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Abstract: Within the Private Equity (PE) market, the event of a private company undertaking
an Initial Public Offering (IPO) is usually a very high-return one for the investors in the
company. For this reason, an effective predictive model for the IPO event is considered as a
valuable tool in the PE market, an endeavor in which publicly available quantitative information
is generally scarce. In this paper, we describe a data-analytic procedure for predicting the
probability with which a company will go public in a given forward period of time. The proposed
method is based on the interplay of a neural network (NN) model for estimating the overall event
probability, and Survival Analysis (SA) for further modeling the probability of the IPO event in
any given interval of time. The proposed neuro-survival model is tuned and tested across nine
industrial sectors using real data from the Thomson Reuters Eikon PE database.

Keywords: Machine learning, Survival models, Neural networks, Private equity, Exit
prediction, Investment support models.

1. INTRODUCTION

In the last five years, the Private Equity (PE) market
saw a sharp expansion of its total economic value due
to an unprecedent increase of PE investments (Bain &
Company, 2019). However, predicting the outcome of these
investments is a very challenging task, since the future
status of a private company can be extremely uncertain
and it can range from bankruptcy, which corresponds to
a total loss of the initial investment, to a Initial Public
Offering (IPO), the most rewarding event for a PE in-
vestor. An impressive example is the investment of Pe-
ter Thiel in 2004: $500,000 which brought him a 693,3%
return by the time of Facebook IPO (Protalinski, 2012).
In addition to this extreme volatility of the investment
outcome, PE investors have to struggle also with a severe
lack of reliable and publicly available information related
to the company organizational and financial health. For
these reasons, PE fund managers and investors still strive
to build effective strategies for identifying private com-
panies that will provide the highest investment returns.
Currently, most investors rely on naive methods, such as
portfolio diversification, to reduce the investment risk.

In this paper, we tackle the PE exit prediction issue by
proposing a data-analytic procedure that estimates the
probability of a company to undertake an IPO in a given
interval of time. The proposed method is based on an inter-
play of two models: a neural network (NN) that estimates
the overall probability of the event of interest, and a Sur-
vival Model (SM) that more finely models this probability

1 This work is partially supported by Eurostep Digital AS. Corre-
sponding author: giulia.fracastoro@polito.it

as a function of the forward time period. Neural networks
have been already used in the financial context, see, e.g.,
(Fadlalla and Lin, 2001), in particular they have shown to
provide quite strong performance in exctracting valuable
information from quantitative data (Kim and Han, 2003;
Samkin and Schneider, 2008). Instead, Survival Models
are broadly employed in the medical field (James et al.,
2013; Swan et al., 1996), in particular for studying the
probability of response to medical treatments in humans
and animals, the development of diseases, and the identi-
fication and evaluation of prognostic factors and risks re-
lated to specific diseases, see (Elandt-Johnson et al., 1980).
SMs have been exploited also in many fields far from the
medical ones, such as criminology, industrial production,
insurance, and economics, see (James et al., 2013; Pitacco,
2004; Modarres et al., 2016). To the best of the authors’
knowledge, there is however no previous application of
SMs to the PE market analysis; in particular, among the
survival approaches, the Accelerated Failure Time (AFT)
model (Wei, 1992) proved to be the most compatible with
the PE framework of interest in this paper. In a previous
work Calafiore et al. (2019) the authors explored a static
model for a private company’s exit prediction. A time-
to-IPO analysis, rather than a static analysis, adds an
important tool to the PE firm toolbox, in as far as it
allows to time appropriately potential intervention. Simply
knowing if a potential target will experience an IPO or
not, allows a PE firm to decide to invest or not. However,
knowing that a company will have an IPO with a given
probability in, say, one to two year time, gives to a PE
firm a very real opportunity and timing to jump in and
invest.
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This paper discusses a time-to-IPO probabilistic analysis
for PE firms. The experimental approach that we em-
ployed is summarized as follows:

(1) We considered a Thomson Reuters database con-
taining relevant information for a large number of
companies, see Section 2 for further details on the
database and the features used for constructing the
model.

(2) Companies are labelled with 4 possible statuses:
Bankrupt, Acquisition, IPO, Private. These classes
synthesise the four main relevant outcomes of a com-
pany in the PE market.

(3) A neural network is trained to estimate the proba-
bility for each company of the union event of going
bankrupt or being acquired.

(4) We process the dataset by excluding bankruptcies and
acquired companies. The dataset filtered in this way
contains only companies that went IPO during the
observation period or that are still private by the end
of it, and constitutes our conditional dataset.

(5) An Accelerated Failure Time (AFT) model is trained
on the conditional dataset in order to model, for each
company, the probability of occurrence in time of
an IPO event. Since we fitted the AFT models on
a dataset without bankruptcies and acquisitions, the
probability obtained is conditioned on the knowledge
that the company has not gone bankrupt or been
acquired.

(6) The total probability of going IPO in time is eventu-
ally computed by de-conditioning the AFT results.

The contribution of this paper is the proposition, descrip-
tion and practical application of a machine learning proce-
dure to the PE field. We have tested this procedure on a set
of real data, and we report statistically significant results
that may have a high potential impact in this application
field.

2. INPUT DATA

The dataset used in this paper has been extracted from
the financial platform Thomson Reuters Eikon R© (Thom-
son Reuters, 2019). This dataset contains the investment
data of all the companies founded between 1998 and 2018
in Europe and in the United States. The records with
missing data have been excluded. After this procedure,
we obtained a dataset of 47907 companies belonging to
nine business sectors, as shown in Table 1. The available
data for each company are: the names of the investors of
the first 3 rounds of investment, the foundation date and
the IPO date (if the company went public), the number of
firms in each round, and the VIX index (Chicago Board
Options Exchange, 2019) value on the round dates, which
is a public market sentiment indicator that measures the
volatility (i.e., the uncertainty) of the public financial
market. Moreover, each company record is labeled with
its industrial sector and the actual company status, a
categorical value that has been aggregated in 4 labels:
IPO, Bankrupt, Acquisition and Private. The qualitative
information of the investor names has been transformed
into quantitative data by means of an investor ranking
approach: each investing firm is assigned to a ranking
according to the number of rounds in which it has partic-
ipated. The motivation behind investor ranking is simple:

Fig. 1. Distribution of foundation (red line) and IPO dates
(blue line) of the subjects (companies) under study.

Sector Bank. IPO LBO M&A Private Total

1 Communications 165 1084 3 46 856 2154
2 Computer 672 4926 4 140 11383 17125
3 Electronics 151 940 1 27 1734 2853
4 Biotech 84 1465 3 21 2704 4277
5 Medical 50 1279 0 13 2599 3941
6 Energy 5 492 1 9 852 1359
7 Consumer 82 1851 5 33 3444 5415
8 Industrial 108 2285 6 34 3755 6188
9 Other 96 1605 4 24 2866 4595

Total 1413 15927 27 347 30193 47907

Table 1. Number of companies in each sector
for each status within our dataset.

the largest the number of rounds an investor has per-
formed, the strongest is its position in the PE market.
This approach has been employed also in other machine
learning algorithms within the PE framework, see, e.g.,
(Bhat and Zaelit, 2011; Calafiore et al., 2019).

2.1 Descriptive statistics

Figure 1 shows the time distribution of IPOs and company
foundations. It is worth to note how in the recent years the
number of company foundations is substantially decreased
with respect to the past. On the other hand, the number
of IPOs is increased. This behavior shows the maturity of
the company population considered in our analysis.

Table 1 represents the final population distribution across
status labels and business sectors. It is clear that our
dataset suffers from class unbalancing, since bankruptcies
represents less than 2% of the total data set. This issue
has been handled with geometrical resampling techniques,
as described in Section 4.4.

3. SURVIVAL ANALYSIS

In this section, we present the basic concepts of Survival
Analysis. Survival Models attempt to estimate the time
to a certain event in a probabilistic framework. In our
model, we are interested in estimating for each subject i
the “survival time” Ti, which is defined here as the period
of time from the beginning of the subject observation (i.e.,
its foundation date) to the date tEi of the event of interest
Ei (i.e., the company’s IPO date). In order to estimate
the survival time Ti, SM can benefit from the knowledge
of additional features regarding the characteristics of each
subject. These subject’s features will deeply depend on
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the application domain of the study. In this paper, we
consider as additional features four measures of each
investment round: the average, the maximum and the
minimum ranking of investors who participated in that
round, as well as the number of such investors. Moreover,
exclusively for the first two rounds the VIX index value
is also retained. In total, we consider 14 features for each
company.

3.1 Survival Models Assumptions

SA is typically performed either by means of non-
parametric Cox models (Cox, 1972), or by the paramet-
ric AFT models (Wei, 1992). The first category has the
advantage that it does not need an underlying parametric
probability distribution. However, Cox models rely on a
rather strong Proportional Hazard Assumption (PHA),
which states that the ratio of the hazard functions of
two subjects drawn from the population is a constant not
depending on time (Cox, 1972). For each subject i, the
hazard function hi(t) is the probability that Ei will happen
in the next, very short, time interval (t, t + δt) (Lee and
Wang, 2003a):

hi(t) = lim
∆t→0

P(tEi
∈ (t, t+ ∆t)|tEi

≥ t)
∆t

.

The PHA implies that

hi(t) = h0(t)g(xi),

where xi is the feature vector of subject i, h0(t) is a
baseline hazard function that does not depend on the
subject, and g(·) is a deterministic function of the subject
features. The hazard function ratio of two companies is
then

hi(t)

hj(t)
=
h0(t)g(xi)

h0(t)g(xj)
=
g(xi)

g(xj)
,

where xi and xj are the feature vectors of subjects i, j.
In the specific application considered in this paper this
assumption is quite strong, requiring that the ratio of the
probability of going IPO of two companies would depend
just on the investors who invested in them, and not on
time.

In order to verify if the considered dataset satisfies
the PHA, we computed the Schoenfeld Residuals (SR)
(Schoenfeld, 1982) for each covariate and performed the
statistical test (SR test) proposed by Grambsch and Th-
erneau (1994). This test is based on the Schoenfeld residu-
als of a fitted Cox model weighted by its estimated covari-
ance matrix. The formulation of the Schoenfeld residuals
is not trivial, as it relies on the first derivative of the
Cox regression log-likelihood function, and we refer the
reader to Schoenfeld (1982) for additional details. Using
the Schoenfeld Residuals, the PHA becomes equivalent to
the hypothesis that the correlation between time and these
residuals is null for all the covariates. Therefore, rejecting
this hypothesis, even if only for one variable, equals to
rejecting the possibility of using Cox models themselves.

The SR test has been performed on a business sector by
sector basis. In Table 2 are reported the p-values of the SR
test computed on all the covariates (Global p-values). For
each sector, the Global p-value is well below 5%, therefore
the PHA hypothesis can be globally rejected with a 95%
significance.

3.2 AFT model

Since Cox model assumptions appeared to be invalidated
by our data, we considered AFT models, which no not rely
on such assumptions. Within the AFT framework, each
Ti takes the form of a parametric random variable whose
distribution is assumed to be known (e.g., Exponential,
Weibull, lognormal etc.), while its parameters depend on
the feature vector xi, which is assumed to be directly
related to the survival time Ti.

The AFT model uses a log-linear relation to describe
the dependency between Ti and the feature vector of the
subject, see (Lee and Wang, 2003b):

log Ti = a0 +

m∑
j=1

aijxj + σε = ηi + σε, (1)

where xj , aij , and a0 are respectively the m covariates,
the m regression coefficients and the intercept parameter.
All of these quantities can be summarized with ηi, which
represents the deterministic term. On the other hand, ε is
a stochastic error term, equipped with a density function
g(ε), scaled by the unknown parameter σ. The error term
ε is the actual source of randomness of the model and its
probability distribution determines the resulting Ti distri-
bution. It is important to underline that the regression co-
efficients and the parameter σ are fundamental to compute
the distribution parameters of each random variable Ti. As
an example, if ε has a standard normal distribution, then
each Ti will have a lognormal distribution having mean
µi = a0 +

∑m
j=1 aijxij = ηi and standard deviation σi = σ.

We compute the regression coefficients and the parameter
σ employing a Maximum Likelihood Estimation (MLE).
To test the statistical significance of the covariates, we used
the Wald’s statistic (Huber et al., 1972), whose results are
reported in Section 5.

4. MODEL FITTING

In this section, we describe the procedure employed in
order to fit the proposed survival model to the PE data.

4.1 Data preprocessing

When we apply SMs to PE data, the first problem en-
countered is the presence in the dataset of bankrupt and
acquired companies. Indeed, plain SMs are able to model
only one event and do not consider the case when the
possible outcomes are more than one. More critically, the
timing information about bankrupt or acquisition events is
rarely available in the database. To deal with such multiple
outcomes, we preprocess the dataset excluding the com-
panies that went bankrupt or have been acquired. Then,
we build the AFT model on the remaining observations
(IPO and Private). This means that the probability that
we estimate is conditioned by the fact that we know that
the company has not experienced bankrupt or acquisition
during the observation period. In addition, we divide the
dataset according to the companies’ industrial sector, and
we train a different SM for each sector.

4.2 Censoring

A typical problem that we face when we apply SMs to PE
data is the presence of companies whose status remains
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Sector 1 2 3 4 5 6 7 8 9

Global p-value 1.21e-12 7.36e-72 3.88e-14 4.37e-08 1.20e-06 4.76e-02 1.015e-11 5.47e-16 2.19e-07

Table 2. Results of the Schoenfeld residuals test on the Cox model as a whole for each sector.

private within the data time span. These companies enter
the observation period at certain times (the foundation
date) and by the end of the study the IPO event has
not occurred yet. We computed their survival times as
the difference between the end of the observation period
and their foundation date, and we marked with a binary
variable these companies as censored observations. The
capability of dealing with censored data is actually a key
property of Survival Models. The censoring label encodes
the fact that for a censored company we do not know the
exact survival time, but nevertheless we know that this
survival time is larger than the observation time, and this
information is exploited in the computation of the survival
probability, see, e.g., (Lee and Wang, 2003c).

4.3 AFT procedure

We use the AFT model to estimate the conditional survival
probability P(Ti > t|Vi), where Vi represents the event
that the company i does not experience bankrupt or
acquisition during the observation period. It is worth
mentioning that in the analysis of the PE market the
quantity of interest is the probability for a company i
of going IPO in a given time interval (i.e., P(Ti ≤ t)).
However, since SMs are mainly used in the biomedical
field, they are designed to model the survival probability
P(Ti > t). Clearly, it holds that P(Ti ≤ t) = 1−P(Ti > t).

In order to capture the different sector characteristics, we
estimated a different SM for each of the nine industrial
sectors. To train the nine AFT models, for each sector we
have to made two choices: which distribution to choose for
the stochastic error term ε and which covariate to use. We
decided to test 4 different distributions in order to explore
3 different families: Exponential (Exponential, Weibull),
Normal (LogNormal) and Snedecor’s F (Generalized F)
(Cox, 2008).

Our model selection procedure relies on a numerical (Like-
lihood, p-value) and graphical (fitting plots) evaluation,
which has been performed on a training dataset. First, for
each distribution k and for each sector s a separate model
Mk,s has been fitted and the statistical significance of the
covariates has been verified with the Wald test. Then,
each Mk,s has been fitted again on the 90% significant
variables found previously for that model itself and its
Maximum Log-Likelihood Estimate (MaxLLE) recorded.
Finally, the unconditioned AFT survival fitting curves
have been plotted against the validation set curves (Fig-
ure 2), that were obtained through a Kaplan-Meier (Ka-
plan and Meier, 1958) empirical estimate (KM curve). The
latter computation relies on a simple and robust counting
process that is widely recognized as a consistent reference
to benchmark graphical accuracy of the AFT fitted models
(Lee and Wang, 2003d). The results of this model selection
procedure are discussed in Section 5.

After having estimated the conditional probability P(Ti >
t|Vi) with the procedure described above, we compute
the marginal probability P(Ti ≤ t). By the law of total
probability, the following holds:

P(Ti ≤ t) = 1− P(Ti > t)

= 1− P(Ti > t|Vi)P(Vi),
(2)

where P(Vi) has been estimated, for each company, using
the neural network described in the following section.
The second equality holds because we have assumed that
P(Ti > t|V̄i)=0, where V̄i is the event that the i-th
company has been acquired or has gone bankrupt during
the observation period. This seems a fairly reasonable
assumption, since if a company was acquired or went
bankrupt, it cannot go IPO, and the case where a public
company go bankrupt is so rare that it is not worth taking
account of it.

4.4 Neural estimation

In this section we describe the simple neural network
(NN) approach that was used to estimate the probability
P(V̄i) that the i-th company is acquired or goes bankrupt.
The input data for the NN are the features described in
Section 2 except for the Foundation date and the IPO date.
Neural Networks have proven to achieve strong predictive
performance within the financial framework (Fadlalla and
Lin, 2001), especially for interpreting patterns from qual-
itative data (Kim and Han, 2003; Samkin and Schneider,
2008). Moreover, it has already been shown that the se-
lected features can constitute a strong basis for Machine
Learning algorithms within the Private Equity framework
(Bhat and Zaelit, 2011).

The proposed neural network is a 1-layer Multilayer Per-
ceptron (MLP). We use as activation function the Scaled
Exponential Unit (SeLU) (Klambauer et al., 2017), since
it provides strong evidences in preventing gradient van-
ishing optimization issues and promotes information flow
through the net. Each company has been labeled as
Bankrupt-Acquisition (BA) or Non-Bankrupt-Acquisition
and the global dataset has been split into a training and a
test set with a 2/3–1/3 ratio. Since the training dataset is
unbalanced (the BA companies are 1787 out of 47907), a
geometrical resampling technique has been used, namely
the SVMSMOTE described in (Tang et al., 2008). The nu-
merical optimization procedure has been performed using
the Adam algorithm (Kingma and Ba, 2014), a well-know
method with self-adapting moment estimation, and the
network has been trained for 70 epochs.

The performance metrics for both classes are shown in
Table 3. The Precision measures the ratio of elements
correctly identified over the total elements predicted in
that class, the Recall measures the ratio of elements
actually identified over the total number of elements
present in that class in the validation set, while the
accuracy represents the overall precision measure in both
classes. The output probability of the net was classified as
BA if it was over 50%. The results obtained are comparable
to the ones found in literature for a Machine Learning
classifier on a Private Equity dataset (Bhat and Zaelit,
2011; Calafiore et al., 2019), even if these related works
act on a more balanced dataset.
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Precision+ Recall+ Precision- Recall- Accuracy

0.10 0.99 0.67 0.81 0.81

Table 3. NN predictive performance: “+” refers
to BA event, “-” to Not-BA.

5. RESULTS

In this section, we present the experimental results of the
neuro-survival model described in the previous sections.
In order to fairly evaluate the proposed models, we divide
the original dataset into a training and a validation set
according to a 9/10–1/10 proportion.

As discussed in Section 4.3, for each model Mk,s we have
to choose the distribution of ε and select the significant
covariates. The Wald’s test for each Mk,s resulted in a
number of significant covariates reported in Table 4. In-
stead, the distribution choice is the result of an integrated
approach. It has to maximize the MaxLLE, minimize the
number of Wald’s selected covariates, and well approxi-
mate the KM curves. As for the MaxLLE absolute value for
the models fitted with the selected covariates, the differ-
ence across distributions in each sector was extremely low
compared to its order of magnitude. So, this metric alone
could not be considered as a robust approach for selecting
the best fitting distribution. However, the distributions
with the highest MaxLLE are the ones with the least num-
ber of selected variables in the Wald’s test, in all sectors
except sector 9. Then, in order to definitively select the
distribution, we have analysed the fitting plots choosing
the distributions whose fitting curves better capture the
KM curves pattern. Table 5 reports the distribution and
the number of covariates chosen for each sector. The three
criteria agree on the best distribution for all sectors except
sectors 4 and 9. In sector 4, the LogNormal distribution
was found to approximate the KM curve better than
the Genaralized F, which was the distribution with the
highest MaxLLE. This was evident on the right tail of the
KM curve, where the Genaralized F lied outside the KM
confidence intervals, for this reason the LogNormal distri-
bution was preferred. In sector 9, according to the Wald’s
test, Exponential or LogNormal distribution were the best
choices, however the Weibull distribution showed a better
fitting and a higher MaxLLE. This partial contradiction
can be related to the complex empirical pattern of this
sector, since it groups all the companies without a specific
industrial activity classification.

We tested the models obtained with this procedure on the
validation dataset and computed their marginal probabil-
ity P(Ti ≤ t) using Eq. (2). Figure 2 shows the fitting
curves compared to the KM estimate. We can see that the
obtained curves are strongly consistent with the validation
data. In each sector, the selected models (colored lines) fit
the empirical estimates (black lines) reliably: fitting curves
are within the KM estimates confidence interval, except for
a few very restricted areas.

6. CONCLUSIONS

In this paper, we presented a predictive model that esti-
mates the time-to-IPO probability of private companies.
The proposed method is based on an interplay of a neural
network and a AFT survival model. The results show that

Sector Exp. Wei. LogNorm. Gen. F

1 8 10 8 6
2 10 9 8 7
3 7 7 7 7
4 8 8 6 6
5 3 3 3 3
6 0 0 1 0
7 2 2 2 0
8 3 3 3 0
9 2 3 2 3

Table 4. Number of Wald’s test 90% significant
covariates for each sector and distribution

such neuro-survival model in the PE framework is able
to reliably represent the probability in which a private
company will go public in a given time interval.

The proposed method can be a useful support tool for
PE investment decision and timing, enabling investors to
estimate the probability of a company to experience a
desirable IPO event within a given time interval or, by
complement, the probability that a PE investment will
result in an adversary event.
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