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Abstract: A distributed model predictive control (DMPC) scheme for systems based on
the Hammerstein structure is proposed in this work. To deal with the nonlinearity of the
Hammerstein model, the DMPC problem is reduced to an optimization problem on the
intermediate variable and, subsequently, the inverse of the nonlinear block is considered to
find the corresponding control inputs. Also, a sub-optimality bound of the method is presented.
To illustrate our approach, we consider a nonlinear system controlled in a distributed manner
by two agents that exchange information and make cooperative decisions. The efficiency of the
proposed DMPC is demonstrated through a simulation example where it is compared to the
corresponding centralized approach.
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1. INTRODUCTION

Model predictive control (MPC) is an optimization based
control framework that has gained special relevance in
the last decades (Garcia et al. (1989); Mayne et al.
(2000)). MPC controllers make use of a model of the
system and calculate the control actions through iterative
optimizations of a certain performance criterion (Camacho
and Bordons (2013)). In particular, each time instant,
a sequence of actions for a future window of time is
computed and the first input is implemented in the system.
Subsequently, the procedure is repeated based on the
receding horizon principle.

In its earliest form, the MPC strategy was proposed in a
centralized manner, where a single optimization problem
was defined for the overall system. However, this approach
hinders its applicability in large scale systems due to the
high computation burden required to solve the optimiza-
tion problems, especially in the case of nonlinear systems.
To overcome this issue, non-centralized forms of MPC
have emerged in the past years. In this context, the global
system is partitioned into a set of subsystems that are gov-
erned by local MPC controllers. Within this framework,
decentralized MPC comprises those approaches where the
set of controllers do not exchange any information and,
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therefore, base their computations solely on local data
(Siljak (2011)). On the other hand, distributed MPC
considers the possibility of interactions among controllers
(Christofides et al. (2013); Scattolini (2009)), thus increas-
ing the information available to the local entities and
allowing the coordination of their actions. When the inter-
subsystems interactions are strong, the global performance
of decentralized controllers is far from optimal and, hence,
distributed architectures offer an efficient alternative to
deal with the latter while reducing the computation bur-
den entailed by the centralized formulation.

Several DMPC methods have been proposed for a wide
range of linear and nonlinear processes (see Maestre et al.
(2014)). Nevertheless, the development of distributed con-
trol schemes to deal with nonlinear control problems still
demands additional research efforts, as there are few ap-
proaches capable of dealing with this class of problems.
In Rocha et al. (2018); Rocha and Oliveira-Lopes (2016),
a nonlinear system is controlled by a set of cooperative
agents that use local linearized models. Also, in Dunbar
(2007), the authors deal with a dynamically coupled non-
linear system where the local controllers minimize their
own objective and iteratively exchange data. In Stewart
et al. (2011), a distributed gradient projection algorithm
is proposed to optimize the nonconvex objective function
of the DMPC problem. A different alternative is proposed
in Necoara et al. (2009), where the nonlinear optimiza-
tion problem is reduced to a linear convex problem using
sequential convex programming.
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For many industrial processes, it is suitable to describe
their dynamics by a static nonlinearity and a linear dy-
namic model. This representation characterizes the Ham-
merstein structure. In particular, Hammerstein models
allow a representation of nonlinear systems through a
series of interconnected blocks, such that, between the real
system’s input and output, a new virtual variable is de-
fined, commonly called internal or intermediate variable.
Hammerstein models have been successfully used to de-
scribe a variety of systems such as neutralization reactors
( Lawryńczuk (2010, 2011)), solid oxide fuel cells (Huo et al.
(2008)), or distillation columns (Marusak (2010)). Several
works deal with the application of MPC to Hammerstein
multiple inputs-multiple outputs (MIMO) models, either
in a centralized or decentralized way. In this context, the
block-oriented structure is exploited to generalize the good
features of the linear MPC to nonlinear MPC problems by
using the inverse of the nonlinear block or by linearizing it
around steady-state values. See for example Zheng et al.
(2014), where an adaptive decentralized MPC is estab-
lished for a large-scale system presented by a set of small-
scale Hammerstein models, and  Lawryńczuk (2010), where
a centralized MPC implementation.

In this work, we propose a distributed MPC method
tailored for the Hammerstein model. In particular, we
develop a DMPC approach for two independent agents
coupled through their outputs and inputs, which cooperate
to jointly minimize a global objective function. The control
problem is posed in terms of the internal variable, from
which the real inputs are then derived according to the
Hammerstein model. In addition to the novel DMPC
scheme, the paper also proposes a sub-optimality bound
on the value attained for the overall cost function.

The rest of the paper is organized as follows: the Hammer-
stein model is described in Section II. The proposed dis-
tributed MPC for the Hammerstein model is presented in
Section III. Simulation results are presented in Section IV.
Finally, conclusions are given in Section V.

2. PROBLEM SETTING

In this section, we present the Hammerstein model and
introduce the underlying assumptions on which our results
are based.

2.1 Hammerstein model

The Hammerstein model allows a representation of nonlin-
ear systems through a series of interconnected blocks. In
particular, it consists of a dynamic linear block, connected
in series to one or more static nonlinear blocks whose
outputs are virtual variables of the system (see Fig.1).

Hereon, let ui(k) ∈ Rri (for i = 1, ..., n) and yi(k) ∈ Rqi

(for i = 1, ...,m) represent respectively inputs and outputs
of the Hammerstein model at time instant k. Likewise,
the intermediate variables will be denoted by si(k) ∈
Rpi (with i = 1, ..., n). Also, let us use vectors u(k) =

[u1(k), u2(k), . . . un(k)]
T

, s(k) = [s1(k), s2(k), . . . sn(k)]
T

and y(k) = [y1(k), y2(k), . . . , ym(k)], which aggregate ac-
cordingly these variables for the overall system.

Fig. 1. Hammerstein model with decoupled nonlinearities

Following the Hammerstein structure, the outputs of the
nonlinear sub-blocks, i.e., the intermediate variables, are
related to real inputs as follows

si(k) = gi(ui(k)), (1)

where gi(·) is a non linear static function that maps input
ui(k) to a cetain si(k).

Assumption 1. In this work, we consider decoupled non-
linearities, i.e, each intermediate variable si(k) is expressed
as a continuous function of its input ui(k). In particular,
we consider the following relation:

si(k) = gi(ui(k)) =

ci,1ui(k) + ci,2u
2
i (k) + · · ·+ ci,nu

n
i (k),

(2)

where ci,j , with j = 1, ..., n, are real coefficients.

Assumption 2. The nonlinear map of the Hammerstein
model is bijective, i.e, functions gi(ui(k)) : R → R have
an inverse g−1

i (si(k)) : Rpi → Rri . Hence,

ui(k) = g−1
i (si(k)). (3)

Assumption 3. The input variables evolves in set Ui =
[umin

i , umax
i ]. As consequence, the intermediate variables

will take values in

Si =
[
smin
i , smax

i

]
= gi

([
umin
i , umax

i

])
(4)

where smin
i and smax

i are respectively the minimum and
the maximum of function gi(ui(k)) over the input space.

Likewise, the outputs of the linear block are calculated by
linear model:

y(k + 1) = Ay(k) +Bs(k), (5)

where A and B are respectively the output transition
and the intermediate variable-to-output matrices, whose
dimensions are

∑m
i=1 qi ×

∑m
i=1 qi and

∑m
i=1 qi ×

∑n
i=1 pi.

2.2 Two subsystems model

In this work, the Hammerstein structure is exploited to
develop a DMPC algorithm based on two coupled agents,
such that:
y1(k + 1) = A11y1(k) +B11s1(k) +A12y2(k) +B12s2(k),

y2(k + 1) = A22y2(k) +B21s2(k) +A21y1(k) +B21s1(k),
(6)

where yi(k) and si(k) are respectively the output and
virtual variable of subsystem i = 1, 2. Note that, by
aggregating both relations in (6), the linear dynamic block
can be modeled as (5), where global matrices A and B
aggregate accordingly matrices Aij and Bij for i, j = 1, 2.
Also, the input nonlinearity is modeled as (1), i.e.,

s1(k) = g1(u1(k)) and s2(k) = g2(u2(k)). (7)
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As a result, there exists a global nonlinear function g(u(k))
such that s(k) = g(u(k)), where g(u(k)) considers accord-
ingly g1(u1(k)) and g2(u2(k)).

3. DMPC FOR HAMMERSTEIN MODELS

The proposed method is based on Maestre et al. (2011a)
and Maestre et al. (2011b), where the authors propose a
heuristic mechanism for fast decision-making in DMPC
problems. In this section, we present the proposed DMPC
algorithm and introduce an index to evaluate its perfor-
mance.

3.1 Agents objective

Let Ji(k) = Jy
i (k) + Ju

i (k) represent the local cost func-
tions of each control agent i, where

Jy
i (k) =

Np∑
t=1

‖yspi (k + t)− yi(k + t)‖2Qi
(8)

and

Ju
i (k) =

Nu−1∑
t=0

‖∆ui(k + t)‖2Ri
, (9)

Here, Nu and Np are respectively the control and predic-
tion horizons, Qi and Ri are positive weighting matrices
whose dimensions are Np×Np and Nu×Nu, yspi (·) repre-
sents the set-point of subsystem i. Additionally, the control
inputs come into play in an incremental form, i.e.,

∆ui(k) = ui(k + t)− ui(k + t− 1), (10)

and it is assumed that ∆ui(k + t) = 0 for t ≥ Nu.

In this work, the agents cooperate to provide the lowest
value of the global cost function J(k) = J1(k) + J2(k),
which considers in an equitable manner both local costs.
Mathematically, the global problem can be posed as

min
∆u1(k),∆u2(k)

J(k)

s.t. (6), (10), (14),

u1(k + t) ∈ U1,

u2(k + t) ∈ U2,

∀t = 0, ..., Np − 1.

(11)

where ∆ui represents the sequence of ∆ui(k+ t) for t = 0
to t = Np − 1.

Note that, given (6), eq. (8) can be rewritten as a function
on current input y(k) and sequence

s(k) = [ s(k) s(k + 1) · · · s(k +Np − 1) ]
T
. (12)

Likewise, given (3) and (10), eq. (9) can be expressed in
terms of si(k) and si(k − 1), where

si(k) = [ si(k) si(k + 1) · · · si(k +Np − 1) ]
T
. (13)

The latter allows us to transform the nonlinear optimiza-
tion problem (11) into a sum of a linear MPC problem,
derived from (5), and a nonlinear one which is related
to (1). In particular, function J(·) can be decomposed as
follows

J(y(k), s(k−1), s(k)) = Jy(y(k), s(k))+Ju(s(k−1), s(k)),
(14)

where

Jy(y(k), s(k)) = Jy
1 (y(k), s(k)) + Jy

2 (y(k), s(k)), (15)

and
Ju(s(k − 1), s(k)) =

Ju
1 (s1(k − 1), s1(k)) + Ju

2 (s2(k − 1), s2(k)).
(16)

Note that Jy(·) is a quadratic function on s(k) while Ju(·)
is nonlinear since it deals with the inverse of the nonlinear
block. Also, let us remark that the dependence on variable
s(k) involves, by its definition, the dependence on s1(k)
and s2(k).

3.2 DMPC algorithm

The proposed DMPC approach uses linear MPC on func-
tion Jy(·) to determine the first sequence of virtual vari-
ables. Next, a nonlinear optimization of Ju(·) is solved,
which also provides a new solution for s(k). The informa-
tion obtained in these two steps is exchanged and used to
define a searching set that is explored by the two agents
with the aim of finding the sequence s∗(k) that minimizes
(14). Finally, inputs u∗(k) are derived from s∗(k).

Fig. 2. DMPC for the Hammerstein model

The proposed DMPC algorithm for the Hammerstein
model is described below.

(1) At time step k, measure the system output y(k)
and determine the optimal sequences of intermediate
variables that minimizes (15), that is,

(sy∗1 (k), sy∗2 (k)) = arg min
s(k)

Jy(y(k), s(k))

s.t. (6),

s1(k + t) ∈ S1,

s2(k + t) ∈ S2,

∀t = 0, ..., Np − 1.

(17)

Note that (17) is a convex optimization problem
where the model is linear and the objective function
is quadratic. Hence, it can be easily solved in a
distributed fashion, e.g, by using dual decomposition.

(2) Optimize function (16) to determine sequences su∗1
and su∗2 . To this end, each agent i solves

su∗i (k) = arg min
su
i

(k)
Ju
i (si(k − 1), si(k))

s.t. si(k + t) ∈ Si,
∀t = 0, ..., Np − 1.

(18)

where si(k − 1) is the solution at iteration k − 1.

Remark 1. Problem (18) can be solved locally by
each controller, i.e, the optimization of (9) is decou-
pled. Nevertheless, given the nonlinear relationship
between ui(k) and si(k), it is a nonlinear optimization
problem.
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(3) At this stage, the two agents exchange information
to make a cooperative decision. Using [sy∗1 (k), sy∗2 (k)]
and [su∗1 (k), su∗2 (k)] obtained in steps (1) and (2), we
will determine in a distributed manner the sequence
of intermediate variables that minimizes (14). In
particular, the agents browse randomly set

S∗ = [su∗1 (k), su∗2 (k)]×
[
sy∗1 (k), sy∗2 (k)

]
, (19)

where S∗ is a subset of S = S1 × S2, and evalu-
ate global index J(·) for different alternatives (see
Table 1). After this exhaustive search, the sequence
s∗(k) ∈ S∗ that provides a lowest value of (14) is
taken as solution.

Remark 2. The extreme points of the searching set
are also evaluated, as they are necessary to derive the
sub-optimality bound that will be introduced later.

(4) Based on the values of s∗(k), which contains accord-
ingly sequences s∗1(k) and s∗2(k), the agents use func-
tions g−1

1 (s1(k)) and g−1
2 (s2(k)) to determine their

control inputs. Only u∗1(k) and u∗2(k) are applied to
the system and the whole procedure is repeated for
time instant k = k + 1.

Remark 3. If the computation burden becomes an issue,
it may be preferable to switch to a non-incremental for-
mulation of the control problem, as it makes problem (18)
not dependent on the time instant, so that they become
static and can be simply solved off-line before starting the
algorithm.

Table 1. Proposals evaluation for decision making 1 .

(su∗1 , su∗2 ) . . . (sy∗1 , sy∗2 )

(su∗1 , su∗2 )
J1(su∗1 , su∗2 )

+J2(su∗1 , su∗2 )

. . .
J1(sy∗1 , sy∗2 )

+J2(su∗1 , su∗2 )

...
...

. . .
...

(sy∗1 , sy∗2 )
J1(su∗1 , su∗2 )

+J2(sy∗1 , sy∗2 )

. . .
J1(sy∗1 , sy∗2 )

+J2(sy∗1 , sy∗2 )

Fig. 3. Illustrative sketch of sets S and S∗ for the case of
Np = 1 and s1, s2 ∈ R1.

3.3 Performance evaluation

The nonlinear nature and the decomposition of the opti-
mization problem lead to a loss of performance regarding
1 Time index k and the dependence on s(k−1) and y(k) of functions
J1(·) and J2(·) have been omitted in Table 1 for the sake of clarity.

the global criterion. To quantify the latter, we consider
performance index ρ(k), which is defined as follows:

ρ(k) =
J(y(k), s(k − 1), s∗(k))− J∗(k)

J∗(k)
. (20)

where J(y(k), s(k − 1), s∗(k)) is the cost obtained with
solution s∗(k) = [s∗1(k), s∗2(k)]T provided by the algorithm
proposed in Section II, and J∗(k) is the minimum possible
cost.

Note that J∗(k) must satisfy

J∗(k) ≥ Ju(s(k − 1), s∗(k)) + Jy(y(k), s∗(k)). (21)

For the sake of clarity, let us use

Ju∗(k) = Ju(s(k − 1), s∗(k)) and

Jy∗(k) = Jy(y(k), s∗(k)).
(22)

Then, the difference between J(y(k), s(k − 1), s∗(k)) and
J∗(k) is unknown, but it is upper bounded by the differ-
ence between J(y(k), s(k− 1), s∗(k)) and Jy∗(k) +Ju∗(k),
i.e.,

J∗(k)− (Ju∗(k) + Jy∗(k)) ≤
J(y(k), s(k − 1), s∗(k))− (Ju∗(k) + Jy∗(k))

(23)

The right hand side of the inequality above can be calcu-
lated during the execution of the algorithm in steps (1)
and (2). Then, it is possible to compute an upper bound
on the actual value of ρ(k), such that

0 ≤ ρ(k) ≤ ρmax(k)

where

ρmax(k) =
J(y(k), s(k − 1), s∗(k))− (Jy∗(k) + Ju∗(k))

Jy∗(k) + Ju∗(k)
.

4. SIMULATION RESULTS

In this section, we illustrate the results obtained with the
proposed DMPC algorithm. To this end, we consider a
Hammerstein model described by the following equations:[

y1(k + 1)
y2(k + 1)

]
= A

[
y1(k)
y2(k)

]
+B

[
s1(k)
s2(k)

]
(24)

where A and B are defined as:

A =

[
0.025 0.1
−0.19 0.05

]
, B =

[
1.73 −0.58
−0.17 0.28

]
, (25)

and the output of the nonlinear block is given by[
s1(k)
s2(k)

]
=

[
u1(k) + 0.5u1(k)

2

u2(k) + 0.5u2(k)
2

]
. (26)

The prediction and control horizons of the MPC controller
are respectively Np = 3 and Nu = 1, and the weighting
matrices are Qi = 1 and Ri = 0.1 for agents i = 1, 2.
The control objective is to track an output reference while
respecting constraints on the manipulated variable. In
particular, the desired trajectories for y1 and y2 are shown
in red dashed lines in Figs. 4 and 5, and the constraints
on u are the following:

−10 ≤ u1(k) ≤ 5 and − 10 ≤ u2(k) ≤ 5, ∀k. (27)

Note that function gi(ui(k)) = ui(k) + 0.5ui(k)2 is a
continuous function that decreases monotically in interval
[−10,−1] and increases monotically in interval [−1, 5].
Therefore, it is easy to determine a piecewise analytic
expression of the inverse g−1

i (si(k)).
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To assess the performance of our approach, the proposed
DMPC algorithm is compared with nonlinear centralized
MPC. To solve the corresponding optimization problem,
we use MATLAB Optimization Toolbox, and in particular,
the genetic algorithm solver. Figs. 4 to 7 show the output
tracking and the evolution of the control inputs for both
approaches. It can be observed that the DMPC algorithm
provides similar results to the centralized approach in
terms of outputs’ behavior. However, a notable difference
is present in the evolution of the control signals, which
reflects the different nature of the optimization problems
that are respectively solved to find u1 and u2.
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Fig. 4. Output tracking of y1 for the proposed DMPC
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Fig. 5. Output tracking of y2 for the proposed DMPC

Additionally, in Fig. 8, we show the evolution of the
cost function J(·). It can be seen that, especially at the
middle of the simulation, the cost provided by nonlinear
centralized MPC is lower than the one obtained with the
DMPC algorithm. Note that there some time instants
where the DMPC approach seems to outperform the
solution of nonlinear centralized MPC, however, the latter
is due to a lack of accuracy of the solution provided by
the genetic algorithm. Also, the evolution of performance
index ρ(·) is illustrated in Figure 9. Note that when ρ(·) is
approximately 0, then the solution found with the DMPC
method is nearly optimal. Hence, this index can be used
in real time as a criterion to keep on searching for better
results or terminate the optimization. Finally, Fig. 10
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Fig. 6. Output tracking of y1 for the centralized MPC
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Fig. 7. Output tracking of y2 for centralized MPC

illustrate the benefits of the DMPC approach in terms of
computation time.
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Fig. 8. Cost functions for the centralized and distributed
MPC

5. CONCLUSION

A DMPC approach for the class of block-oriented models
composed of a nonlinear steady-state block and a linear
dynamic block is presented in this work. In particular,
the proposed DMPC algorithm uses the Hammerstein
model and formulates the control problem in terms of its
internal variable. The main advantage of this idea is to
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Fig. 10. Computation time for the proposed and the
centralized MPC

exploit the linear features of the dynamic block instead
of considering a single nonlinear optimization problem.
The final step of the proposed DMPC algorithm involves a
coordinated search through the space of overall solutions.
However, the variables obtained in a distributed fashion
are used to shrink the search space and thus to reduce the
computational time. Also, a criterion for evalutating the
loss of performance in comparison to nonlinear centralized
MPC is provided. The simulation results show a level of
performance close to the optimum and a notable decrease
of the computational burden.

Future work will extend these results to consider non-
linear systems with a greater number of agents and a
more realistic scenario. Additionally, the case of coupled
nonlinearities will be studied.
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