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Abstract: In this paper, we consider a dedicated lot sizing and scheduling problem inspired from
a real-world application in tire industry. This problem consists in scheduling several products
on parallel machines with eligibility constraints within a finite planning horizon. We consider
several specific constraints such as the number of simultaneous scheduled products, the number
of setup per period and minimum quantities to produce. A mathematical model that determines
a production schedule minimizing backlogging, low and high inventory surplus is proposed and
tested on real data with up to 210 products, 70 machines and 7 periods. The obtained results
show the effectiveness of the proposed model which improve significantly the industrial solution.

1. INTRODUCTION

Production planning and control is a burning issue for
most supply chain managers in manufacturing indus-
try and still remain one of the most challenging prob-
lems in operations research. Tremendous progresses have
been made in information technologies over the past few
decades. This is an incredible opportunity for companies
to reach new market shares but it has also brought a fierce
competition to reduce costs and provide better customer
service in a globalized environment. An effective produc-
tion planning allows companies to meet customer expec-
tations while reducing production and inventory costs.

Lot sizing problems have been studied widely in the lit-
erature over the last decades. The expected output of lot
sizing is to give a complete picture over a planning horizon
of how many parts to produce at each period and how
many pieces to carry in inventory. It takes its origin in
the well-known Economic Order Quantity (EOQ) model
of Harris (1913) under the assumption of single item,
constant demand and infinite planning horizon. Since then,
numerous researchers have built more realistic models to
tackle real world problems. Production capacity limita-
tion is a significant constraint that production managers
have to deal with. It first has been addressed in Manne
(1958) and is known as the capacitated lot sizing problem
(CLSP). The general case of the CLSP is NP-hard Bitran
and Yanasse (1982). Since then, various extensions of the
lot sizing problem have been studied extensively and can
be classified based on several crieria. An exhaustive review
on the CLSP can be found in Drexl and Kimms (1997) and
Pinedo (2005) and a classification of criteria is presented
in Brahimi and Dauzère-Péres (2017).

2. LITTERATURE REVIEW

We consider a dedicated lot sizing problem in the tire
industry. Several real-world problem have already been

studied. Lasdon and Terjung (1970) used a column gener-
ation approach and Dantzig-Wolfe decomposition to solve
an industrial case with up to 393 items to schedule over
6 periods in less than 15 minutes. Degraeve and Schrage
(1997) also proposed a column generation procedure to
produce a schedule for one work shift in tire industry.
This approach is also used in a ”rolling horizon” fashion.
Jans and Degraeve (2004) presented a model with specific
extensions such as general startup times, multiple capac-
itated ressources and backlogging. A column generation
based algorithm is proposed and a lagrangian relaxation
is used to reduce the degeneracy of the master problem.
The algorithm has been tested with up to 30 products and
30 periods. More recently Yalaoui et al. (2013) proposed
a MIP model and approximate resolution methods based
on genetic and particle swarm optimisation algorithms
coupled or not with fuzzy logic control to solve a particular
version of the hybrid flow shop scheduling problem from a
real application in the automotive industry.

We limit the review to the capacitated versions of lot-sizing
problem. Belvaux and Wolsey (2000) propose a prototype
modelling and optimization system. They presented the
generic version of the lot sizing problem to cover a wide
variety of big bucket and small bucket models. The clas-
sification of lot sizing problems can be done on several
criteria (see Fig. 1) such as number of production stages
(single or multi-level), number of products to schedule
(single or multi-product), number of machines or resources
available (single or multi-machine). In addition to that, na-
ture of demand, planning horizon discretization, capacity
constraints, backordering policy and setup structure can
be considered.

This paper focus on multi-products models. We invite the
reader to refer among others to Brahimi et al. (2017) for a
recent and exhaustive survey on single-item models. Multi-
products lot sizing problems have been studied extensively
in the literature. The multi stage model is the most general
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Fig. 1. Capacitated lot sizing models classification

case. The well-known multi-level capacitated lot sizing
problem (MLCLSP) was proposed by Billington et al.
(1986). The basic principle of this formulation is to link
end items demand with internal sub-components needs
through a ”gozinto” matrix, which is a representation of
the bill of material. This problem has been proven NP-
hard by Tempelmeier and Derstroff (1996) and the add
of setup time constraint make the feasibility problem NP-
complete (Maes et al. (1991)). Several approaches have
been used to solve the MLCLSP such as mathematical
programming, Lagrangian relaxation and decomposition,
local search and metaheuristics. For example Helber and
Sahling (2010) proposed a new approach called fix and
optimize (F&O). They solve to optimality in an iter-
ative fashion sub-problems derived from the MLCLSP.
They experimented three ways to define the sub-problems
to be treated: product-oriented decomposition, resource-
oriented decomposition and process-oriented decomposi-
tion. They empirically prove on the MLCLSP that the
fix and optimize heuristic outperform the classical rolling
horizon based fix-and-relax heuristic (R&F).

However, F&O method can be mixed with the classical
R&F heuristic. For instance Toledo et al. (2015) used R&F
heuristic to build an initial solution and then improved it
by applying F&O heuristic to solve the MLCSLP with
backlogging and to apply it to an industrial case called
two-stage glass container production scheduling problem.
Recently, Behnamian et al. (2017) considered a markovian
approach to MLCLSP with sequence-dependent family
setup times, setup carry over and uncertainty in levels
due to uncertainty in inspection, rework and scrap. They
developed a mixed integer linear programming model
tested on a numerical example and provided a sensitivity
analysis.

According to Drexl and Kimms (1997) the MLCSLP can
be considered as the model dedicated to MRP systems,
whereas the mono-level multi-product CLSP is viewed
as the dedicated MPS model. A review of model and
algorithm for the CLSP is presented in Karimi et al.
(2003). Multi-item CLSP is difficult to solve to optimality,
especially with setup constraints. Miller et al. (2000)
provided valid inequalities to improve the resolution of a
branch and cut MIP solver.

Single-level multi-item problems can either be single or
multi-machines. For instance, Ceschia et al. (2017) pro-
posed a Simulated Annealing(SA) approach and a hybrid
method SA/MIP to solve the multi-item single-machine

CLSP. Lately, Nobil and Taleizadeh (2016) addressed a
multi-item single-machine production system with imper-
fect products to rework under non-zero setup times and
proposed a non-linear programming model to solve it.
However, most papers in the literature deal with the multi-
machine version of the multi-item CLSP. The relax-and-
fix (R&F) solution heuristic is widely used to solve this
problem. For example, de Araujo et al. (2007) developed a
MIP model with sequence-dependant setup costs and time
and then solved it using R&F heuristic in a rolling horizon
fashion. To improve the R&F method three variants of
local search are presented: descent heuristic, diminishing
neighbourhood search and simulated annealing and com-
pared to the commercial solver IBM Ilog Cplex.

Absi and Kedad-Sidhoum (2007) also addressed the multi-
item CLSP with setup times, and added shortage costs
and safety stock deficit costs. They propose MIP heuristics
based on a planning horizon decomposition strategy to find
a feasible solution on real-world instances. They provide
a R&F heuristic and a double R&F heuristic and use
Cplex 9.0. to solve sub-problems to optimality. Recently
Ghirardi and Amerio (2019) considered lot sizing problem
with back-ordering, setup carry-overs and non identical
machines. They suggested three matheuristics to solve
this problem from the ideas of variable neighbourhood
local search, local branching and feasibility pump. The
feasibility pump algorithm outperformed the other algo-
rithms and two different MIP-solvers. In addition Absi and
van den Heuvel (2019) provided a worst case analysis of
R&F heuristics for lot sizing problems. They showed that
even for simple instances with time-invariant parameters,
the worst case ratio may be unbounded.

To the best of our knowledge, the specific constraints
that we describe in the following section have never been
considered together in the literature, even in the real-world
problems close to the one we cope with.

The paper is organised as follows. Section 3 describes the
global production process of a tire and provide specific
details on the curing process. In Section 4, the model
is presented and specific constraints are explained. The
results of our model are discussed in Section 5. Conclusion
is to be found in Section 6.

3. PROBLEM DESCRIPTION

Our paper is inspired by a french tire manufacturer in
the agricultural field. They face a complex production
planning process with a wide portfolio of tires to be
produced on unrelated parallel machines with numerous
eligibility constraints. The production is based on a make-
to-stock inventory policy, so that the inventory level stays
between a minimum and a maximum. The whole pro-
duction process can be divided in 5 major sub-processes
(See Fig.2). First, a banbury mixer creates a homogeneous
rubber material based on natural rubber, carbon black,
resins and other chemicals. This rubber material is the
basic raw material to build a tire, with textile layer and
steel wire. Second, the rubber is shaped into different sub-
components during the extruding and calendaring process.
At the same time the textile layers are cut at the right di-
mensions and the steel wires transformed into bead cores.
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Third is the assembly process. All the components are
put together so that the tire gets its final form before
curing. The tire is often referred to a “green tire”. Fourth
is the curing and vulcanizing process. A tire-specific mold
is placed into a heater. That heater utilizes steam to heat
the green tire. The tacky and pliable rubber is transformed
into a non-tacky less pliable long lasting state material
during the vulcanization process. Finally inspection and
finishing operations remains before the tire is stored in
the warehouse.

Fig. 2. Tire manufacturing global process

In this paper, we focus on the curing sub-process produc-
tion planning problem. It is the most important stage as it
has been identified as the bottleneck, requires consequent
setup times and is highly restricted by tire-heater compat-
ibilities. During the curing process the green tire is put
into a mold that provides a specific pattern for the tire.
Each mold is tire-specific: it can be used for exactly one
type of tire. For some tires, several molds are available.
However most tires have only one mold. The mold can be
placed in several heaters, each heater containing at most
one mold at a time. The curing time depends on the tire
produced and the heater used. The heaters capacity links
together different tires types that compete for the same
resource. Except for the first and the last period of the
production campaign, tires are produced in a continuous
run and production is always done at full capacity. This
type of production is often referred as “all-or-nothing”
production. Only one type of tire can be cured in a heater
within one period. Thus, our problem is classified as a
small-bucket lot sizing problem.

4. MODEL FORMULATION

The production planning problems encountered in the
industry may be intractable in numerous situations due
to several practical constraints. The demand over the
planning horizon is known in advance (deterministic) and
changes over time (dynamic). In order to deal with situa-
tions where demand cannot be met in time, the company
allows backlogging. Specific constraints are also added

such as the number of ”campaign endings” (the plan of
the end of a campaign) within the planning horizon or the
number of different items produced at each period. The
resolution approach proposed in this paper is motivated
by developing a method that helps to find a good feasible
solution for the single-level multi-item multi-machine with
dynamic demand, backlogging and a simple setup struc-
ture lot sizing problem with specific constraints.

Indexes and sets
A: Number of tires in the portfolio, a = 1 .. A
N : Number of items to plan, i = 1 .. N , N ≥ A
Na: Number of processes i for tire a, i = 1 .. Na
P : Number of curing machines, p = 1 .. P
T : Number of periods in planning horizon (days), t = 1 .. T
H: Number of period sets (weeks), h = 1 .. H
Th: Set of days t in week h
W : Number of workshops in assembly shop, Θ = 1 .. W
NΘ: Set of items doable on workshop Θ
Nd: Number of assembly machine resource (drums),

d = 1 .. Nd

Model parameters
Sa: Maximum stock for tire a
Sa: Minimum stock for tire a
Ka: Number of curing machine resources (molds) available

for tire a
Dat: Demand for tire a at period t
Map: Eligibility matrix tire - heater
ωi: Unit weight of item i
TUi: Unit time of production of item i in assembly shop
Rit: Daily yield of a curing machine for item i during

period t
KMi: Maximum number of molds that can be planned for

item i
Mpt Unavailable heater matrix for maintenance or

industrial trial
Vt: Targeted weight to produce within one period t
vd: Upper bound for targeted weight at day t
vd: Lower bound for targeted weight at day t
vw: Upper bound for targeted weight at week h
vw: Lower bound for targeted weight at week h
SatΘ: Maximum saturation of workshop Θ in assembly

shop (minutes)
Kd: Number of drums d available
S: Maximum number of different items produced

per period
C: Maximum number of molds set up per day t
Cw: Maximum number of molds set up per week h
Der: Maximum number of campaign ending per week h
τ : Minimum duration of a campaign (days)
τ1: Duration of campaign suspension to count a mold setup
τ2: Duration of campaign suspension to count a campaign

ending
M : Big number

Decision Variables
Iat: Inventory level of tire a at the end of period t
Bat: Backorder level of tire a at the end of period t
Yipt: Binary variable that equals 1 if in period t an item i

is produced on machine p; 0 otherwise
Xipt: Quantity of item i to produce on machine p

in period t
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φipt: Binary variable that equals 1 if there is a mold set
up for item i on heater p in period t; 0 otherwise

Ψit: Binary variable that equals 1 if item i is being cured
at period t; 0 otherwise

Derit: Binary variable that equals 1 if there is a campaign
ending for item i in period t; 0 otherwise

Model

The objective of the production planner of the tire com-
pany is to optimize several criteria. The main objective is
to prevent shortage. Once back-ordering has been min-
imized, the production planner tries to keep every tire
between a minimum and a maximum inventory level set
by the supply chain.

Minimize

λ1 ∗
∑A
a=1

∑T
t=1Bat + λ2 ∗

∑N
i=1

∑T
t=1max(0;Sa −

Iat) + λ3 ∗
∑N
i=1

∑T
t=1max(Sa; Iat − Sa)

with λ1 + λ2 + λ3 = 1

Iat−1 +

Na∑
i=1

P∑
p=1

Xipt −Bat−1

= Iat +Dat −Bat, a = 1..A, t = 1..T

(1)

Xipt ≤M ∗ Yipt, i = 1..N, p = 1..P, t = 1..T (2)

Xipt ≥ Yipt, i = 1..N, p = 1..P, t = 1..T (3)
N∑
i=1

Yipt ≤ 1, p = 1..P, t = 1..T (4)

Na∑
i=1

P∑
p=1

Yipt ≤ Ka, a = 1..A, t = 1..T (5)

Xipt = Rit ∗ Yipt −Rdit ∗ Φipt, i = 1..N, p = 1..P, t = 1..T
(6)

Constraint (1) is the inventory balance equation, with con-
sidering back-order. Constraints (2) and (3) link the setup
binary variable and the production variable together. Con-
straint (4) allows only one item to be produced on a heater
within a single period. Constraints (5) and (6) represent
capacity constraints. Given a particular item a, Constraint
(5) limits the number of heaters used to the mold capacity
of that item (Ka). Constraint (6) describes the ”all-or-
nothing” policy. The production rate (Rit) can be affected
by a mold setup (Rdit) or any event planned in advance in
the calendar. In addition, no mold setup is allowed during
the weekends.

Φipt ≥ Yipt − Yipt−1 +
1

τ1 ∗N
∗

t−1∑
o=t−τ1

∑
j 6=i

Yjpo − 1,

i = 1..N, p = 1..P, t = 1..T

(7)

Φipt ≥ Yipt −
t−1∑

o=t−τ1

Yipo, i = 1..N, p = 1..P, t = 1..T (8)

N∑
i=1

P∑
p=1

Φipt ≤ C, t = 1..T (9)

N∑
i=1

P∑
p=1

∑
t∈Th

Φipt ≤ Cw, h = 1..H (10)

Each item changeover from one period to another incurs
a mold setup, which requires human resource and affect
the heater productivity during the changeover. To respect
the changeover capacity two parameters have been set: the
maximum number of mold setup per day (C) and per week
(Cs). Constraints (7) to (9) limit the number of mold setup
per period (days) whereas constraint (7), (8) and (10) limit
the number of mold setup per set of periods (weeks). A
heater is allowed not to produce an item during a few
periods(τ1) without considering a mold setup if the mold
stays in the heater. It means that the heater cannot be
used to produce another item during these periods.

N∑
i=1

P∑
p=1

∑
t∈Th

Xipt ∗ ωi ≤
∑
t∈Th

Vt + vw, h = 1..H (11)

Ni∑
i=1

P∑
p=1

∑
t∈Th

Xipt ∗ ωi ≥
∑
t∈Th

Vt − vw, h = 1..H (12)

Ni∑
i=1

P∑
p=1

Xipt ∗ ωi ≤ Vt + vd, t = 1..T (13)

Ni∑
i=1

P∑
p=1

Xipt ∗ ωi ≥ Vt − vd, t = 1..T (14)

Every week, the factory commits to the supply chain a
targeted total weight of items to produce. The workforce
needed is determined to satisfy this target. Respecting
these constraints is very important to keep cost of pro-
duction the lowest possible. Constraints (11) to (14) make
sure the targeted total weight of items produced is stays
between upper and lower bounds, per days and per week
where ωi represents the unit weight of item i, vw and vw
weekly bounds and vd and vd daily bounds.

Xipt ≤Map ∗M,a = 1..A, i = 1..Na, p = 1..P, t = 1..T
(15)

Xipt ≤Mpt ∗M, i = 1..N, p = 1..P, t = 1..T (16)

Constraint (15) states that the allocation of items must
respect the tire-heater eligibility matrix. Similarly, Con-
straint (16) makes sure that no item is allocated on a
heater shut down for maintenance, industrial trial or any
other planned event.

Ψit ≥
1

P
∗

P∑
p=1

Yipt, i = 1..N, t = 1..T (17)

Ψit ≤
P∑
p=1

Yipt, i = 1..N, t = 1..T (18)

N∑
i=1

Ψit ≤ S, t = 1..T (19)

Constraints (17) to (19) ensure that the number of dif-
ferent items produced in the same period do not exceed
the limit set by the industrial (S). This limit is empirical
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and makes sure that the workshops before the curing
process (assembling, semi-finished items production) are
not saturated.

Derit ≥
1

P
∗

P∑
p=1

Yipt−τ2 − P ∗
t∑

o=t−τ2+1

P∑
p=1

Yipo,

i = 1..N, t = 1..T

(20)

N∑
i=1

∑
t∈Th

Derit ≤ Der, h = 1..H (21)

When a production campaign comes to an end, all the
semi-finished products needs to be produced at the exact
quantity to minimize material loss. It requires a particular
follow up by the agents in the factory and is quite difficult
to manage properly. Thus, a limit of campaign ending per
week Der has been added. Similarly, to the mold setup
constraints, when a production campaign is suspended
for a few days(τ2), it does not count as a campaign
ending. Constraints (20) and (21) states that the number
of campaign ending do not exceed a certain limit Der per
week.∑
i∈Nθ

P∑
p=1

∑
t∈Th

Xipt∗TUi ≤ SatΘ, h = 1..H,Θ = 1..W (22)

Thanks to Constraint (22) the number of minutes planned
on each workshops of the assembly shop do not exceed the
saturation limit SatΘ. This constraint is the reason why
the differentiation through two sets of items a in 1..A and
i in 1..N is necessary. The same tire from client view can
be made on two different assembly shop workshops. Thus
we need to consider the same tire as two different ones
depending on the shop it is made in. It allows the company
to balance the saturation of the different assembly shops
and to provide better the curing process bottleneck.

P∑
p=1

Yipt ∗Mdi ≤ Kd ∗KMi, d = 1..Nd, i = 1..N, t = 1..T

(23)

There is a limited number Kd of each type of drum d in the
assembly shop. Constraint (23) ensures that for each drum
d, the overall production planned in curing process can be
absorbed by the assembly shop, where KMi represents the
maximum number of molds that can be planned for item
i on drum d.

t∑
o=t−τ+1

Φipo ≤ Yipt, i = 1..N, p = 1..P, t = 1..T − τ + 1

(24)

Due to human resources, a minimum campaign duration τ
is considered by the company. The minimum duration of
a production campaign is guaranteed by Constraint (24).

Yipt,Φit,Ψit, Derit ∈ {0; 1} (25)
Xipt, Iat, Bat ∈ N (26)

Finally, Constraint (25) defines the Boolean decision vari-
ables and Constraint (26) the production, inventory and
backorder decision variables.

5. COMPUTATIONAL RESULTS

The proposed model is tested on real data instances (up
to 210 items) on a 8-week planning horizon, knowing that
the first 2 weeks of the planning horizon are fixed. Due
to the complexity of our problem, the model is applied on
each week. The outputs of all weeks are grouped to build
the global production plan. Four sets of data were selected
to test the model. Those sets represent the tires of three
assembly shops and the global portfolio (respectively 14,
57, 102 and 210 items). The commercial solver CPLEX
12.9 was used to solve the problem, limited to 60 minutes
of computational time. The main parameters of the model
are also reported (See Table 1).

Table 1. Results before preprocessing

Items S Der C Cs Gap CPU
(%) (s)

Inst. 1 14 5 1 1 3 0 44
Inst. 2 57 12 3 3 6 0 1216
Inst. 3 102 30 9 3 15 0,87 3600
Inst. 4 210 43 13 5 20 ∅ 3600

To obtain a feasible production planning on Instance 4, we
applied a preprocessing algorithm. Indeed, many tires of
the portfolio do not have demand all year long. So each
tire with demand to 0 on the week to be planned with
an inventory level greater than the minimum stock can be
removed (See Table 2).

Table 2. Results after preprocessing

Items S Der C Cs Gap CPU
(%) (s)

Inst. 1 14 5 1 1 3 0 1086
Inst. 2 57 12 3 3 6 0 1372
Inst. 3 102 30 9 3 15 0,75 3600
Inst. 4 210 43 13 5 20 1,07 3600

Thanks to the preprocessing algorithm, we obtained a
feasible solution in 1 hour on Instance 4 which represents
a real-world lot sizing problem.

6. CONCLUSION

In this paper, we addressed a dedicated lot sizing problem
inspired from the tire industry. This problem is a single-
level multi-item multi-machine new lot sizing problem
with dynamic demand, backlogging, a simple setup struc-
ture and specific constraints. We propose a mathemati-
cal model to solve a real world problem with up to 210
items on 70 machines and 7 periods. The contribution
of our work is twofold. First, we solved a relevant real-
world problem. Second, we introduced and modeled spe-
cific constraints. To the best of our knowledge, respecting
a maximum number of simultaneous items per period, a
maximum number of production campaign ending and
number of setups within a sets of periods have never
been dealt with in the literature. In the next steps of our
research we will be looking for valid inequalities to speed
up the model resolution and to test our tool in the long
term to implement the solution in the factory.
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tion planning: New lot-sizing models and algorithms.
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