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Abstract: In this paper, the spectral decompositions of Lyapunov functions are applied for the first time 

to the analysis of the behavior of a bilinear model of a two-area electric power system. In contrast to the 

technique of normal forms and modal series methods, we consider the spectral decomposition not for the 

dynamics of state variables, but for Lyapunov functions, which characterize the L2-norms of variables or 

signals in the time domain. The solution of the generalized Lyapunov equation for a bilinear system is 

represented as the sum of Hermitian matrices corresponding to individual eigenvalues of the system or 

their pairwise combinations. An iterative algorithm for calculating spectral terms is developed for stable 

bilinear systems. In a test experiment for the purpose of transient stability analysis, we evaluate the value 

of individual eigenmodes and their pairwise combinations depending on the magnitude of bilinear terms. 

The obtained results are consistent with an intuitive interpretation derived from the model equations and 

eigenvalue analysis. The spectral decompositions of Lyapunov functions allowed us to indicate the range 

of applicability of linear model and to reveal dominant eigenmodes in the analysis of transient stability of 

electric power system.  
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

1. INTRODUCTION 

A critical requirement for the introduction of modern smart 

grid and microgrid technologies is increasing the reliability of 

electric power systems (EPS) and the ability to monitor and 

control their stability in real time (Häger et al., 2014). For 

this purpose, bilinear models may be useful. In the electric 

power industry, they are used to evaluate states and 

parameters, to reduce the order of high-dimensional models, 

to identify parameters from wide area measurement system 

(WAMS) measurements, and also to analyze small-signal and 

transient stability (Arroyo et al., 2007). In (Al-Baiyat et al., 

1993), a bilinear model of a two-area power system was used 

to analyze its stability and reduce its dimensionality. The 

connection between the generalized Lyapunov equations and 

the problem of calculating the Gramians of the controllability 

and observability of a bilinear system was established, and 

the balanced truncation algorithms were developed to 

construct simplified models of the energy system. It was 

shown that the bilinear simplified model gives a more 

accurate reaction in various modes of EPS operation than a 

linear high-order model. Later, the same model was used in 

(Benner and Breiten, 2012) for testing optimal algorithms for 

decreasing the order of a bilinear model based on the H2 

norm of its transfer function. A new iterative algorithm was 

developed for optimal interpolation of a bilinear system using 

Krylov subspaces and Petrov-Galerkin projection methods. A 

bilinear model of a two-area power system was used in (Al-

Baiyat and Bettayeb, 1993) to analyze the static and transient 

stability of the power system. A mathematical model of a 

bilinear power system was developed on the basis of 

linearization method of Carleman and tensor products. For 

the stability analysis, the nonlinear factors of influence of 

individual modes on the system states were used. The method 

showed good results for isolating dominant modes and 

analyzing inter-area oscillations. Bilinear state estimation was 

proposed in (Gomez-Exposito et al., 2012; Kumar et al., 

2016) as an alternative to the traditional estimation based on 

the use of the Gauss-Newton method. The use of bilinear 

models together with the distributed robust method for 

assessing the state of regional power systems allows one to 

take into account the nonlinear characteristics of phase 

measurement units in WAMS.  

Lyapunov and Sylvester equations are widely used in modern 

control theory. The spectral properties of the solutions of the 

Lyapunov equations are effectively used to reduce the 

dimensionality of models of large systems in mechanical 

engineering, power industry, spacecraft control and 

electronics (Baur et al., 2014). The use of generalized 

Lyapunov equations to analyze the properties of 

controllability and observability of bilinear systems has also 
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long been known in control theory (Gray, Mesko, 1998). The 

effective iterative algorithms for solving such equations were 

proposed in (Zhang, Lam, 2002; Damm, 2008). In (Benner, 

Damm, 2011), a unified approach to the design of simplified 

models of linear stochastic and bilinear high-dimensional 

systems based on the use of energy functionals has been 

formulated.  

In this study, we apply for the first time the spectral 

decompositions of the solutions of generalized Lyapunov 

equations proposed in (Yadykin, Iskakov, 2019) to the 

analysis of the behavior of a bilinear model of a two-area 

electric power system (EPS). Similar spectral decompositions 

for the solutions of ordinary linear Lyapunov equations have 

been previously proposed in (Yadykin, Galyaev, 2013; 

Yadykin, Iskakov, 2017), where these solutions were 

represented as the sum of Hermitian matrices corresponding 

to individual eigenvalues of the system or their pairwise 

combinations. Similar analytical solutions were obtained in 

(Zubov et al., 2017) using Jordan normal forms. These 

decompositions have already been applied for the stability 

analysis of EPS in (Vassilyev et al., 2017). Therefore, we 

expect that the spectral decompositions of the solutions of the 

generalized Lyapunov equations for bilinear systems will be 

useful in the analysis of their transient stability.  

Several methods are used to analyze the bilinear effects in 

power systems, such as the technique of normal forms (Jang 

et al., 1998), modal series methods (Pariz et al. 2003), and 

bilinear approximation (Arroyo et al., 2007). In contrast to 

these methods, in this paper we consider the spectral 

decomposition not for the instantaneous dynamics of state 

variables, but for the Lyapunov functions, which characterize 

the L2-norms of variables or signals in the time domain. For 

example, in a linear time-invariant system, eigenmodes do 

not interact in the instantaneous dynamics, but the time 

integral of the product of these modes participates in the L2 

norm of the state variable, and this participation can be 

estimated by the method proposed in this study. In addition, 

the methods in (Jang et al., 1998; Pariz et al. 2003; Arroyo et 

al., 2007) evaluate bilinear effects associated with the 

nonlinear dependence of the model on state variables. This 

approach allows one to take into account the bilinear 

coupling between the input control and perturbations of the 

second and higher orders. The proposed approach uses a 

more general model of a bilinear system and also allows one 

to analyse the bilinear coupling between the input control and 

first-order perturbations. Brief information about the 

generalized Lyapunov equations is given in Section 2. 

Section 3 introduces the spectral decompositions for the 

solutions of these equations. Section 4 introduces an iterative 

algorithm for computing the spectral components. A bilinear 

test model of a two-area EPS is described in Section 5. The 

results obtained in the test experiment are provided in 

Section 6. Section 7 contains the conclusions drawn from this 

work. 

 

 

 

2. GENERALIZED LYAPUNOV EQUATION FOR 

BILINEAR DYNAMICAL SYSTEM 

Bilinear systems can be characterized by the following 

equations:  

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + ∑ 𝑁𝛾

𝑚

𝛾=1

𝑥(𝑡) 𝑢𝛾(𝑡) + 𝐵 𝑢(𝑡), 

𝑦(𝑡) = 𝐶 𝑥(𝑡),                                     (1) 

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑢(𝑡), 𝑦(𝑡) ∈ ℝ𝑚 are the state, input and 

output vectors, respectively, and 𝐴, 𝑁1, … , 𝑁𝑚, 𝐵, and 𝐶 are 

the real matrices. Gramian of controllability of the bilinear 

system (1) can be determined using the sequence of kernels 

of the Volterra matrix series (D’Allesandro, Isidori, and 

Ruperdi, 1974) 

𝑃1(𝑡1) = 𝑒𝐴𝑡1𝐵, 

𝑃𝑖(𝑡1, … , 𝑡𝑖) = 𝑒𝐴𝑡𝑖[𝑁1𝑃𝑖−1, 𝑁2𝑃𝑖−1, … , 𝑁𝑚𝑃𝑖−1],   𝑖 = 2, 3, …, 

𝑃 = ∑ ∫ … ∫ 𝑃𝑖(𝑡1, … , 𝑡𝑖) 𝑃𝑖
𝑇(𝑡1, … , 𝑡𝑖)𝑑𝑡1 … 𝑑𝑡𝑖 ,          (2)

∞

0

∞

0

∞

𝑖=1

 

provided that this series exists. It can be shown that the 

Gramian (2) satisfies the following generalized Lyapunov 

equation  

𝐴𝑃 + 𝑃𝐴𝑇 + ∑ 𝑁𝛾𝑃𝑁𝛾
𝑇

 𝑚

𝛾=1

= −𝐵𝐵𝑇                         (3) 

Using the Kronecker product and the vectorization operator, 

equation (3) can be written as a linear matrix equation  

(𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴 + ∑ 𝑁𝛾 ⊗

𝑚

𝛾=1

𝑁𝛾) vec(𝑃) = −vec(𝐵𝐵𝑇) (4) 

This equation has a unique solution if and only if the matrix 

on the left side of (4) is nonsingular. However, solving this 

equation is usually not effective. If the dynamics matrix 𝐴 is 

stable, and equation (3) has a unique solution 𝑃 ≥ 0, then the 

controllability Gramian (2) exists and can be obtained by the 

following iterative procedure (Zhang and Lam, 2002):  

𝐴𝑃(1) + 𝑃(1)𝐴𝑇 +  𝐵𝐵𝑇 = 0 ,  

𝐴𝑃(𝑘) + 𝑃(𝑘)𝐴𝑇 + ∑ 𝑁𝛾𝑃(𝑘−1)𝑁𝛾
𝑇

 𝑚

𝛾=1

= 0,   𝑘 = 2, 3, … ,    (5) 

𝑃 =  𝑃(1) + ∑ 𝑃(𝑘)

∞

𝑘=2

 . 

 

3. SPECTRAL DECOMPOSITIONS FOR GENERALIZED 

LYAPUNOV FUNCTIONS 

Consider the generalized Lyapunov equation  

𝐴𝑃 + 𝑃𝐴𝑇 + 𝛼 ∑ 𝑁𝛾𝑃𝑁𝛾
𝑇

 𝑚

𝛾=1

= −𝑄,                        (6) 
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where 𝑄 = 𝐵𝐵𝑇  or  𝐶𝑇𝐶, and 𝛼 ≥ 0 is a real parameter. 

According to (Yadykin, Iskakov, 2019), if the linear operator 

on the left-hand side of (6) is nonsingular and the dynamic 

matrix 𝐴 has a simple spectrum 𝜎(𝐴) = {𝜆1, 𝜆2, ⋯ , 𝜆𝑛}, then 

the spectral decompositions of the solution of equation (6) 

can be represented as 

𝑃 = ∑ 𝑃̅𝑖

𝑛

𝑖=1
= ∑ 𝑃𝑖𝑗

𝑛

𝑖,𝑗=1
 ,   𝑃̅𝑖 = ∑ 𝑃𝑖𝑗

𝑛

𝑗=1
 ,        (7)  

where the matrices 𝑃̅𝑖 and 𝑃𝑖𝑗  are respectively defined as the 

solutions of the following equations: 

𝐴 𝑃̅𝑖 + 𝑃̅𝑖𝐴
𝑇 + 𝛼 ∑ 𝑁𝛾𝑃̅𝑖𝑁𝛾

𝑇

 𝑚

𝛾=1

= − 
1

2
(𝑅𝑖𝑄 + 𝑄𝑅𝑖

∗)  ,   (8) 

𝐴 𝑃𝑖𝑗 + 𝑃𝑖𝑗𝐴𝑇 + 𝛼 ∑ 𝑁𝛾𝑃𝑖𝑗𝑁𝛾
𝑇

 𝑚

𝛾=1

= − 
1

2
(𝑅𝑖𝑄𝑅𝑗

∗ + 𝑅𝑗𝑄𝑅𝑖
∗) (9) 

where (∙)∗ denotes the Hermitian conjugation, and the matrix 

residues 𝑅𝑖 and 𝑅𝑗 are the coefficients in the expansion of the 

resolvent of matrix 𝐴: 

(𝐼𝑠 − 𝐴)−1 =  
𝑅1

𝑠 − 𝜆1

+
𝑅2

𝑠 − 𝜆2

+ ⋯ +
𝑅𝑛

𝑠 − 𝜆𝑛

      (10) 

In (Yadykin, Iskakov, 2019) the matrices 𝑃̅𝑖 and 𝑃𝑖𝑗  in (8, 9) 

were called the sub-Gramians for the corresponding bilinear 

system. Since the operator on the left-hand side of (6) is 

nonsingular, the sub-Gramians 𝑃̅𝑖 and 𝑃𝑖𝑗  are defined 

uniquely for any matrix 𝑄. The norms of these sub-Gramians 

allow one to characterize the contribution of individual eigen-

components or their pairwise combinations to the asymptotic 

dynamics of the perturbation energy in deterministic bilinear 

systems. In particular, the sub-Gramians 𝑃̅𝑖  characterize the 

contribution of linear modes 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 of bilinear system, 

whereas the pairwise sub-Gramians 𝑃𝑖𝑗  characterize the 

contribution from the interaction modes of the form 𝜆𝑖 + 𝜆𝑗. 

Therefore, let us call equations (8) and (9) the generalized 

modal Lyapunov equations. When 𝛼 = 0 we obtain in (8, 9) 

the spectral decompositions for the ordinary Lyapunov 

algebraic equation, which coincide with those obtained 

earlier in (Yadykin, Iskakov, 2017). 

 

4. ITERATIVE ALGORITHM FOR COMPUTING 

SUBGRAMIANS 

In this section, by analogy with the iterative procedure (5), 

we develop an iterative procedure for calculating the sub-

Gramians 𝑃̅𝑖 and 𝑃𝑖𝑗 from (8) and (9), respectively. The main 

idea of the proposed algorithm is to solve at each iteration the 

ordinary linear algebraic Lyapunov equation with the right-

hand side determined from the previous iteration. Moreover, 

the calculation of the matrix sub-Gramians by components in 

the eigenvector basis takes a particularly simple form. This 

approach allows us to simplify the calculation of bilinear 

Gramians and sub-Gramians and to evaluate the limits of 

applicability of the linear analysis. 

Assume that the matrix 𝐴 in (6) has 𝑛 distinct eigenvalues 

(𝜆1, 𝜆2, ⋯ , 𝜆𝑛) and the following eigenvalue decomposition: 

𝐴 = 𝑈Λ𝑉,    𝑈 𝑉 = 𝑉 𝑈 = 𝐼 ,                           (11) 

where Λ = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, ⋯ , 𝜆𝑛}, the columns of the matrix 𝑈 

are the normalized right eigenvectors of the matrix 𝐴, and the 

rows of the matrix 𝑉 are its normalized left eigenvectors. 

Then iterative procedure (5) for solving equation (3) can be 

represented in a simpler form: 

Λ𝑃̃(1) + 𝑃̃(1)Λ∗ = − 𝑄̃ ,  

Λ𝑃̃(𝑘) + 𝑃̃(𝑘)Λ∗ = − ∑ 𝑁𝛾𝑃̃(𝑘−1)𝑁𝛾
∗

 𝑚

𝛾=1

,   𝑘 = 2, 3, …,    (12) 

𝑃̃ =  𝑃̃(1) + ∑ 𝑃̃(𝑘)

∞

𝑘=2

 ,   𝑃 = 𝑈 𝑃̃ 𝑈∗ , 

where 𝑃̃(𝑘) = 𝑉𝑃(𝑘)𝑉∗, 𝑄̃ = 𝑉𝐵𝐵𝑇𝑉∗, 𝑁𝛾 = 𝑉𝑁𝛾𝑉∗. Let 

𝜈𝛾𝑝𝑟 = (𝑁𝛾)
𝑝𝑟

 be the components of the matrices 𝑁𝛾. Then 

(12) can be written in terms of matrix components in the form  

(𝑃̃(1))
𝑝𝑟

=
−1

𝜆𝑝 + 𝜆𝑟
∗

 (𝑄̃)
𝑝𝑟

 ,                

∀ 𝑘 > 1:   (𝑃̃(𝑘))
𝑝𝑘𝑟𝑘

= 

∑   ∑
− 𝜈𝛾𝑝𝑘𝑝𝑘−1

𝜈𝛾𝑟𝑘𝑟𝑘−1
∗

𝜆𝑝𝑘
+ 𝜆𝑟𝑘

∗
(𝑃̃(𝑘−1))

𝑝𝑘−1𝑟𝑘−1

𝑛

𝑝𝑘−1, 𝑟𝑘−1=1

𝑚

𝛾=1

 ,  

   𝑃 = 𝑈 (∑ 𝑃̃(𝑘)

∞

𝑘=1

) 𝑈∗ .                                       (13) 

By analogy with the expansions in (Yadykin and Galyaev, 

2013), this can also be generalized to the case of multiple 

eigenvalues. Equations (8) and (9) for the sub-Gramians 𝑃̅𝑖 

and 𝑃𝑖𝑗  differ from equation (6) for the Gramian 𝑃 only in 

their right-hand side. In the eigenvector basis, the matrix 𝑄̃ =
𝑉𝑄𝑉∗ is replaced by the matrices 

𝑄̃𝑖 =
1

2
(𝟏𝑖𝑖𝑄̃ + 𝑄̃𝟏𝑖𝑖)  𝑎𝑛𝑑 

𝑄̃𝑖𝑗 =
1

2
(𝟏𝑖𝑗(𝑄̃)

𝑖𝑗
+ 𝟏𝑗𝑖(𝑄̃)

𝑗𝑖
), 

for 𝑃̅𝑖 and 𝑃𝑖𝑗  respectively, where 𝟏𝑖𝑗 = 𝒆𝑖𝒆𝑗
𝑇 is the product 

of the unit basis vectors. Substituting matrices 𝑄̃𝑖 instead of 𝑄̃ 

into the iterative procedure (13), we obtain an iterative 

procedure for calculating sub-Gramians 𝑃̅𝑖  in (8) 

𝑃̃̅𝑖
(1)

= −
1

2
∑ (𝟏𝑖𝑙

(𝑄̃)
𝑖𝑙

𝜆𝑖 + 𝜆𝑙
∗ + 𝟏𝑙𝑖

(𝑄̃)
𝑙𝑖

𝜆𝑙 + 𝜆𝑖
∗)

𝑛

𝑙=1

 ,    

∀ 𝑘 > 1:   (𝑃̃̅𝑖
(𝑘)

)
𝑝𝑘𝑟𝑘

=  

∑   ∑
− 𝛼 𝜈𝛾𝑝𝑘𝑝𝑘−1

𝜈𝛾𝑟𝑘𝑟𝑘−1
∗

𝜆𝑝𝑘
+ 𝜆𝑟𝑘

∗
(𝑃̃̅𝑖

(𝑘−1)
)

𝑝𝑘−1𝑟𝑘−1

𝑛

𝑝𝑘−1, 𝑟𝑘−1=1

𝑚

𝛾=1

 ,  

     𝑃̅𝑖 = 𝑈 (∑ 𝑃̃̅𝑖
(𝑘)

∞

𝑘=1

) 𝑈∗.                             (14) 
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Similarly, to calculate pairwise sub-Gramians 𝑃𝑖𝑗  in (9), we 

obtain the following iterative procedure: 

𝑃̃𝑖𝑗
(1)

= −
1

2
(𝟏𝑖𝑗

(𝑄̃)
𝑖𝑗

𝜆𝑖 + 𝜆𝑗
∗ + 𝟏𝑗𝑖

(𝑄̃)
𝑗𝑖

𝜆𝑗 + 𝜆𝑖
∗) ,   

∀ 𝑘 > 1:   (𝑃̃𝑖𝑗
(𝑘)

)
𝑝𝑘𝑟𝑘

= 

∑   ∑
− 𝛼 𝜈𝛾𝑝𝑘𝑝𝑘−1

𝜈𝛾𝑟𝑘𝑟𝑘−1
∗

𝜆𝑝𝑘
+ 𝜆𝑟𝑘

∗
(𝑃̃𝑖𝑗

(𝑘−1)
)

𝑝𝑘−1𝑟𝑘−1

𝑛

𝑝𝑘−1, 𝑟𝑘−1=1

𝑚

𝛾=1

 ,  

  𝑃𝑖𝑗 = 𝑈 (∑ 𝑃̃𝑖𝑗
(𝑘)

∞

𝑘=1

) 𝑈∗.                             (15) 

The necessary conditions for the applicability of iterative 

procedures (14) and (15) are the same as for the iterative 

procedure (5) established in (Zhang and Lam, 2002), namely, 

the dynamics matrix 𝐴 is stable, and equation (6) has a 

unique solution 𝑃 ≥ 0.  

 

5. TEST MODEL OF A TWO-AREA POWER SYSTEM 

As a test bilinear model, we use the 17th order model from 

(Al-Baiyat et al., 1993) for two interconnected power 

systems, each area having one steam and one hydro unit. This 

model is developed to describe the electromechanical 

transients and suitable for the study of primary and secondary 

load and frequency control. It includes turbine governors for 

steam and hydro units, hydraulic installations and turbines, 

steam turbines with the installations for steam generation, 

power plants, consumers, the transmission network with 

system inertia, and the tie-line. 

This system model has been bilinearized around a chosen 

operating point and represented in the form of equation (6). 

There are 17 state variables, which represent variations of 

frequencies; hydro turbine gate openings; steam turbine valve 

openings; tie-line power exchange; high, intermediate and 

low pressure outputs of steam turbines; flows and dashpot 

piston positions of hydro turbines. There are 4 control input 

variations, one for each hydro or steam unit. There are 8 

bilinear terms associated with the variations in frequencies 

and hydro turbine gate openings. The detailed description of 

the model equations, state variables, and parameters is given 

in (Al-Baiyat et al., 1993). In this paper we use the same state 

variables and parameters taken for 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 1. 

The corresponding values of nonzero coefficients for the 

matrices 𝐴 ∈ ℝ17×17, 𝐵 ∈ ℝ17×4, 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ ℝ17×17 are 

given in Appendix A.  

 

6. RESULTS OF TEST EXPERIMENT 

In a test experiment, we characterize the contribution of 

linear eigenmodes and their pair interactions to the small-

signal and transient perturbation energy of the system (6) 

depending on the coefficient 𝛼, which characterizes the 

magnitude of bilinear terms. At 𝛼 = 0, the system is purely 

linear, and with increasing 𝛼, bilinear effects increase. For 

each 𝛼, we compute the sub-Gramians 𝑃̅𝑖 and 𝑃𝑖𝑗  defined by 

(8) and (9), respectively.  

A list of eigenmodes that are most sensitive to the parameter 

𝛼 is presented in Table 1. 

Table 1. Test system modes and eigenvalues.  

Mode Eigenvalue Type and principal variables 

S1 -0.0503 Inter-area: hydro turbine 

dashpot piston positions 

S4/S5 -0.139 ± 

0.187 j 

Inter-area: frequencies and 

hydro turbine dashpot piston 

positions 

S6 -0.1396 Inter-area: steam turbine 

intermediate pressure 

outputs and hydro turbine 

dashpot piston positions 

S10 -1.923 Local for system 1: the 

valve opening and low 

pressure output of the steam 

turbine 1 and the flow in 

hydro turbine 1 

S13 -2.038 Local for system 1: the 

valve opening and low 

pressure output of the steam 

turbine 1 and the flow in 

hydro turbine 1  

S14 -4.35 Inter-area: hydro turbine 

gate openings 

S15 -4.45 Inter-area: hydro turbine 

gate openings 

 

Fig. 1. Frobenius norm of the sub-Gramians 𝑃̅𝑖 for linear 

eigenmodes as a function of weighting coefficient 𝛼. 

The Frobenius norms of the sub-Gramians 𝑃̅𝑖 for linear 

eigenmodes obtained by (8) are shown in Figure 1 as a 

function of the weighting coefficient 𝛼. Eigenmodes not 

shown in the figure are weakly dependent on 𝛼. The obtained 

graphs show the general effect of bilinear terms for the 

analysis of dynamic small-signal and transient stability of the 

power system. In particular, these graphs allow one to specify 

the range of applicability of linear model for the analysis of 
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transient stability. It can be seen that the linear model 

accurately reproduces the behaviour of all modes in a fairly 

wide range of variation of the weight coefficient 𝛼 from 0 to 

4. Figure 1 also reveals the linear eigenmodes most sensitive 

to bilinear effects. They are the inter-area modes S1, S4/S5, S6, 

S14, and S15. The observed dynamics has an intuitive 

explanation. The bilinear terms in this model are associated 

with variations of frequencies and hydro turbine gate 

openings. As can be seen from Table 1, the oscillation S4/S5 

has a high participation of frequencies. The aperiodic modes 

S14 and S15 are mainly associated with variations of the hydro 

turbine gate openings. And the eigenmodes S1, S4/S5, and S6 

are determined by the hydro turbine dashpot piston positions, 

the dynamics of which in the bilinear model (Al-Baiyat et al. 

1993) are directly related to the variations of hydro turbine 

gate openings. 

 

Fig. 2. Frobenius norm of the pair sub-Gramians 𝑃𝑖𝑗  for S1 

mode and other eigenmodes as a function 𝛼. 

 

Fig. 3. Frobenius norm of the pair sub-Gramians 𝑃𝑖𝑗  for S14 

mode and other eigenmodes as a function 𝛼. 

Figures 2, 3, and 4 show the Frobenius norms of the pair sub-

Gramians 𝑃𝑖𝑗  (9) for the modal interactions between the 

modes i = 1, 14, and 15 respectively, and other eigenmodes j 

as a function of 𝛼. The pair sub-Gramians characterize the 

degree of pairwise interaction between linear eigenmodes. In 

this case, it can be seen that with an increase in bilinearity, 

the modes S1, S14, and S15 increase the interaction between 

themselves, as well as with the modes S4/S5 and S6. Thus, the 

interaction increases between those modes that are most 

sensitive to the bilinearity parameter 𝛼. We also note that the 

norms of diagonal pairwise sub-Gramians 𝑃11, 𝑃14 14, and 

𝑃15 15 increase most rapidly. 

 

Fig. 4. Frobenius norm of the pair sub-Gramians 𝑃𝑖𝑗  for S15 

mode and other eigenmodes as a function 𝛼. 

 

6. CONCLUSIONS 

To analyse the dynamic behaviour of bilinear systems, novel 

spectral decompositions were proposed in (Yadykin, Iskakov, 

2019) for the solutions of the corresponding generalized 

Lyapunov equations. These solutions (or Gramians) were 

represented as a sum of spectral components, which were 

called sub-Gramians. Sub-Gramians characterize the 

contribution of linear eigenmodes 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 or their pair 

modal interactions of the form 𝜆𝑖 + 𝜆𝑗 to the asymptotic 

dynamics of the perturbation energy in a bilinear system.  

In this paper, for the first time we apply the proposed 

decompositions to the analysis of the behaviour of a bilinear 

model of a two-area electric power system (EPS). An 

analysis of the spectral decompositions of the controllability 

Gramian revealed an intuitively expected result. With an 

increase in bilinear effects, we observe an increase in the role 

of eigenmodes that are associated with the variables involved 

in bilinear terms. Similarly, the interaction between the 

eigenmodes, which are most sensitive to the bilinearity 

parameter 𝛼, increases. In the simulation experiment, an 

analysis of the sub-Gramian norms allowed us to determine 

the limits of applicability of linear model and to reveal 

dominant modes in the analysis of the transient stability of 

EPS. However, for a more detailed study and verification of 

the proposed method, further test experiments and 

comparison with the results of the known methods of normal 
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forms and modal series are needed, which is the subject of 

our further study. 
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Appendix A. NONZERO COEFFICIENTS FOR THE 

BILINEAR MODEL MATRICES  

A1 1 = – 2.0; A1 8 = – 4.0; A2 1 = 4.8; A2 2 = – 5.0; A3 2 = 0.2; 

A3 3 = – 0.2; A4 3 = 2.0; A4 4 = – 2.0; A5 2 = – 0.08; 

A5 3 = – 0.08; A5 4 = 0.11; A5 5 = – 4.0; A5 6 = 10.0; 

A5 7 = – 0.93; A5 8 = – 9.1; A5 9 = 0.67; A6 5 = 0.2; A6 6 = – 0.5; 

A7 5 = 1.32; A7 7 = – 1.4; A7 8 = – 0.28; A8 2 = 0.01; A8 3 = 0.01; 

A8 4 = 0.014; A8 5 = – 0.06; A8 7 = 0.12; A8 8 = – 0.11; 

A8 9 = – 0.08; A9 8 = 22.2; A9 10 = – 22.0; A10 9 = 0.08; 

A10 10 = – 0.1; A10 11 = 0.09; A10 13 = – 0.05; A10 14 = 0.02; 

A10 15 = 0.01; A10 16 = 0.01; A11 10 = – 0.28; A11 11 = – 1.4; 

A11 13 = 1.32; A12 12 = – 0.5; A12 13 = 0.2; A13 9 = – 0.67; 

A13 10 = – 0.91; A13 11 = – 0.74; A13 12 = 10.0; A13 13 = – 4.1; 

A13 14 = – 0.14; A13 15 = – 0.09; A13 16 = – 0.10; A14 14 = – 2.0; 

A14 15 = 2.0; A15 15 = – 0.17; A15 16 = 0.17; A16 16 = – 5.0; 

A16 17 = – 4.8; A17 10 = – 4.0; A17 17 = – 2.0. 

B1 1 = 4.0; B5 2 = 10.0; B13 3 = 10.0; B17 4 = 4.0. 

N15 5 = 0.067; N25 8 = 0.067; N18 5 = – 0.008; N28 8 = – 0.008 

N310 10 = – 0.008; N410 13 = – 0.008; N313 10 = 0.067; 

N413 13 = – 0.067. 
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