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Abstract: Implementing optimal controllers on embedded systems can be challenging as it
requires the solution of an optimization problem in real-time. Furthermore, the a priory verifica-
tion of stability, e.g. not relying on the possibly numerical solution of an optimization problem
is often not possible. We propose a non-linear control synthesis based on an approximated
explicit solution of a constrained optimal control problem, which can be efficiently implemented
and verified. The control law is derived based on a series expansion of an infinite horizon
optimal control problem via Al’brekht‘s Method. In comparison to existing approaches we
consider parametric uncertainties. The proposed method provides under certain conditions an
approximated solution of the Hamilton–Jacobi–Bellman (HJB) equation. The feedback control
law uses a finite number of terms of the series expansion, and therefore the evaluation does not
require intensive online computation. Furthermore, the optimal control strategy does not only
achieve an approximated infinite horizon performance but is also parameterized in terms of the
varying parameters which are assumed to be known. We provide a proof of convergence and
existence of the optimal control law. Simulation results with a non-linear quadcopter example
show the effectiveness of the proposed strategy.

Keywords: Approximated Infinite Horizon Optimal Control, Al’brekht‘s Method, Non-linear
Infinite Horizon Adaptive Control, Parametric Uncertainties.

1. EXPLICIT OFFLINE OPTIMAL CONTROL

Optimal control has gained increasing interest, over the
recent years, especially for constrained systems. Optimal
control aims to design a control law that minimizes a
performance criteria. Analytic solutions to constrained
optimal control problems are often difficult to find. Solving
the resulting optimization problem which can be com-
putational challenging on an embedded platform. Con-
sequently, computationally efficient methods for solving
the optimal control problem by calculating an explicit
solution offline have been investigated, e.g. (Na and Her-
rmann, 2014). There are several works in the literature
investigating approximation approaches to obtain subop-
timal solutions for non-linear optimal control problems,
e.g. Luo et al. (2018); Vamvoudakis and Lewis (2010).
Al’brekht (1961) developed a formal iterative procedure
to solve an optimal control problem via a power series
expansion. Garrard et al. (1992) developed an approach
which is applicable to a wider class of non-linear systems
by expanding both the optimal cost and the non-linear
dynamics as a power series in terms of the states. However
the overall complexity increases dramatically with the
system order. Due to the complexity of solving the Hamil-
ton–Jacobi–Bellman equations for non-linear systems, in-
verse optimal design approaches have been investigated,
e.g. in (Margaliot and Langholz, 2001). Xin and Balakr-
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ishnan (2005) presented the so called θ−D approximation
method for solving non-linear optimal control problems
characterized by a quadratic cost function and an affine
model. A further approach, named model predictive static
programming (Padhi and Kothari, 2009) has turned out
to be computationally efficient for finite-horizon optimal
control problems with terminal constraints. Dalamagkidis
et al. (2010) implemented an explicit model predictive
controller (MPC) to calculate the inputs via integrating
the optimal control derivatives, which are approximated
using recurrent neural networks. Neural networks are also
used to approximate the solution of the HJB equations
(Liu et al., 2018) for non-linear discrete time systems
(Kiumarsi and Lewis, 2014). Liu et al. (2012) reduced
the complexity of the explicit MPC problem by a hierar-
chical framework, wherein the explicit solution is derived
using Taylor expansions considering the vehicle model.
Modares and Lewis (2014) presented a new formulation of
optimal control problems using reinforcement learning for
non-linear partially-unknown constrained-input systems.
Papachristos et al. (2014) provided explicit solution ap-
proximations of piecewise affine models which leads to
a reduction of the computational time to solve a finite-
horizon optimal control problem. To solve the optimal
tracking problem for non-linear systems, Batmani et al.
(2017) presented a suitable technique based on a state-
dependent Riccati equation method (Cimen, 2012).More
recently an approach that provides a proximal averaged
Newton-type methods (Sathya et al., 2018; Stella et al.,
2017) to solve optimal control problems has been presented
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Fig. 1. Structure diagram showing the interaction between the optimal control policy with the dynamical system and
the parameter estimator. The explicit solution of an optimal control problem umin(x, pest) is calculated once offline.
The control parameters pest are updated online via parameter estimation.

which requires only computation of Jacobian vector prod-
ucts.

Most of the existing methods are limited to linear systems
or do not consider constraints and assume that the system
dynamics does not change. We propose an explicit optimal
control approach for non-linear systems based on the
power series expansion method (Al’brekht, 1961; Lucia
et al., 2015; Krener, 2018a), which can exploit a non-linear
continuous-time model of the autonomous vehicle.

The approach allows to consider variable - uncertain -
but known parameters. The main idea of the proposed
approach is to express the approximated optimal control
law as a power series expression of the current states x and
the parameters pest, see Fig. 1. Therefore, the optimal con-
trol strategy not only minimizes the performance index,
but also considers the variable - uncertain - but known
parameters pest, which leads to alleviate the disturbance
effect.

The remainder of the paper is organized as follows. An
overview of Al’brekht‘s Method is presented in Section 2.
Section 3 defines, based on Al’brekht‘s Method, an ap-
proach for constrained optimal control problems which are
subject to variables. Section 4 presents simulation results
of a non-linear quadcopter example with uncertainties
which illustrates the effectiveness and capabilities of the
proposed method. Conclusions and directions for future
work are provided in Section 5.

2. AL’BREKHT‘S METHOD

The original method from E.G. Al’brekht (1961) developed
a formal iterative procedure to obtain an optimal control
law for a non-linear continuous time system expressed as a
power series in terms of the states. The considered infinite
horizon optimal control problem takes the form

V
(
x(0)

)
= min

u(·)

∞∫
0

`
(
x(t), u(t)

)
dt (1a)

s.t. ẋ = f(x, u), (1b)

x(0) = x0 ∈ Rnx , (1c)

where f : Rnx × R → Rnx represents the dynamics of a
system and ` : Rnx ×R→ R is the cost function. Both are
assumed to be analytic functions in both variables and can
be represented as

f(x, u) =

∞∑
i=1

f [i](x, u)

and `(x, u) =

∞∑
i=2

`[i](x, u).

Here f [i](x, u) and `[i](x, u) represent all terms of f respec-
tively ` which are homogeneous with degree i. It is crucial
that f(0, 0) equals zero and ` does not contain a linear
part. Furthermore the control law umin(·) and the value
function V (·) are assumed to be analytical in a domain
which contains the origin and can be written as

umin(x) =

∞∑
i=1

u
[i]
min(x) and V (x) =

∞∑
i=2

V [i](x). (2)

umin(0) and V (0) have to vanish since clearly no control
has to be applied at x = 0. V [1](x) is zero as `[1](x, u) is
zero. As shown in (Al’brekht, 1961; Aguilar and Krener,
2014) given these conditions one can solve the HJB equa-
tions

0 = ∇xV (x) · f
(
x, umin(x)

)
+ `
(
x, umin(x)

)
(3a)

0 = ∇xV (x) · ∇uf
(
x, umin(x)

)
+∇u`

(
x, umin(x)

)
(3b)

under the following assumptions:
(I) The linear system ẋ = f [1](x, u) is stabilizable
(II)

(
f [1](x, 0), `[2](x, 0)

)
is detectable

(III) `[2](x, u) is convex and `[2](0, u) is strictly convex
The basic idea to do so is to first collect all terms of
degree one in (3b) to obtain a formula for u

[1]
min(x). This

formula is then used in the equation which is obtained by
taking all terms homogeneous with degree two from (3a).
The resulting Riccati equation can be solved provided that
conditions (I)-(III) (Aguilar and Krener, 2014) are holding

and provides us with V [2](x) which leads to u
[1]
min(x). This

first iteration step leads to the linear quadratic regulator.
In later iteration steps, terms homogeneous with degree i
in (3b) and degree i+1 in (3a) are collected. The resulting

equations are linear in the unknowns u
[i]
min(x) and V [i+1](x)

and are solvable since the linear part of the control law is
stabilizing the linear part of the system. The convergence
of both power series in (2) has been established by E.G.
Al’brekht for systems which are linear in the input and
quadratic cost functions. While this method can calculate
an approximation of the exact solution of (1) it does not
include uncertain parameters as well as constraints.
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3. APPROXIMATED EXPLICIT SOLUTIONS
SUBJECT TO VARIABLE PARAMETERS

In this section we outline how to derive approximated
solutions using Al’brekht‘s Method for constraint optimal
control problems subject to variable parameters. To this
end we consider the following optimal control problem:

V
(
x(0), p

)
= min

u(·)

∞∫
0

`
(
x(t), u(t)

)
dt (4a)

s.t. ẋ = f(x, u, p), (4b)

x(0) = x0 ∈ Rnx , (4c)

where p ∈ Rnp is a variable uncertain parameter. The
functions f : Rnx × Rnu × Rnp → Rnx and ` : Rnx ×
Rnu → R are assumed to be analytic in all variables, e.g.

f(x, u, p) =

∞∑
i=1

f [i](x, u, p)

respectively `(x, u) =

∞∑
i=2

`[i](x, u).

Note that the dimension of the control input is arbitrary.
Again it is indispensable that ` does not contain a linear
part and that

∀p ∈ Rnp : f(0, 0, p) = 0. (5)

The control law umin(·, ·) and the value function V (·, ·)
are assumed to be analytic in a domain which contains
the origin and can be written as

umin(x, p) =

∞∑
i=1

u
[i]
min(x, p) (6a)

and V (x, p) =

∞∑
i=2

V [i](x, p). (6b)

As in the previous section, the property (5) implies
umin(0, p) = 0 and V (0, p) = 0. Furthermore, `[1](x, u) =
0 and (5) show V [1](x, p) = 0. Similar to the original
method, one can exploit the power series expressions to
the solve the HJB equations which now become

0 = ∇xV (x, p) · f
(
x, umin(x, p), p

)
+ `
(
x, umin(x, p)

)
,

(7a)

0 = ∇xV (x, p) · ∇uf
(
x, umin(x, p), p

)
.

+∇u`
(
x, umin(x, p)

) (7b)

To guarantee that the optimal control problem is solvable,
the following conditions must hold:
(I’) The linear system ẋ = f [1](x, u, p) is stabilizable
(II’)

(
f [1](x, 0, 0), `[2](x, 0)

)
is detectable

(III’) `[2](x, u) is convex and `[2](0, u) is strictly convex
As for Al’brekht‘s Method we collect terms which are
homogeneous with degree i from (7b) and terms homo-
geneous with degree i + 1 from (7a). Here x and p are
considered as variables. So the parameters p can be seen
as states with vanishing derivatives. Since the cost function
does not depend on the parameters, (5) implies the same

for f [1], the solution of the lowest degree
(
u
[1]
min, V

[2]
)

is
identical to the one without any parameters. Additional
it can be shown that with our setup p 7→ ∇xV (0, p) is
vanishing and since this function is also analytic the same
holds for each degree of its power series expansion. Higher

degrees will depend on the parameters but are again the
same as in the non-parametric case if p is set to zero.

Furthermore the unknowns u
[i]
min(x, p) and V [i+1](x, p) only

appear linear in the equations and can be calculated since
the linear part of the control law is stabilizing the linear
part of the system. The power series can be stopped
at a desired degree to obtain an approximation of umin.
One should know that the approximation error does not
necessarily decrease with increasing degrees.

3.1 Convergence and Existence

Even though the power series in (6) can be calculated
degree wise it is not clear if they exist/converge. However,
one can show that the following holds.

Theorem 1. (Existence of the power series). Consider the
optimal control problem (4) for cost functions which are
quadratic and for system dynamics which are linear in
the input. If the conditions (I’)-(III’) hold then the power
series (6) exists locally around the origin and solves (7).

Remark 1. The proof follows along the lines of (Al’brekht,
1961). The parameters can be treated as states with
vanishing derivatives.

Remark 2. Since the solution of the lowest degree(
V [2](x, p), u

[1]
min(x, p)

)
equals a linear quadratic regulator,

local stability is ensured if the uncertain parameters p are
sufficiently small.

The proof furthermore allows to derive the following
inequality to lower bound the region of convergence.

∞∑
i=2

Cfi · ||(x, p)||i ≤ C1 · ||(x, p)||, (8)

Here the constants C1 and C2 are defined as

C1 := C2 −
√
C2

2 − α2 and C2 := α+ 2C2
u · Cuu,

while the Cfi for every degree i are given by the following
inequality. ∣∣∣∣f [i](x, 0, p)∣∣∣∣ ≤ Cfi · ||(x, p)||i
The constants Cu and Cuu are determined from the system
dynamics and the cost function, respectively, as

Cu = ||∇uf(0, 0, 0)||2,
Cuu =

∣∣∣∣∇2
uu`(0, 0)−1

∣∣∣∣
2
,

whereas α is such that for the solution of the initial value
problem

ẋ = f [1]
(
x, u

[1]
min(x, p), p

)
, x0 = x(0)

the following holds:

||x(t)|| ≤ ||x0|| · e−αt
The convergence of the power series (6) is given for all
pairs (x, p) such that (8) is holding.

3.2 Handling inequality Constraints

We propose to handle inequality constraints via logarith-
mic barrier functions which will be added to the cost
function. Barrier functions are widely used in optimal
control schemes, e.g. (Feller and Ebenbauer, 2015; Wu and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9447



Christofides, 2019). In the following we consider the m ∈ N
inequality constraints

g(x, u) = g0 +

∞∑
i=1

g[i](x, u) ≤ 0,

where g : Rnx × Rnu → Rm is assumed to be analytic in
all variables. Furthermore g0 is assumed to be component-
wise negative such that the origin is a feasible point. We
define

g̃(x, u) :=

∞∑
i=1

g[i](x, u) ≤ −g0

and use the Taylor series of the logarithm component-wise
to see

− log

(
1− g̃(x, u)

−g0

)
=

∞∑
i=1

1

i
·
(
g̃(x, u)

−g0

)i
.

After removing the linear part of this series and multiply-
ing everything with a vector of penalty factors c ∈ Rm>0 we
adjust the cost function as follows.

˜̀(x, u) = `(x, u) + cT ·
∞∑
i=2

1

i
·
(
g̃(x, u)

−g0

)i
Remark 3. If the constraints g are convex, then ˜̀[2] is also
convex. Furthermore the conditions (II’) and (III’) stay
valid.
Therefore the calculation of the power series (6) does not
change. Solvability is guaranteed for every choice of c.
Remark 4. The stability of the closed loop system can be
checked afterwards by using the polynomial approximation
of V as a Lyapunov function candidate which has been
done in (Lucia et al., 2015).
The proposed strategy to include inequality constraints
does not guarantee constraint satisfaction since it is usu-
ally not possible to calculate and use the whole series of
umin. In fact if the control law is only calculated up to a
certain degree d then from the cost function ˜̀[2], . . . ˜̀[d+1]

are used which implies that the cost at g(x, u) = 0 is finite.
We note that similar approaches omit constraints (6) (Lu-
cia et al., 2015; Krener, 2018a,b) or vector norms of x and
u with even degrees are added to the cost function. While
the later is similar to the presented approach, it is less
general. Other approaches (Xin and Balakrishnan, 2005)
are usually restricted to convex state constraints, while the
proposed one can also consider non-convex constraints in
the problem formulation.

4. QUADCOPTER EXAMPLE

Quadcopter are widely used in many applications as they
are highly maneuverable and capable of diverse tasks
such as hovering, vertical takeoff and landing. The use
of numerically based optimal controller design is often
challenged due to the limited computational power present
on many autonomous vehicles such as quadcopter.

We consider a 10D scaled quadrotor model (Hu et al., 2018;
Köhler et al., 2019):

ṗx = vx + ωx v̇x = g · tan(θ)

ṗy = vy + ωy v̇y = g · tan(φ)

ṗz = vz v̇z = −g + kt · uz
θ̇ = −d1 · θ + vθ v̇θ = −d0 · θ + n0 · uθ
φ̇ = −d1 · φ+ vφ v̇φ = −d0 · φ+ n0 · uφ

the states x are defined as:

x = [px py pz vx vy vz θ φ vθ vφ]>.

Herein, px, py, pz define the position coordinates, vx, vy, vz
are translational velocities. φ, θ, vφ, vθ are roll and pitch
angles and rates respectively. While the control vector
u = [uz uφ uθ]

> includes the adjustable vertical thrust,
roll and pitch angles. g = 9,81, kt = 0,91, n0 = 10, d0 =
10, d1 = 8 represent the known quadcopter parameters.
Compared to the model used in (Hu et al., 2018; Köhler
et al., 2019), we consider state-dependent uncertainties
(ωx, ωy) which is typically the case for aerial vehicles
(Ibrahim et al., 2020).

ωx = pxx · vx + pyx · vy + pzx · vz,
ωy = pxy · vx + pyy · vy + pzy · vz

Here pij represent the effect on the j axes due to the
velocity component i. The parameters can vary and we
assume that they can be obtained via a suitable estimation
approach. In order to make the approach computational
efficient for embedded implementation, we propose to use
multivariate learning regression for online learning of the
uncertainty structure based on the state measurements
and control inputs at the previous time steps. To do so,
we propose a linear model to learn the state-dependent
uncertainty via Gradient descend utilizing the observed
data gathered during the mission. For more details, the
reader is referred to (Ibrahim et al., 2020). Using the
disturbance estimation the performance and robustness
of the optimal control is been improved. In the problem
formulation (1), we use a quadratic cost function

`(x, u) =
1

2
xTQx+

1

2
uTRu

with Q = diag{1, 1, 1, 0, . . . , 0} and R = I3.
The outlined approach is used to derive a parametric
approximated explicit solution of (4). The resulting control
law umin(x, p) only requires the evaluation of the power
series expansion of the current states x and the uncertain
parameters p. This allows for real-time implementation
even in case of limited computational power. For safety
and reliability verification the resulting control law can
furthermore be validated under different circumstances
(e.g. obstacle avoidance and wind disturbance).

4.1 SIMULATION RESULTS

In this section, the effectiveness of the proposed strat-
egy to mitigate the effect of the external disturbances is
validated via simulation results for a quadcopter stabi-
lization problem (Hu et al., 2018; Köhler et al., 2019).
The simulations consider different random scenarios of
the external disturbances. In the simulations, the quad-
copter starts with different initial conditions, while the
control objective is to guide the quadcopter to the origin
xref = 0 ∈ R10. For reducing the disturbance effect,
the controller is parametrized in terms of the uncertain
variable parameters:
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Fig. 2. Comparison of first, second, and third order ap-
proximation for initial conditions x0 = (6, 0.25, 10)

umin(x, p) =

d∑
i=1

u
[i]
min(x, p).

We first analyze the influence of increasing the approxima-
tion order d of the optimal control law. For all scenarios
(see Fig. 2 and Fig. 3), the third order approximation
of the control law avoids the obstacle despite the distur-
bances. This is achieved by a sufficiently high penalty
value in the objective function for obstacle avoidance.
Furthermore, one can see that considering the disturbance
estimation improves the control performance and increase
the safety.

Fig. 4 depicts a comparison of the third order approxima-
tion of the explicit control law and a certainty-equivalent
non-linear MPC (Hu et al., 2018), which is implemented
via the ACADO Toolkit (Houska et al., 2011). Not surpris-
ing also the nominal MPC allows to reject disturbances.

Table 1 outlines the required solution time. Using the
explicit solution reduces the computational time signifi-
cantly (10 times) which allows to implement the optimal
controller in real-time even on computationally limited
embedded systems. The numerical simulations were im-
plemented on an Intelr CoreTM i7-6700 CPU @ 3.40GHz.
The dynamics integration was done via the ACADO
Toolkit (Houska et al., 2011) using multiple shooting with
a 4th order Runge-Kutta integrator (RK4).

As outlined in section 3 the convergence area of the power
series (6) for the quadcopter example has been inner
approximated. The constants then result in Cu = 10,
Cuu = 1, α = 0.6745 and the convergence is given for
all r = ||(x, p)|| such that

9.81 · tan(r)− 9.81 · r +
1

4
· r2 ≤ 0.0011 · r

holds, e.g. r ≤ 0.0041723.

Table 1. Computational Times

Controller First Second Third MPC

CPU Time [µs] 6.28 11.13 17.3 120.52
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Fig. 3. Comparison of first, second, and third order ap-
proximation for initial conditions x0 = (6,−0.4, 10)
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Fig. 4. Third order approximation vs MPC.
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5. CONCLUSION AND FUTURE WORK

Motivated by the need of efficient computational imple-
mentation of optimal control, this work proposed an ap-
proximated optimal control approach based on Al’brekht‘s
Method. The strategy obtains an approximated explicit
solution of the optimal control problem allowing for vari-
able parameters to capture uncertainties. The efficiency
and performance of the proposed approximated optimal
control is evaluated via a quadcopter simulation study.
The simulation studies underline the capability of the
approach with respect to efficient implementation, con-
straint handling and disturbance rejection. Future work
will focus on validating the region of attraction as well
as the achieved performance. Furthermore, we plan to
validate the approach in real experiments and will consider
implementation on hardware platforms such as FPGAs.
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