistics &
Data Analysis, 2018. 63(4):913-922.

Z.Q. Meng, H. Shen, H.M. Huang, et al. Search result
diversification on attributed networks via nonnegative
matrix factorization[J]. Information Processing & Man-
agement, 2018:S0306457318300578-.

X.G. Fan, X.D. Wang. Image processing for three defects
of topography images by SPM[J]. Chemometrics and
Intelligent Laboratory Systems, 2019, 185:12-17.

J. Sun, Q.D Chen, J.N. Sun. Graph-structured multitask
sparsity model for visual tracking[J]. Information Sci-
ences, 2019.(486):133-147.

Z.Y. Wang, R. Zhu, K. Fukui. Cone-based joint sparse
modelling for hyperspectral image classification[J]. Sig-
nal Processing, 2018, 144:417-429.

Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL:
Robust alignment by sparse and low-rank decomposition
for linearly correlated images. IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 11, pp. 2233C2246, Nov.
2012.

T. Wu, J. Shi, X.M. Jiang, et al. A multi-
objective memetic algorithm for low rank and s-
parse matrix decomposition[J]. Information Sciences,
2018:S002002551830642X-.

Z.B. Guo, Y. Zhang. A Sparse Corruption non-negative
natrix factorization method and application in face
image processing & recognition[J]. Measurement, 2019,
136:429-437.

Q.S. Yan, J.Q. Sun, H.S. Li, et al. High dynamic range
imaging by sparse representation[J]. Neurocomputing,
2017:S0925231217310020.

R. Ward. Compressed sensing with cross valida-
tion[J]. IEEE Transactions on Information Theory,
2009, 55(12):5773-5782.

D. Lingraj, A. Sanjay, P. Rutuparna, et al. Nested
cross-validation based adaptive sparse representation
algorithm and its application to pathological brain
classification[J]. Expert Systems with Applications,
2018:S0957417418304627-.

C.F. Cai, et al. Metamodel-based Markov-Chain-Monte-
Carlo parameter inversion applied in eddy current flaw
characterization[J]. NDT & E International, 2018,
99:13-22.

V. Ginting, F. Pereira, A. Rahunanthan, et al. Multi-
physics Markov-Chain-Monte-Carlo methods for subsur-
face flows[J]. Mathematics & Computers in Simulation,
2015, 118(C):224-238.

G.C. Zhang, N. Kingsbury. Variational Bayesian image
restoration with group-sparse modeling of wavelet coef-
ficients[M]. Academic Press, Inc. 2015.

L. Qin, Z. Wang, Q.J. Guan, et al. Variational
Bayesian image restoration with multi-structured model

of wavelet transform coefficients[J]. Signal Processing:
Image Communication, 2019, 72:1-8.

P.L. Zhang, et al. Study of the shielding performance of
a Whipple shield enhanced by Ti-Al-nylon impedance-
graded materials. International Journal of Impact En-
gineering, 2018:S0734743X18302872-.

S. Zhang, Y.P. Q. Mean-shift algorithm apply
for infrared imaging tracking. AASRI Procedia,
1.Complete(2012):52-57.

H.Y. Zhou, X.L. Li, G. Schaefer, et al. Mean shift based
gradient vector flow for image segmentation[J]. Comput-
er Vision and Image Understanding, 2013, 117(9):1004-
1016.

K.J. He, D.M. Zhou, X.J. Zhang, et al. Multi-focus:
Focused region finding and multi-scale transform for
image fusion[J]. Neurocomputing, 2018, 320:157-170.

D. Zhao, X. Long, et al. Multi-scale Optimal Fusion model
for single image dehazing[J]. Signal Processing: Image
Communication, 2019.74:253-265.

B. Gao, W.L. Woo, Y. He, et al. Unsupervised sparse
pattern diagnostic of defects with inductive thermogra-
phy imaging system[J]. IEEE Transactions on Industrial
Informatics, 2015, 12(1).

S. Kullback, R.A. Leibler. On Information and sufficien-
cy[J]. Annals of Mathematical Statistics, 1951

Appendix A. PERFORMANCE EVALUATION
PARAMETERS

The F-score and accuracy are used to evaluate the per-
formance, namely F = 2×macro.P×macro.R

macro.P+macro.R , Accuracy =
TP+TN

TP+TN+FN+FP , wheremacro.P =
∑n

i=1 Pi/n,macro.R =∑n
i=1 Ri/n, P = TP/(TP + FP ), R = TP/(TP + FN).

True positive (TP) represents area belonging to damaged
area correctly predicted as belonging to the damaged area.
True negative (TN) represents area correctly predicted as
belonging to the non-damaged area. False positive (FP)
represents area predicted as non-damaged area which real
belongs to damaged area. False negative (FN) represent
area predicted as damaged area which comes from non-
damaged area.
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