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Abstract: A novel cell equilibrium algorithm which is used for battery state of charge
equilibrium of battery pack is proposed in this paper. Cell equilibrium algorithm is a key
technology for lithium-ion battery pack in the energy storage systems. In order to eliminate
the imbalance of battery state of charge, it’s generally controlled by adjusting the charging
current. The artificial potential field can construct a virtual force function, which provides
the mapping between state of charge deviation and charging current. Therefore, an artificial
potential field-based equilibrium method to balance battery state of charge was proposed in
this paper. By reasonably distributing the charging current of the battery, the equilibrium of
the battery state of charge can be achieved. A laboratory testbed has been built to verify the
effectiveness of the proposed method compared with conventional method. Experiment results
analyzed the energy consumption and the convergence speed of state of charge deviation under
artificial potential field control with different parameters.

Keywords: Li-ion battery, state-of-charge, equilibrium, artificial potential field, energy
consumption

1. INTRODUCTION

Lithium-ion batteries are widely concerned for their ad-
vantages of small size, large capacity, light weight and high
safety (Zhang, 2017).These advantages make it an impor-
tant energy storage device in the 21st century. Meanwhile,
It has laid an important foundation for the popularization
of electric vehicles.

Generally, the energy storage capacity and higher voltage
requirement can be achieved by connecting multiple bat-
teries in series as a stack due to the voltage limit of a
single battery. However, each battery has individual dif-
ferences in an energy storage system, such as capacitance,
internal resistance, self-discharge rate, and environmental
condition. Overvoltage and undervoltage of lithium-ion
batteries will seriously affect the health and safety of the
systems (Isaacson et al., 1997) . If overvoltage occurs,
production of CO2, C2H4, and other gases will increase the
internal temperature and pressure causing severe battery
damage or an explosion(Affanni et al., 2005). If under-
voltage occurs, internal reactions cause the cell to lose a
large part of its capacity. Thus, equilibrium methods are
particularly important to eliminate such an imbalance.

At present, the balance circuit of energy storage system
is usually divided into two types: dissipative circuit and

? This work is supported by the National Natural Science Founda-
tion of China (Grant Nos. 61672537 and 61803394). Corresponding
Author: Heng Li, Email: liheng@csu.edu.cn

non-dissipative circuit(Li et al., 2017; Agrawal et al., 2016;
Heng et al., 2018). A dissipative circuit is one in which ex-
cess energy is dissipated through passive components such
as resistors. Non-dissipative circuits store excess energy in
active components such as inductors or capacitors. When
the battery voltage is too high, the active element either
absorbs excess energy and stores or transfers it to a lower
one. Although non-dissipative circuit has good energy effi-
ciency, the disadvantages are its circuit complexity, control
difficulty, bulky size. The dissipative balancing circuits
are favored in low-power applications where the system
size and cost budgets are limited, though the efficiency is
relatively low.

In industrial applications, dissipative circuit and non-
dissipative circuit have their own application. The dif-
ferences between batteries still affect the equilibrium ef-
fect. Therefore, the equilibrium strategies are proposed
to optimize the equilibrium effect. In general, equilib-
rium strategy can be classified into voltage equilibrium
method and charge equilibrium method (Einhorn et al.,
2010, 2011). Voltage equilibrium method is to equalize the
voltages on every single cell after charging or discharging.
Whereas, each battery exists the drawbacks of unequal in-
ternal resistances, battery voltage is unequal even though
the battery capacity is equilibrium. Charge equilibrium
method is a equilibrium scheme based on capacity of the
individual cell. Both for charging and discharging an im-
provement of performance is gained when using the state of
charge(SOC) and the capacity of the cells as information.
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Fig. 1. The proposed cooperative cell equilibrium method for the switched resistor circuit.

In the equilibrium process, only a single battery is allowed
to charge with simultaneous charging multi-cells being
not allowable. In addition, the previous method aimed
at the battery SOC to control. This control method is
relatively complex and control systems are difficult to
design(Aizpuru et al., 2013; Daowd et al., 2011; Vitols,
2014).

To address this challenge, a cell equilibrium control
method for SOC deviation is designed in this paper.
Artificial potential field is introduced to construct the
mapping relationship between charge state deviation and
charge current. This control method can accelerate the
convergence of SOC deviation by controlling charging
current. This SOC deviation-based mapping makes the
control method simple and easy to implement. The ef-
fectiveness of the proposed method is verified compared
with conventional method(Daowd et al., 2011). The energy
consumption and the convergence speed of SOC deviation
under different artificial potential field control parameters
are analyzed.

The remainder of this paper is organized as follows. Section
II introduces system schematic and artificial potential
field. Section III gives the SOC estimation using particle
filter. Section IV proposed the artificial potential field-
based control strategy. Section V presents experimental
results to demonstrate the good performance of the new
control approach. We conclude the paper in Section VI.

2. SYSTEM SCHEMATIC AND ARTIFICIAL
POTENTIAL FIELD

This section first introduces the schematic of the system,
then the artificial potential field is given. It’s the purpose
to understand the system structure and control strategy.

2.1 System Schematic

We considered each cell as a single agent. The distributed
control strategy is adopted to control the multi-agent

system. This distributed control strategy greatly enhances
the flexibility and reliability of the system(Caldon et al.,
2014).

The schematic of the proposed cooperative cell equilibrium
method is illustrated in Fig. 1. There are three layer in this
system. The physical layer is the switched resistor circuit,
where each cell is connected in parallel with a resistor via
a switch. The control layer include the n controllers, which
can collect the information of the physical layer and send
control signal. The cyber layer describe the communication
topology of each cells.

The process of the system schematic is as follows: (a) The
information of each cell in switched resistor circuit was
collected by the controller; (b) A SOC estimation algo-
rithm calculated the SOC of each battery according to the
collected information; (c) The SOC of every battery was
shared with neighbor nodes through the communication
module and got the deviation from the neighbor node;
(d) the appropriate charging current was obtained accord-
ing to the artificial potential field-based control strategy
proposed in the paper; (e) The shunt switch adjusted the
expected charging current according to the control signal
given by the controller.

2.2 Artificial Potential Field

Artificial potential field is first proposed to be used for
multi-agent obstacle avoidance (Khatib, 1986) and is wide-
ly used in multi-agent formation control (Olfati-Saber and
R., 2006). In the allocation of hybrid energy storage ve-
hicles, a virtual force field is established to generate a
coupling relationship between several agents and form a
stable formation among agents.

The artificial potential field-based real-time cell equilibri-
um strategy in this work should be capable of determining
the charging current adaptively on the premise of ensur-
ing SOC of battery limitations. Meanwhile, this strategy
can accelerate the SOC convergence speed of lithium-ion
battery.
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Fig. 2. The force of potential field.

The force function between any two agents is presented in
Fig. 2(Wu et al., 2020), also called action function in this
artificial potential field. When the distance between any
two agents equals to the reference value, there is no force
between them, i.e., the potential energy is zero. When two
agents get close, there is a large repulsive force. When they
are far away from each other, there is a large attractive
force. This large attractive force or repulsive force, i.e.,
high potential energy, ensure the distance between them
converges to the reference value quickly.

In the charging process, when ∆SOC is large, the force
function will generate a strong gravitation forcing ∆SOC
to the equilibrium point. When ∆SOC → 0, this gravita-
tion will gradually weaken and eventually disappear.

3. SOC ESTIMATION USING PARTICLE FILTER

This section firstly introduced the RC first-order dynamic
circuit, then the algorithm of particle filter is utilized to do
SOC estimation based on the proposed nonlinear model.
It’s the purpose to obtain more accurate SOC of battery.

3.1 The Discrete Battery Model

The equivalent circuit model for Li-ion battery is a combi-
nation of voltage source, resistors and capacitors.The RC
ladder characterizes the battery dynamics . Considering
the accuracy and complexity of the model, we use the
RC first-order dynamic circuit to describe the battery (Hu
et al., 2012). The proposed battery circuit model is show
in Fig. 3.

OCV SOC

sR
pR
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tV

Fig. 3. The first order battery circuit model.

The state-space model is obtained based on the circuit
in Fig. 3. Take the voltage across the RC ladder as Up .
Define the state variables as Up and SOC. According to
the circuit model, the state-space model is described by

[
dSOC/dt
dUp/dt

]
=

 0 0

0 − 1

RpCp

[ SOC
UP

]
+

−
1

Cn

− 1

Cp

 I, (1)

Vt = OCV (SOC)− Up −RsI, (2)

where Rs represents the series resistance, Rp and Cp are
the resistance and capacitance of the RC ladder.In this
equation, the OCV-SOC table is expressed as an open
circuit voltage (OCV) function.

Ah measurement method is the most commonly used
SOC estimation method. If charge/discharge initial state
is SOC (t0), then the SOC (t) in the current state is

SOC (t) = SOC (t0) +

∫ t

0

I (τ)

Cn
dτ. (3)

To obtain the discrete model, the discrete form for (3) is

SOC (k + 1) = SOC (k) +
∆t

Cn
I (k), (4)

where ∆t is the sampling interval, k is the sampling
step. The other state variable Up is represented by
the sum of RC circuits discrete-time zero-state response

Rp

(
1− e−

∆t
RpCp

)
I (k) and discrete-time zero-input re-

sponse e
− ∆t

RpCp Up (k) approximately. Therefore, the dis-
crete form of formula (1) and formula (2) is[

SOC (k + 1)
Up (k + 1)

]
=

[
1 0

0 e
− ∆t

Rp(SOC)Cp(SOC)

] [
SOC (k)
Up (k)

]

+

 −∆t

Cn

Rp (SOC)
(

1− e−
∆t

Rp(SOC)Cp(SOC)

)
 I (k)

,

(5)

Vt (k) = OCV (SOC (k))− Up (k)−RsI (k), (6)

where Rp and Cp are functions of SOC. Then, the state
vector is defined by

xk = [ SOC (k) Up (k) ]
T
. (7)

3.2 Particle Filter

In general, a nonlinear system is described by

xk = f (xk−1, uk−1, wk−1) (8)

yk = h (xk, uk, vk), (9)
where wk and vk are independent white noise with known
probability distribution function (PDF). The system s-
tates are Markovian, i.e.,

P (xk |xk−1, xk−2, · · · , x0 ) = P (xk |xk−1 ). (10)

Then particle filter can be utilized to do state estimation
for the system. Particle filter is a Monte Carlo method
for implementing a recursive Bayesian filter. The posterior
state is approximated by a set of weighted particles.The
particle filter algorithm is described as follows:

Firstly, determine the number of particles M according
to the systems form and computation cost. So, the initial
particles are generated by

xi0 = x̂0 +N
(
0, σ2

0

)
. (11)
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Secondly, for i = 1, 2, · · · ,M particles, propagate the state
particles xik−1 (i = 1, 2, · · · ,M) to the next step by the
system process equation,

xik = f
(
xik−1, uk−1

)
+N

(
0, σ2

k−1

)
. (12)

Thirdly, update and normalize the important weights for
each particle. Calculate the ith particles likelihood and
normalize the likelihood qi of each particle as

qi = exp

(
− 1

2
√
R

(
yk − h

(
xik, uk

))2)
/
√

2πR, (13)

ωi
k =

qi∑M
j=1 qj

. (14)

Fourthly, a new particle set {x̄ik}Mi=1 is obtained by re-
sampling to eliminate particles with small weights and to
concentrate on particles with large weights.

Lastly, Calculate the mean of the re-sampled particles to
obtain particle filters estimation result x̂k,

x̂k =
1

M

∑M

i=1
x̄ik. (15)

4. THE ARTIFICIAL POTENTIAL FIELD-BASED
CONTROL STRATEGY

A control strategy based on artificial potential field is
introduced in this section. First, the artificial potential
field calculates the virtual attractive force according to
the SOC of the batteries, then the mapping relationship
between the virtual force and the duty cycle of switch was
established to adjust the charging/discharging current of
each batteries.

4.1 Establishment of the artificial potential field

In this paper, We want the SOC of each cell to be
consensus, i.e., ∆SOC=0. We considered the method of
mutual attraction of each cell through a virtual force
to achieve consensus. For example, there are three cells.
When ∆SOC ≥ 0 between Cell A and Cell B, this virtual
force makes the cells close to a certain median value.
Meanwhile Cell B and Cell C also reach consensus in the
same way. Eventually, all the cells will reach consensus.

We establish artificial potential field function to construct
the relation between virtual force and SOC. First, accord-
ing to the estimated SOC, we get the deviation between
neighbor nodes

x = SOCi − SOCi+1 (i = 1, 2, · · · ,m). (16)

Then virtual SoC attractive forces can be defined as follows

Fsc= arctan (αx) . (17)

Eq (17) are depicted in Fig. 4(α=20). It is worth noticing
that under this coordinate setting, the force Fsc ≥ 0 when
∆SOC ≥ 0. Therefore, a positive force is provided to pull
cell with higher SOC. Whereas a negative force is provided
to push cell with lower SOC.

The related artificial potential energy function is defined
as

U (x) =

∫ 1

−1

|Fsc (x)| dx, (18)

which are plotted in Fig. 5. It is clearly shown that
the lowest potential energy point is ∆SOC = 0. When

SOC
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Fig. 4. Virtual attractive force Fsc− SoC diagram

the battery systems are imbalance (∆SOC 6= 0), a larger
potential energy is provided so that SOC converges to zero.

SOC
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Fig. 5. Virtual potential energy U(x)− SoC diagram.

4.2 Determination of charging/discharging current

An actual quantity that maps the virtual attractive force
is needed during charging/discharging process. The appro-
priate charging/discharging current is selected to eliminate
imbalance.

We take charging process as an example to analyze the
relationship between virtual force and current. The nor-
mal charging current of lithium ion battery is about
0.2C ∼ 1C. We need to determine the appropriate charg-
ing current based on the virtual force

Ich=

[
0.8 (Fsc + 1.5)

3
+ 0.2

]
C, (19)

where the constants are to limit Ich in [0.2C,C]. In charg-
ing mode, Ich = 1C when ∆SOC is maximum, i.e., the
cell is charging with the maximum safe current; Ich = 0.2C
when ∆SOC is minimum. For both modes, when there is
no force, Ich = 0.6C.

5. EXPERIMENTAL VERIFICATION

In this section, we provide experiment results to illustrate
the effectiveness of the proposed charging strategy.

1

3

4

2

Fig. 6. Experiment hardware setup: (1) control board,
three batteries and three resistors, (2) CC-CV power
source, (3) DC 24V power source, (4) PXI platform.
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5.1 Parameter Setting

The battery model number selected is ICR18650, the
rated voltage is 3.7V and the capacity is 2200mAh. The
initial SOC of three cells are different, and they are given
as SOC1 (0) = 0.6, SOC2 (0) = 0.55, and SOC3 (0) = 0.5.
The target SOC of each cell is 0.9. And 0.5Ω is chosen as
the switched resistor in this experiment.

5.2 Platform Introduction

The hardware setup of the CC-CV cell equilibrium charg-
ing system is shown in Fig. 6. The experiment setup mainly
includes four parts: (1) a control board, three batteries and
three equilibrium resistors and color is yellow; (2) a DC
24 V power source; (3) a constant-current and constant-
voltage power source; (4) a PXI platform. The CC-CV
power source provides the charging current for the cells in
this system, and the 24V DC power provides the operating
voltage for the control board. The PXI platform collects
the voltage of each cell and displays the waveforms on the
NI-veristand in the hosting computer.

The main role of the control board is to adjust the switch
to control the charging current. The function of the control
board can be divide into voltage measurement module,
control module, communication module, and CAN mod-
ule. For the measurement accuracy is important, we choose
three high-precision voltage sampling sensors to measure
the terminal voltage of every batteries. The control al-
gorithm will calculate the SOC based on the measured
data. The algorithm is realized by the TMS3202808 micro-
processor.

5.3 Verification Results

We compared the proposed control system which has the
different artificial potential field parameters and collected
their voltage waveforms and SOC waveforms. The no ar-
tificial potential field(α=0) control method is the conven-
tional control method.(Daowd et al., 2011). The voltage
waveform collected is shown in fig. 7. Fig. 7 (a), (b), (c)
respectively represents the battery voltage curve under
different parameters. As can be seen from fig. 7(a), the
three batteries started charging at the same time. When
the voltage limit is reached, the battery stopped charging.
In fig. 7(b), the voltage of Cell3 started to rise first, then
the voltages of Cell2 and Cell3 started to rise slowly. The
voltage of the three batteries started to rise synchronously
and eventually stopped charging when the voltage reaches
its maximum when they are the equilibrium. In fig. 7(c),
the three batteries also rose in equilibrium. Due to the
different of artificial potential field parameters, the voltage
rise speed of the three batteries before equilibrium was
significantly different from that in fig. 7(b).

Fig. 8 visually shows the differences in the control methods
of the three different parameters. As shown in fig. 8(a),
SOC of the three batteries rose at the same rate. When
the SOC reaches the upper limit, the SOC of the three
batteries will be the equilibrium. In fig. 8(b), due to
the moderate selection of parameters, the SOC of the
three batteries reached the same level at 2231s. Compared
with the cooperative control strategy without artificial

Table 1. Energy consumption of shunt resistor.

Parameter Energy consumption(w · h)

α1=0 4.77
α2=20 3.08
α3=2000 4.79

potential field, The SOC equilibrium time was greatly
advanced. In fig. 8(c), we considered an extreme case where
the parameter of the artificial potential field was set as
large as possible. We found that the SOC of the three
batteries was almost the equilibrium at 983s. The SOC
equilibrium time of three batteries was advanced with the
increase of parameters.

However, this control method which makes the parameters
of artificial potential field as large as possible has some
disadvantages. It can be clearly observed from fig. 8(c)
that in the process of SOC becoming equilibrium, the
excess energy is consumed on the shunt resistance. Table
1 shows the energy consumption of the artificial potential
field control method under three different parameters. We
can see that when the parameters are too large, the system
energy consumption is also large. From the experimental
results, we can infer the relationship between the energy
consumption of the system and the parameters into a
concave function.

6. CONCLUSION

Charging equilibrium circuits are important for battery
and developed to improve the reliability, property and
lifetime. Different control strategies and their effectiveness
have to be evaluated actually. The artificial potential field-
based equilibrium algorithm for battery pack system was
proposed in this paper. Firstly, a particle filter method is
proposed to estimate SOC of lithium-ion battery. Then,
the artificial potential field model is established to control
SOC of lithium battery adaptively, so that the whole
system can reach equilibrium quickly. The concept of
artificial potential field is first referenced in the field of
battery balance management system. Experimental results
are provided to analyze the effectiveness of the design and
the energy consumption of the system.
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