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Abstract: This paper describes the extension of a grinding mill model that is publicly available
for educational and training purposes. This industrially derived model of a mill is used to explain
complex concepts of advanced process control (APC) such as model predictive control and soft
sensing. The resulting concepts were developed in a hands-on workshop in the wake of the IFAC
MMM 2019 conference entitled “Modern Data Analytics for Control in Minerals Processing”.
The workshop and the material presented here are aimed at control engineers to explain the
use of APC methods to improve process performance. Both academic and industrial control
engineers attended the workshop, highlighting the relevance of the application of real-life process
control problems.
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1. INTRODUCTION

Teaching automatic control concepts requires specific ap-
plications such as an inverted pendulum or automotive or
robotic challenges. Remote laboratories, also called virtual
labs, are usually based on simulation of simple problems
that can be described easily. A successful example of a
remote lab is a mobile robot and ball-plate problem pre-
sented by Ionescu et al. (2013).

Process control is an important branch of control engineer-
ing with complex models and problems. Goodwin et al.
(2010) give several excellent examples of process control
problems such as rolling mill processes, paper machines
and continuous casting plants that can be used to teach
the impact of model uncertainty, the use of soft sensors,
and the impact of multivariable interactions, highlighting
the value of simulation as an alternative to physical experi-
ments. Martin-Villalba et al. (2008) had earlier described a
heat exchanger, an industrial boiler, and a batch chemical
reactor to explain chemical process control in a virtual
laboratory environment.

Advanced process control (APC) is a cumulative descrip-
tion of state-of-the-art aspects of control in the process

industries such as model predictive control (MPC) and
soft sensing but also auto-tuning, control loop performance
monitoring and much more. The application of APC is
difficult to convey because all depends on the underlying,
complex process. It is therefore necessary to first under-
stand the process and then to explain the concepts such
modern data analytics.

In 2019, The South African Council of Automation and
Control (SACAC) arranged a workshop prior to the 18th
IFAC Symposium on Control, Optimization and Automa-
tion in Mining, Mineral and Metal Processing (MMM
2019) held in Stellenbosch, South Africa. The workshop en-
titled “Modern Data Analytics for Control in Mineral Pro-
cessing” was aimed at providing delegates with an intro-
duction to modern tools used in soft-sensor, dynamic mod-
elling, and model predictive control development. Seven
speakers from two universities and four consulting organ-
isations delivered the workshop. In South Africa, control
engineers are generally well versed in minerals applications
due to the country’s wealth of natural resources.

To explain APC visually and understandably, the pre-
senters decided at an early stage of the development of
the workshop to utilise a public domain model of a semi-
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autogenous grinding (SAG) mill (Le Roux et al., 2013;
Wakefield et al., 2018) as the “plant” on which all appli-
cations would be built. This model should serve as the
golden thread for all the hands-on workshops through the
two days of workshop exercises.

This paper discusses the extension of the model for the
purpose of conveying the APC concepts MPC and soft
sensing, as well as the results achieved from this hands-on
approach. The remainder of this paper is organised as fol-
lows: Section 2 gives the background to the SAG grinding
mill model, while Section 4 discusses its implementation
in MATLAB and Simulink. Section 5 presents the use of
the model to develop data to develop a soft sensor for the
particle size estimate. Section 6 outlines model predictive
control design and development, and Section 7 discusses
the technical experiences of the workshop.

2. MILL MODEL BACKGROUND

The grinding mill circuit grinds the incoming ore into
smaller particles. The resulting slurry is processed further
in following stages. This section describes the milling
process as well as the model used here.

2.1 Process Description

Fig. 1 shows the closed single-stage SAG mill circuit used
for the workshops. The main elements of the circuit are a
SAG mill, a sump and a hydrocyclone. Table 1 lists the
manipulated and control variables considered. The mill
receives three streams: mined ore (MFO) (t/h), water
(MIW ) (m3/h), steel balls (MFB) (t/h) and underflow
from the hydrocyclone. The mill charge is a mixture of
grinding media and slurry. Grinding media refers to the
steel balls and rocks which break the ore, and slurry refers
to the mixture of solids and water.

Table 1. Nomenclature

Manipulated Variables

Variable Units Description

MIW m3/h Mill inlet water
MFO t/h Mill feed ore
MFB t/h Mill feed balls
SFW m3/h Sump feed water
CFF m3/h Cyclone feed flow

Controlled Variables

Variable Units Description

LOAD m3 Volume of charge in mill
SV OL m3 Volume of slurry in sump
PSE % Product particle size

The mill is rotated along its longitudinal axis by a motor.
Liners on the inside of the mill lift the charge and create
a cascading motion of the charge. This motion causes the
ore to break through impact breakage and abrasion. The
power draw (Pmill) (kW) of the motor turning the mill
indicates the kinetic and potential energy imparted to the
charge. The volume of charge in the mill is given by LOAD
(m3).

The ground ore in the mill mixes with water to create a
slurry. The slurry is discharged through an end-discharge
grate where the aperture size of the end-discharge grate
limits the particle size of the discharged slurry. Ore too

large to pass through the end-discharge grate are referred
to as rocks and must be broken further. All ore small
enough to pass through the end-discharge grate are re-
ferred to as solids. The aim of the circuit is to grind the
ore to below a specification size, e.g. 75 µm. The broken
ore below the specification size are referred to as fines.
Solids are a combination of fine ore and coarse ore, where
coarse ore refers to the portion of solids larger than the
specification size.

The slurry discharged from the mill is collected in a sump.
The slurry is diluted with water (SFW ) (m3/h) before
it is pumped to the hydrocyclone (CFF ) (m3/h) via a
variable speed-pump. The volume of slurry in the mill
is given by SV OL (m3). The hydrocyclone classifies the
material discharged from the sump. The coarse particles
return to the mill for further grinding via the underflow,
and the fine particles exit the circuit via the overflow. The
percentage of particles in the product smaller than the
specification size is referred to as the product particle size
estimate (PSE) (%).

3. MODEL DESCRIPTION AND DISCUSSION

Le Roux et al. (2013) provide a continuous time semi-
mechanistic dynamic model of the closed single-stage SAG
mill circuit in Fig. 1. The aim of the model is not for
circuit design, but rather to provide a simulation platform
to evaluate the performance of controllers (Coetzee et al.,
2010; Aguila-Camacho et al., 2017) and observers (Le
Roux et al., 2017; Wakefield et al., 2018) as applied to the
circuit. Each process unit within the circuit is modelled
separately so that various circuit configurations can be
simulated. The approach in the derivation of each unit
model was to use as few states and parameters as possible
to produce qualitatively accurate model responses. The
aim of the small parameter set is to improve model
invertibility to simplify parameter fitting to data.

The model divides ore into three size classes: rocks, solids
and fines. Given the size class distribution, only five states
are used to model constituents in the mill (water, solids,
fines, rocks, balls), and only three states are used to model
constituents in the sump (water, solids, fines). A volume
balance is defined for each state at the mill and sump
respectively.

For the ore feed to the mill, two parameters are used
to model the fraction of rocks and fines in the feed ore
respectively. These parameters can be varied to simulate
disturbances to the feed ore disturbances. The consump-
tion and production terms in the volume balance of the
states in the mill are similar to the cumulative breakage
rate expressions of Hinde and Kalala (2009). The energy
per tonne of rocks consumed, balls consumed, and fines
produced are represented by three separate parameters.
These parameters can be varied to simulate ore hardness
disturbances on the mill.

The mill model introduces an empirical term, called the
rheology factor, to incorporate the effect of the fluidity
and density of the slurry on the discharge and power
consumption of the mill. The mill power is modelled as
parabolic in terms of the mill filling and the fraction
of solids in the slurry. The cyclone model is based on
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the well-known Plitt model (Nageswararao et al., 2004).
Phenomenological modelling is used to provide functional
forms where appropriate, but not if it entails the use of
more fitted parameters than necessary.

Mill Feed Ore
(MFO)

Mill Inlet Water
(MIW )

Mill Feed Balls
(MFB)

Mill

Sump

Sump Feed
Water
(SFW )

Particle Size
Estimate (PSE)
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Cyclone
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Fig. 1. A semi-autogenous (SAG) mill.

4. MODEL IMPLEMENTATION

The SAG mill model was available in Simulink as a result
of the efforts of Le Roux et al. (2013) and Wakefield et al.
(2018). It was decided to extend the model to expose the
variables (listed in Table 1) through the industry standard
OPC communication interface. This allowed the model
to be used and controlled from an external environment,
which was key for MPC development. The model effec-
tively became a virtual plant to be controlled. A commer-
cial OPC server was used to publish the simulated results.

The extension involved the addition of existing OPC
blocks at key variables. Three configurations were imple-
mented for controlled variables: PI control, MPC cascaded
with PI control, and MPC-only control. This flexibility al-
lowed an external environment to toggle between different
configurations in support of prototyping an MPC. A pure
simulation mode was also implemented, which allowed
the attendees to simulate the model without any OPC
interaction.

When OPC communication was in effect, the model simu-
lation speed was controlled to five times that of real-time,
allowing attendees to generate results faster while also be-
ing able to follow and visualise the process dynamics. This
was done with the purpose of streamlining the workshop
pace without compromising practical understanding.

The mill model is available for download at:
https://tinyurl.com/mill-simulation.

Running the code requires Matlab and Simulink. The
main.m file specifies the parameters that are required, as
well as various modes of operation that are available for
the simulation.

5. SOFT SENSOR DEVELOPMENT

Online measurement of the PSE leaving a SAG mill
remains challenging. An alternative approach is to use

an inferential or soft sensor to estimate this parameter.
Accordingly, the first hands on activity of the workshop
was to develop a soft sensor for the PSE leaving the virtual
mill.

Following an introduction to supervised and unsuper-
vised learning techniques, and the CRISP DM framework
(Azevedo and Santos, 2008) shown in Fig. 2, the attendees
were taken through a series of steps to develop the soft
sensor. Several MATLAB scripts were made available to
assist in the process.

Fig. 2. The CRISP DM Process.

The first step covered was data cleaning and pre-
processing, including techniques to handle common prob-
lems such as outliers, missing values, and misaligned mea-
surement rates. Following this, a workflow for soft sensor
development was proposed. The primary challenge of soft
sensor development is that measurements of the target
variable are available much less frequently than other
process data, due to safety, cost and technical challenges
(Kadlec et al., 2009). The proposed workflow addresses
this by providing a structured approach to soft sensor
development, focusing on the introduction of complexity
(in the data and the model) only when simple approaches
are not successful.

In particular, the workflow emphasised the importance
of a clear problem definition (such as required accuracy
and frequency of predictions for the intended use) and
establishing training, validation and test data sets before
any attempt at model development begins. Then, a range
of models (ranging from linear regression to decision trees
and artificial neural networks) were fitted to process data
which was aligned with the records of the target variable.

If this relatively näıve approach was unsuccessful, unsuper-
vised techniques such as principal component analysis and
auto-encoders were used to generate data features from
all available process data. These features were then used
in the same range of models, again only for records which
align with the target variable. Finally, the temporal nature
of process data was explicitly included by the use of em-
beddings, which can be combined with feature extraction
techniques as inputs to predictive models.
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Although the workflow was relatively simple, few par-
ticipants were able to progress beyond the first, simple
modelling steps. This was due to a combination of factors,
including hardware and software challenges, a lack of fa-
miliarity with the programming language of the workshop,
and an underestimate of the time required for hands-on
coding and data analysis, particularly in large groups.

Due to the use of data from a simulated process, which
operated around a controlled point, simple linear models
were found to provide sufficient predictive accuracy for
the intended use, model predictive control. However, the
workflow is expected to be of use to participants in more
challenging cases.

6. MODEL PREDICTIVE CONTROL

During the workshop two flavours of model predictive
control (MPC) were discussed: linear and non-linear MPC.
The aim was to give delegates a sense of current best
practice, as well as to allow for robust discussion of
advantages and disadvantages of each approach.

6.1 Linear Time Invariant Model Development

The use of MPC is proven in the oil refining and petro-
chemical fields (Qin and Badgwell, 2003), and is becoming
more prevalent in the area of minerals processing and
mining (Brooks et al., 2019). The vast majority of MPC
applications deployed in industry use linear time invari-
ant (LTI) models; these models are generally empirically
identified using a set of planned experiments such as step
tests.

The aim of the workshop was not to discuss the choice of
variables for the MPC. A design was assumed to have been
done, with manipulated variables (MVs), or inputs, and
controlled variables (CVs), or outputs, having been cho-
sen based on experience. However, design considerations
were presented, and delegates had developed some insight
into grinding circuit control and operations, having been
introduced to fundamental concepts during introductory
lectures.

To demonstrate the procedure of step testing, and to give
delegates the opportunity to use modern model identi-
fication tools, a set of step tests was performed on the
SAG mill model. Examples of the step tests are shown in
Fig. 3 (MVs) and 4 (CVs). The MVs correspond to those
shown in Table 1, but do not include the ball addition rate.
The cyclone feed density was added as a CV to make the
problem non-square.

The theory behind identification of finite impulse response
(FIR) models, as presented in Dayal and MacGregor
(1996), was briefly covered and the attendees were then
given the assignment to use the commercial software to
derive the step responses. A step-by-step procedure was
given so that the exercise can be completed in reasonable
time. The result of identifying all outputs against all inputs
is shown in Fig. 5 in the form of finite step responses,
derived for three different settling times.

The delegates were encouraged to consider why some of
the sub-models are poor, and what could be done to
improve them. The use of the LTI models for online control

was discussed through the derivation of the quadratic
optimisation problem (Garcia et al., 1989). The addition
of a linear program based steady-state optimisation was
also demonstrated.

6.2 Non-Linear Model Predictive Control

This section of the workshop discussed the non-linearities
encountered in mill control of which there are many. Two
aspects of non-linearity were covered, namely:

(1) Process non-linearity
(2) Non-linear economic objectives

The former was demonstrated using data from Van der
Westhuizen and Powell (2006) shown in Fig. 6, which
describes the power and feed as a function of mill filling
percentage.

The aim of the non-linear MPC is to maximise the eco-
nomic performance of the milling circuit as defined by
the economic objective function. The achievable economic
benefit is affected by disturbances and constraints on the
system.

The economic objective function for a mill may be non-
linear due mainly to the presence of a maximum in the
flotation bank recovery as a function of flotation feed
particle size (Wei and Craig, 2009). The mineral value is
then a product of the mill feed ore, flotation recovery, head
grade and mineral price. The result is that the economic
surface is curved as shown in Fig. 7 (Le Roux and Craig,
2019).

The economic objective assumes that the flotation recov-
ery is only a function of the flotation feed size distribution
and not of the flotation feed density and flowrate. The
MPC therefore trades-off feed size distribution and fee-
drate to achieve the economic maximum under different
disturbances and constraints.

The delegates were shown how these non-linear effects are
incorporated into a commercially available robust non-
linear model predictive control platform. A hands-on simu-
lation allowed the delegates to explore the effects of distur-
bances, such as feed hardness changes and spillage into the
sump, as well as the effect of changing constraints, for ex-
ample to increase the flotation residence time by lowering
the maximum allowed flotation feedrate, on the economic
steady-state optimum, but also get an understanding of
how modern multivariable controllers steer the process to
the new operating point while dealing with the interaction
and constraints of the system.

7. WORKSHOP ORGANISATION

The workshop was held over two days. Day 1 focused
on the development of a soft sensor for online particle
size estimation, while day 2 focused on model predictive
control. A detailed agenda is presented in Table 2.

The software required was installed on a virtual machine
(VM), which was copied onto delegates’ laptops at the
beginning of the workshop. Some challenges were expe-
rienced, most notably issues related to the hardware ca-
pabilities of delegates’ laptops, and the configuration of
multiple varied machines to run a sizeable VM.
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Fig. 3. Step test - manipulated variables.

Fig. 4. Step test - controlled variables.

Fig. 5. ”Mind switched off” model matrix.

Table 2. Workshop agenda

Day 1 Topics Day 2 Topics

An introduction to data
analytics for soft sensing.

An introduction to grinding
circuit control.

Principles of grinding cir-
cuit operation.

Dynamic modelling and
simulation.

Data preparation best
practices.

Linear model predictive
control.

Model selection and train-
ing.

Non-linear model predic-
tive control.

Model maintenance best
practices.

An alternative approach, is to roll out the VM on virtual
private servers (VPSs) in the cloud. This will ensure
that all the VPSs have the correct specification and the

delegates will only need to log into their dedicated VPS
on the day. The delegates’ laptops would only need to be
powerful enough to connect to the internet and to run
a remote desktop session to connect to their VPS. This
will, however, place a requirement on the workshop venue
to have a fast enough internet connection to facilitate the
simultaneous remote desktop connections for all delegates.

8. CONCLUSIONS

In this paper, the adaptation of a grinding mill circuit
model were presented that were used to explain the com-
plex concepts of APC in a workshop to control academics
and practitioners. The use of a real world example in con-
trol engineering education is highlighted by the presence of
the process complexity. Teaching points from the workshop
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Fig. 6. SAG mill performance curve of mill running at 70%
and 75% of critical speed

Fig. 7. Economic objective function surface.

were reported here as well as points of improvement such
as making the material available as a remote laboratory.
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