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Abstract: While distributed algorithms provide advantages for the control of complex large-
scale systems by requiring a lower local computational load and less local memory, it is
a challenging task to design high-performance distributed control policies. Learning-based
control algorithms offer promising opportunities to address this challenge, but generally cannot
guarantee safety in terms of state and input constraint satisfaction. A recently proposed safety
framework for centralized linear systems ensures safety by matching the learning-based input
online with the initial input of a model predictive control law capable of driving the system to a
terminal set known to be safe. We extend this idea to derive a distributed model predictive safety
certification (DMPSC) scheme, which is able to ensure state and input constraint satisfaction
when applying any learning-based control algorithm to an uncertain distributed linear system
with dynamic couplings. The scheme is based on a distributed tube-based model predictive
control (MPC) concept, where subsystems negotiate local tube sizes among neighbors in order to
mitigate restrictiveness of the safety approach. In addition, we present a technique for generating
a structured ellipsoidal robust positive invariant tube. In numerical simulations, we show that
the safety framework ensures constraint satisfaction for an initially unsafe control policy and
allows to improve overall control performance compared to robust distributed MPC.

Keywords: Distributed control, safe learning-based control.

1. INTRODUCTION

One of the key mechanisms in order to improve efficiency
in many control applications is the coordination with
other systems. Examples include power grids, production
processes, or traffic systems. Centralized control of such
large-scale complex systems is often computationally in-
feasible or undesired from a communication point of view
(Langbort et al., 2004). Distributed control algorithms
address this issue by exploiting the distributed structure
of the system using local control inputs that only directly
depend on information from neighboring subsystems. In
order to achieve optimality of a control algorithm with
respect to a given cost metric under such information
constraints, learning-based control offers a promising ap-
proach. However, learning-based controllers generally fail
to guarantee safety in terms of state and input constraint
satisfaction, because optimizing the control objective can
lead to critical system states or damage to the environment
(Amodei et al., 2016), which limits their application to
safety-critical real-world systems. Considering the example
of power grid control, violations of voltage or current
constraints can lead to a reduced lifetime of the grid and
are commonly restricted by legislation (Bhattarai et al.,
2017).

? This work was supported by the Swiss National Science Founda-
tion under grant no. PP00P2 157601/1. The research of Andrea Car-
ron was supported by the Swiss National Centre of Competence in
Research NCCR Digital Fabrication (Agreement #51NF40 141853).

Recent research has shown advances in the area of
learning-based control of centralized systems, as for exam-
ple teaching a helicopter model to fly aerobatic maneuvers
in Abbeel et al. (2010) or a quadrupedal robot to perform
advanced locomotion tasks in Hwangbo et al. (2019). The
application of centralized learning-based control to multi-
agent systems suffers from the curse of dimensionality,
since the complexity of the problem scales exponentially
with the number of agents (Buşoniu et al., 2010). In this
context, distributed learning-based controllers have been
investigated, as for example in Sartoretti et al. (2019)
for the application to a collective construction task. How-
ever, such advances can only be transferred to the control
of safety-critical systems once constraint satisfaction can
be guaranteed. Safe learning in centralized control sys-
tems was intensively studied, e.g., in Fisac et al. (2019),
Berkenkamp et al. (2017), but generally does not fit into
the information structure of distributed control.

This paper introduces a distributed model predictive
safety certification (DMPSC) mechanism for distributed
linear systems with couplings in their dynamics and
bounded additive disturbances, where the disturbances
are essential in order to compensate for uncertainties in
the system description. The proposed framework certifies
safety of any distributed learning-based control input on-
line by continuously updating a backup trajectory leading
towards a set known to be safe, where the first element
of the input trajectory equals the current learning-based
control input. The trajectory computation is based on
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distributed model predictive control (MPC) concepts. If
no backup trajectory exists, the learning-based input needs
to be altered in order to keep the system safe. The MPC
safety approach allows for unifying the computation of the
backup trajectory and the required modification (Waber-
sich and Zeilinger, 2018b).

Contributions: The proposed safety framework combines
the idea of safety certification through an MPC backup
trajectory introduced in Wabersich and Zeilinger (2018b)
with robust distributed MPC according to Conte et al.
(2013). The distributed MPC scheme computes a nominal
state trajectory and applies local feedback to keep the
system state within a structured ellipsoidal robust posi-
tive invariant (RPI) tube around this nominal trajectory.
Considering such a robust MPC approach renders the
proposed safety framework capable of handling uncertain
model descriptions, which is common in the context of
learning, where system models are often derived from data.
In order to reduce conservatism when verifying a local
learning-based input as being safe to apply, we introduce
a negotiation procedure allowing to distribute the size of
the local ellipsoidal sets among neighboring subsystems.
Further, we describe an adapted synthesis procedure of
an RPI tube, which allows to simultaneously compute a
structured feedback control law and optimize the shape of
the tube.

Related Work: Learning-based control algorithms have
been specifically adapted to ensure safety by adding safety
constraints in the optimization or adapting the exploration
process, see e.g. Garćıa and Fernández (2015) for a survey.
A more general notion of safety is incorporated by safety
frameworks as introduced in Seto et al. (1998), consisting
of a set of safe system states and a known safe control
law able to keep the system within this set. The model
predictive safety certification (MPSC) scheme introduced
in Wabersich and Zeilinger (2018b), on which we build in
this work, belongs to this category. It scales well in the
state dimension and, while the concept is related to the
frameworks in Akametalu et al. (2014), Wabersich and
Zeilinger (2018a), Fisac et al. (2019), it allows to enlarge
any given safe set (Wabersich and Zeilinger, 2018b).

A distributed safety framework based on structured ellip-
soidal safe sets was introduced in Larsen et al. (2017).
While the approach is less computationally demanding
than the proposed method, the ellipsoidal structure of
the safe sets can render the certification more conser-
vative, depending on the shape of the state constraints.
The distributed safety framework proposed in this work
is especially beneficial if the optimal operation point of a
system is near to the border of the state constraints.

Structure: We start by introducing the problem and the
idea of the MPSC framework in Section 2. In Section
3, we derive our distributed safety framework. Section 4
shows the modified computation method for a distributed
ellipsoidal RPI tube. Section 5 gives the results of our
numerical simulations and 6 concludes the paper.

2. PROBLEM STATEMENT

2.1 Notation

The set of integers in the interval [a,∞) ⊆ N is denoted
as I≥a. The cardinality of a set I ⊆ N is denoted as
|I|. A stacked vector v ∈ Rn consisting of subvectors
vi ∈ Rni with i ∈ I ⊆ N is denoted as v = coli∈I(vi),
a block-diagonal matrix M ∈ Rn×n consisting of blocks
Mi ∈ Rni×ni with i ∈ I ⊆ N as M = diagi∈I(Mi). The
Minkowski sum of two sets A1,A2 ⊆ Rn is denoted as A1⊕
A2 = {a1 +a2 ∈ Rn|a1 ∈ A1, a2 ∈ A2} and the Pontryagin
difference as A1 	A2 = {x ∈ Rn|x+ a2 ∈ A1,∀a2 ∈ A2}.
Given a set A ⊆ Rn and matrix M ∈ Rl×n we define
MA = {x ∈ Rl|x = Ma, a ∈ A}.

2.2 Distributed Linear Systems

We consider a network of M ∈ N time-invariant coupled
linear subsystems with discrete-time dynamics

xi(t+ 1) =

 M∑
j=1

Aijxj(t)

+Biui(t) +Giwi(t), (1)

where xi(t) ∈ Rni , ui(t) ∈ Rmi and wi(t) ∈ Rpi are the
state, input and bounded disturbance of subsystem i at
time step t, respectively, Aij ∈ Rni×nj , Bi ∈ Rni×mi , and
Gi ∈ Rni×pi . We denote the set of indices of all subsystems
asM = {1, . . . ,M}. The set of neighbors Ni of subsystem
i contains index i itself, as well as all indices of subsystems
j, for which Aij includes entries not equal to zero. The
local system dynamics of subsystem i can be written as

xi(t+ 1) = ANi
xNi

(t) +Biui(t) +Giwi(t), (2)

where ANi
∈ Rni×nNi and xNi

(t) = colj∈Ni
(xj(t)) ∈

RnNi . Each subsystem i is subject to polytopic state and
input constraints

XNi
= {xNi

∈ RnNi |HNi
xNi
≤ hNi

} ⊆ RnNi , (3a)

Ui = {ui ∈ Rmi |Oiui ≤ oi} ⊆ Rmi , (3b)

where HNi
∈ RqNi

×nNi , hNi
∈ RqNi , Oi ∈ Rri×mi and oi ∈

Rri . Both state and input constraints contain the origin in
their interior. The local disturbances wi(t) are contained
in the ellipsoidal sets Wi = {wi ∈ Rpi |w>i Qiwi ≤ qi}
with Qi ∈ Rpi×pi and qi ∈ R. The global dynamics of the
network is described by

x(t+ 1) = Ax(t) +Bu(t) +Gw(t), (4)

where A ∈ Rn×n, B = diagi∈M(Bi) ∈ Rn×m, G =
diagi∈M(Gi) ∈ Rn×p, x(t) = coli∈M(xi(t)) ∈ Rn is the
global state, u(t) = coli∈M(ui(t)) ∈ Rm the global input
and w(t) = coli∈M(wi(t)) ∈ Rp the global bounded addi-
tive disturbance. The global state, input and disturbance
are subject to the convex compact constraint sets

X = {x ∈ Rn|Hx ≤ h}, (5a)

U = U1 × . . .× UM = {u ∈ Rm|Ou ≤ o}, (5b)

W =W1 × . . .×WM , (5c)

where H ∈ Rq×n, h ∈ Rq, O = diagi∈M (Oi) ∈ Rr×m
and o = coli∈M (oi) ∈ Rr. We assume the system matrices
(A,B) to be stabilizable and the system state to be fully
measurable.

Remark 2.1. Considering system models with additive dis-
turbances allows to handle systems with external distur-
bances and systems with uncertainty in the system pa-
rameters. It also allows to simplify even perfectly known
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system models, e.g., by reducing the size of the state
space or neglecting nonlinearities, in order to reduce the
computational load of solving the problem in a distributed
fashion. Furthermore, it would allow for inexact primal
dual optimization according to Köhler et al. (2019).

2.3 Communication and Distributed Optimization

Bidirectional communication among subsystems i and j
is possible if i ∈ Nj or j ∈ Ni. We further assume
the underlying communication graph to be connected,
meaning there is a communication path between any two
subsystems. In order to apply the DMPSC scheme in a
distributed manner, we require a distributed optimization
algorithm which only uses direct communication between
neighboring subsystems. An overview of parallel and dis-
tributed computation is given in Bertsekas and Tsitsiklis
(1989).

2.4 Model Predictive Safety Certification

In the following, we briefly review the ideas behind the
MPSC scheme introduced in Wabersich and Zeilinger
(2018b), which serves as the basis for the presented dis-
tributed safety framework. The MPSC scheme guarantees
safety in terms of state and input constraint satisfaction
for a linear system (4) with constraints (5). The idea is
to find a safe set of states S ⊆ X , for which we know
a safe backup control law uB for every state in the set.
This backup control law is able to keep the system state
within S and therefore ensures constraint satisfaction. A
learning-based input uL is applied to the system if it keeps
the system state within S. Otherwise, we can use the safe
backup control law uB. The safe set S and safety control
law uS are formally introduced in the following definition.

Definition 2.1. A set S ⊆ X is called a safe set for
system (4) if there exists a known safe backup control law
uB : Rn×Rm×I≥0 → U such that for an arbitrary policy
uL : I≥0 → Rm, the application of the safety control law

uS(t) :=

{
uL(t), if uL ∈ U ∧ {Ax+BuL} ⊕GW ⊆ S
uB (x(t), uL(t), t) , otherwise

guarantees that the system state x(t) is contained in
S ⊆ X for all t ≥ t̄ if x(t̄) ∈ S.

In the MPSC scheme, the safe set S is implicitly described
as the set of states where we know an MPC trajectory
leading the system to a safe terminal set Sf ⊆ Rn, where
constraint satisfaction can be guaranteed for all times.
Robust MPC according to Mayne et al. (2005) is used,
in order to account for uncertainty in the system model.
The scheme can be formulated as one MPSC optimization
problem, which, for a given system state x(t) and learning-
based input uL(t), optimizes over an MPC trajectory
leading the system to the terminal set. The objective of the
problem is to minimize the ‘distance’ between the learning-
based input and the safety control law uS(t). If possible,
uS(t) is chosen equal to uL(t), otherwise a minimal safety-
ensuring modification is computed.

The goal in this paper is to ensure constraint satisfaction of
an uncertain distributed linear system (1) while applying a
distributed control law uLi , for which we extend the MPSC
scheme to distributed systems in the following. In this

paper, we assume uLi
to be learning-based. In principle,

uLi
could represent any control policy, e.g., human control

inputs.

3. DISTRIBUTED MODEL PREDICTIVE SAFETY
CERTIFICATION

The distribution of the MPSC scheme is based on robust
distributed MPC as introduced in Conte et al. (2013).
Among the main challenges in order to transfer the cen-
tralized MPSC scheme to the distributed case are ensuring
recursive feasibility and obtaining an RPI set in order
to account for disturbances. In this section, we will first
introduce the robust distributed MPC backup control law.
Then we state the distributed safety certification problem
and introduce the proposed negotiation procedure among
subsystems and the form of the terminal constraint. We
conclude the section by giving the theoretical safety guar-
antee of our distributed framework.

3.1 Robust Distributed Backup Control Law

The robust distributed MPC backup control law aims at
keeping the distributed system (1) near to the nominal
system

zi(k + 1|t) = ANi
zNi

(k|t) +Bivi(k|t) ∀ k ∈ I≥0, (6)

where zi(k|t) ∈ Rni , zNi(k|t) = colj∈Ni(zj(k|t)) ∈ RnNi

and vi(k|t) ∈ Rmi are the nominal state, neighborhood
state and input of subsystem i at prediction step k
computed at time step t ∈ Z. We denote the deviation
between real and nominal local system state as ei(k|t) =
xi(t+k)−zi(k|t) ∈ Rni , and similarly eNi(k|t) ∈ RnNi and
e(k|t) ∈ Rn for the neighborhood and global deviation.

Assumption 3.1. There exists a stabilizing linear state
feedback control law with distributed structure for system
(4) of the form u = KΩx = coli∈M(KΩ,ixNi

), where
KΩ ∈ Rm×n and KΩ,i ∈ Rmi×nNi .

Based on KΩ, the tube-based control law

u(k|t) = v(k|t) +KΩ (x(t+ k)− z(k|t))
= v(k|t) + coli∈M (KΩ,i (xNi

(t+ k)− zNi
(k|t))) (7)

keeps the real system state within a robust positive invari-
ant (RPI) tube around the nominal system state.

Definition 3.1. A set Ω ⊆ Rn is called a robust positively
invariant (RPI) set for the error dynamics if

e(0|t) ∈ Ω⇒ e(k|t) ∈ Ω (8)

for all k ∈ I≥0 and all disturbances w(k) ∈ W.

In order to obtain a distributed problem structure we
consider ellipsoidal RPI sets. An ellipsoidal RPI set of the
form Ω = {e ∈ Rn|e>Pe ≤ 1}, with P ∈ Rn×n needs to
fulfill the implication

e(k|t)>Pe(k|t) ≤ 1

wi(t+ k)>Qiwi(t+ k) ≤ qi∀i ∈M

}
⇒ e(k + 1|t)>Pe(k + 1|t) ≤ 1,

(9)

which is equivalent to (19) in Conte et al. (2013). The
following defines a structured RPI set.

Definition 3.2. An ellipsoidal RPI set Ω ⊆ Rn is struc-

tured if Ω = {e ∈ Rn|∑M
i=1 e

>
Ni
PNieNi ≤ 1} with all

PNi ∈ RnNi
×nNi positive semi-definite, i.e., if the shape

matrix has a distributed structure.
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Given such a structured RPI set Ω, we can define local
sets ΩNi = {eNi ∈ RnNi |e>Ni

PNi
eNi
≤ βi}. The global

condition e(k|t) ∈ Ω is equivalent to

∀i ∈M ∃ βi ≥ 0 : eNi
(k|t) ∈ ΩNi

,

M∑
i=1

βi ≤ 1 (10)

which follows by summing up the inequalities of the local
sets ΩNi

.

Equation (23) in Conte et al. (2013) states the synthesis
problem to obtain a structured ellipsoidal RPI set ac-
cording to Defnition 3.2. The objective of the problem
can be chosen to find an RPI set with minimal volume,
provided a structured control law according to Assumption
3.1 is known. A possible way to find such a control law is
described in Conte et al. (2016). In Section 4 we provide
a design method that allows for simultaneously finding a
distributed feedback control law according to Assumption
3.1, which can importantly reduce conservatism.

The set Ω is used to obtain the tightened constraint sets
X̄ = X 	 Ω and Ū = U 	 KΩΩ for the nominal system
in order to ensure (x, u) ∈ X × U when applying (7). The
structure of Ω can be exploited to perform the constraint
tightening by distributed optimization as introduced in
Conte et al. (2013), resulting in local tightened constraint
sets X̄Ni

and Ūi.

3.2 Distributed Safety Certification Problem

Using the robust distributed MPC control law we can write
the DMPSC problem

min
z,v,ũ,β̃,∆β

M∑
i=1

‖uLi
− ũi‖ (11a)

s.t. ∀i ∈M :

xNi
(t) ∈ zNi

(0|t)⊕ ΩNi
(t), (11b)∑

j∈Ni\i

∆βj
|Nj | − 1

= 0 (11c)

β̃i = βi(t) + ∆βi (11d)

β̃i ≥ 0 (11e)

∀k ∈ {0, . . . , N − 1} :

zi(k + 1|t) = ANizNi(k|t) +Bivi(k|t) (11f)

(zNi
(k|t), vi(k|t)) ∈ X̄Ni

× Ūi (11g)

zi(N |t) ∈ Xf,i(αi(t)) (11h)

ũi = vi(0|t) +KΩ,i(xNi
(t)− zNi

(0|t)), (11i)

where ũ = coli∈M(ũi), z = colk∈{0,...,N}(z(k|t)) and v =
colk∈{0,...,N−1}(v(k|t)). The objective of the optimization
is to find a distributed control input ũi as ‘close’ as possible
to a distributed learning-based input uLi

. Constraint (11b)
ensures that the system state lies within a tube around the
initial nominal state, (11f) enforces the nominal dynamics
and (11g) the tightened nominal constraints, (11h) ensures
that the final nominal state lies within the terminal set and
finally (11i) defines ũi to be a tube-based control law. We
will discuss the negotiation procedure behind constraints
(11c)-(11e) and the details of the terminal constraint (11h)
in the following subsections. We denote the feasible set of
(11) by

XN := {x ∈ Rn|(11b)− (11i) ∀i ∈M} ⊆ X . (12)

The resulting certified distributed control law for each
subsystem i is given by

κi(xNi
(t)) = ũ∗i (xNi

(t)), (13)

where ∗ denotes the optimal solution of the problem (11).

3.3 Negotiation

In order to ensure recursive feasibility, robust MPC accord-
ing to Mayne et al. (2005) constrains the initial nominal
state such that the state of the system lies in a tube
around it, i.e., x(t) ∈ z(0|t) ⊕ Ω. For the distributed
problem in Conte et al. (2013), this is enforced by con-
straint (11b) based on local sets ΩNi(t) = {eNi(0|t) ∈
RnNi |eNi

(0|t)>PNi
eNi

(0|t) ≤ β̃i(t)} with β̃i(t) : N→ [0, 1]

and
∑M
i=1 β̃i(t) ≤ 1. The main goal for the DMPSC scheme

is to choose the distributed control input ũi as ‘close’ as
possible to the learning-based input uLi . Since ũi depends
on zNi(0|t), we want the constraint (11b) to be as little
restrictive as possible. Ideally, we would therefore add the

constraint
∑M
i=1 β̃i(t) ≤ 1 to the optimization problem

(11), which is, however, a centralized condition. In order

to enable distributed optimization, we introduce β̃i(t) as

β̃i(t) = βi(t) + ∆βi (14)

where βi(t) is a predefined function satisfying
∑M
i=1 βi(t) ≤

1 and the value of ∆βi can be negotiated with neighbor-

ing subsystems, while ensuring that
∑M
i=1 ∆βi = 0 in a

distributed manner. By definition, this guarantees that∑M
i=1 β̃i(t) ≤ 1. This formulation enables larger values

β̃i(t) for subsystems, where we need more flexibility to
choose zNi

(0|t) in order to represent a learning-based in-
put.

A candidate solution for βi(t) introduced in Conte et al.
(2013) is

βi(t) := e∗Ni
(1|t− 1)>PNi

e∗Ni
(1|t− 1) ∀i ∈M (15)

where e∗Ni
(k|t) = xNi

(t + k) − z∗Ni
(k|t), βi(0) > 0 and∑M

i=1 βi(0) ≤ 1. Using Proposition 1 in Mayne et al. (2005)

it is possible to show that
∑M
i=1 βi(t) ≤ 1. For the nego-

tiation parameter ∆βi we introduce the local constraint
(11c) following the distributed information structure.

Lemma 1. Let the neighborhood graph be undirected,
i.e., if i ∈ Nj it follows that j ∈ Ni. If the local
constraints (11c) are enforced locally, then the global

constraint
∑M
i=1 ∆βi = 0 is fulfilled.

Proof. We introduce an auxiliary matrix Ma ∈ RM×M
defined as

[Ma]ij =


∆βj
|Nj | − 1

if j ∈ Ni\i
0 otherwise,

(16)

where |Nj | denotes the number of subsystems in the set
Nj . The matrix Ma contains in each row i the terms
∆βj/|Nj |−1 for all j ∈ Ni\i and in each column j only terms
∆βj/|Nj |−1. Because of the undirected graph structure, each
column contains |Nj | − 1 entries. If we multiply Ma by a
vector of ones 1 ∈ RM , we obtain a vector containing the
local constraints
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Ma1 =



∑
j∈N1\1

∆βj
|Nj | − 1

...∑
j∈NM\M

∆βj
|Nj | − 1

 =

0
...
0

 , (17)

where the right-hand side is enforced locally. We can see
that 1>Ma1 = 0. Otherwise, if we multiply the matrix
Ma by 1> from the left first, the |Nj | − 1 entries in each
column j sum up to ∆βj . This results in

1>Ma1 =

M∑
i=1

∆βi = 0, (18)

which shows that enforcing the local constraints ensures
the global constraint. 2

Remark 3.1. The local constraints provide a sufficient, but
not a necessary condition. At the cost of being more
conservative, (11c) is suited for distributed optimization.
For example, for the circular graph structure in Figure
1(a) the constraint (11c) enforces all ∆βi to be 0. For
the centered graph structure in Figure 1(b) the constraint
(11c) gives almost the same degree of freedom for choosing
∆βi as the global constraint by only enforcing ∆β1 = 0
and

∑5
i=2 ∆βi = 0.

x1

x2

x3x4

x5x1 x2

x3

x4

x5

(a) (b)

Fig. 1. Examples of undirected neighborhood structures.

3.4 Structured Terminal Constraint

In robust MPC according to Mayne et al. (2005), the
terminal nominal state is constrained to an invariant
terminal set, i.e., z(N |t) ∈ Xf , in order to ensure feasibility
and stability. Since the real system state lies within a tube
around the nominal state we can define the terminal safe
set as Sf = Xf ⊕ Ω.

Following from the existence of a stabilizing feedback
control law for system (4) according to Assumption 3.1,
a structured ellipsoidal terminal invariant set Xf ⊆ X 	Ω
with structured linear terminal feedback control law Kf

can be computed using the approach in Conte et al. (2016)
based on linear matrix inequalities. This allows to write a
local terminal constraint for all i ∈M as

zi(N |t) ∈ Xf,i (αi(t)) =
{
zi ∈ Rni |z>i Pf,izi ≤ αi(t)

}
(19)

with the level set update rule

αi(t+ 1) = αi(t) + zNi
(t)>ΓNi

zNi
(t) ∀i ∈M (20)

with
∑M
i=1 αi(0) ≤ α and αi(0) ≥ 0. A synthesis procedure

to obtain Kf , Pf,i, α and ΓNi is given in Conte et al.
(2016).

3.5 Safety Guarantee

Based on the properties of distributed tube-based MPC
according to Conte et al. (2013), problem (11) defines a
recursively feasible distributed safety framework with (13)
as safety control law.

Theorem 2. If Assumption 3.1 holds, then (13) is a safety
control law with (12) as the corresponding safe set accord-
ing to Definition 2.1. It also holds that (12) is an RPI set.

Proof. The proof follows the line of the proof of Theorem
V.1 in Conte et al. (2013) and Theorem III.7 in Wabersich
and Zeilinger (2018b). Assuming (11) is feasible at time
step t with x(t) ∈ XN we obtain an optimal solution z∗,
v∗, ũ∗i and ∆β∗i . We start by showing that the application
of ũ∗i results in x(t+1) ∈ XN , for which we can again find a
feasible solution and ensure recursive feasibility using the
properties of the terminal set.

As shown in Lemma 1, constraint (11c) ensures that∑M
i=1 ∆β∗i = 0. Combined with

∑M
i=1 βi(t) ≤ 1 and

(11d) this ensures that
∑M
i=1 β̃i(t) ≤ 1. Using (11b) and

condition (10) it holds that x(t) ∈ z∗(0|t) ⊕ Ω. Following
Proposition 1 in Mayne et al. (2005) the application of
the tube-based control law (11i) with the nominal state
dynamics (11f) results in x(t + 1) ∈ z∗(1|t) ⊕ Ω. Because
of condition (10) this can be written depending on local
information as

M∑
i=1

e∗Ni
(1|t)>PNi

e∗Ni
(1|t) ≤ 1, (21)

which by the definition of the update rule (15) shows

that
∑M
i=1 βi(t + 1) ≤ 1. The tightened nominal state

constraints (11g) ensure x(t+ 1) ∈ X .

Also by the definition of the update rule (15) we know
that at time step t + 1 the initial nominal state z(0|t +
1) = z∗(1|t) is a feasible solution ensuring that (11b) is
fulfilled by choosing the negotiation parameters ∆βi = 0.
Using the properties of the terminal set Xf and con-
trol law σf (z) a feasible solution at time step t + 1
for all possible x(t + 1) is the series of nominal states
{z∗(1|t), . . . , z∗(N |t), Az∗(N |t) +Bσf (z∗(N |t))}, nominal
inputs {v∗(1|t), . . . , v∗(N − 1|t), σf (z∗(N |t))} and the
tube-based control law (v∗(1|t) +KΩ(x(t+ 1)− z∗(1|t))).
This shows by induction that the problem (11) is recur-
sively feasible and (13) is a safety control law with (12)
as the corresponding robust positively invariant safe set
according to Definition 2.1. 2

Similarly to Corollary III.8 in Wabersich and Zeilinger
(2018b) it is possible to state here that by the recursive
feasibility of (11) a longer horizon N will lead to a larger
or at least equally sized safe set (Wabersich and Zeilinger,
2018b).

Remark 3.2. In the case of no uncertainty in the system
model, the backup control law reduces to a nominal MPC
scheme according to Conte et al. (2016). Such a nomi-
nal safety framework reduces the complexity of practical
implementations, while still allowing for well performing
learning-based controllers for distributed systems. It also
allows to handle systems with soft constraints.
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4. DESIGN OF STRUCTURED TUBE

In this section we present a design procedure to obtain
a structured ellipsoidal tube Ω based on Larsen et al.
(2017) and Limon et al. (2008). The key advantage of
the approach is that it allows to simultaneously compute
a structured feedback control law KΩ and optimize the
shape of the tube for minimum constraint tightening. A
related method has been introduced in Köhler (2017) with
the difference that we consider ellipsoidal disturbance sets
here. The synthesis problem introduced in Conte et al.
(2013), in contrast, assumes that a structured feedback
control law according to Assumption 3.1 is given. Ob-
taining such a control law following Conte et al. (2016)
may, depending on the distributed system model, not lead
to a tube fitting within the constraints even for small
disturbance sets Wi.

To simplify the notation, we define lifting matrices to
switch from global to local state space, xi = Tix with
Ti ∈ {0, 1}ni×n, from global to neighborhood state space,
xNi

= Vix with Vi ∈ {0, 1}nNi
×n, and from global to local

disturbances space, wi = Wiw with Wi ∈ {0, 1}pi×p.
We define a structured ellipsoidal RPI set Ωa = {e ∈
Rn|∑M

i=1 e
>
i Piei ≤ 1} with all Pi ∈ Rni×ni positive

semi-definite, i.e., P has a block-diagonal structure by
definition, which can be obtained via the synthesis problem

min
E,K,h,o,τ,βs,βs+

h>h+ o>o (22a)

s.t.

M∑
i=1

βsi = 1,

M∑
i=1

βs+i = 1 (22b)

∀i ∈M :τM+1Ēi 0 C>i
0 τiQi G

>
i

Ci Gi Ei

 � 0 (22c)

τM+1β
s
i − βs+i + τiqi ≤ 0 (22d)

τi ≥ 0, τM+1 ≥ 0 (22e)

βsi ≥ 0, βs+i ≥ 0 (22f)

∀j ∈ {1, . . . , nhi
} :[

[hNi
]
2
j [HNi

]j ENi

ENi

[
H>Ni

]
j

ENi

]
� 0 (22g)

∀j ∈ {1, . . . , noi} :[
[oi]

2
j [OiKi]j[

K>i O
>
i

]
j

ENi

]
� 0 (22h)

where Ei = P−1
i , ENi

= P−1
Ni

, PNi
= diagj∈Ni

(Pj),

Ki = KΩ,iENi
, Ēi = ViT

>
i EiTiV

>
i ∈ RnNi

×nNi is lifted
to the neighborhood space and Ci = ANi

ENi
+ BiKi.

τi ≥ 0 and τM+1 ≥ 0 are S-procedure parameters.
The constraints (22b)-(22h) are similar to (9b)-(9e) in
Larsen et al. (2017), where constraints (22b)-(22f) encode
the RPI implication (9) and (22g)-(22h) ensure that the
resulting tube lies within the polytopic state and input
constraints with right-hand side h and o. The result of
the optimization problem (22) is the RPI set Ωa, defined
by the optimizers P ∗i and K∗i , i ∈ M. We can obtain
the distributed stabilizing feedback control law KΩ,i as
KΩ,i = K∗i P

∗
Ni

.

The difference to Larsen et al. (2017) lies in the objective
(22a), which is adapted from Limon et al. (2008) and in
connection with the constraints (22g) and (22h) is chosen
to minimize the tightening of the polytopic state and input
constraints by the tube Ωa. Note that the objective (22a)
uses a unitary weighting under the assumption that the
state and input constraints are given in a normalized form.
Problem (22) thereby allows to optimize over the shape of
Ωa (defined by P ) and the structured feedback control law
(KΩ,i = KiPNi

) at the same time.

Proposition 4.1. Consider P ∗i and K∗i , i ∈ M, resulting
from problem (22). The structured ellipsoidal set Ωa =

{e ∈ Rn|∑M
i=1 e

>
i P
∗
i ei ≤ 1} is an RPI set for system (2)

under the distributed linear control law ui(t) = KΩ,ixNi(t)
with KΩ,i = K∗i P

∗
Ni

.

Proof. The ellipsoidal set Ωa is an RPI set according
to Definition 3.1 if it fulfills (9), which we show in the
line of the proof of Lemma 4 in Larsen et al. (2017). We

introduce variables βsi ≥ 0, βs+i ≥ 0 with
∑M
i=1 β

s
i = 1,∑M

i=1 β
s+
i = 1, to transform the corresponding terms in

(9) to
∑M
i=1 ei(k|t)>Piei(k|t) ≤

∑M
i=1 β

s
i and

∑M
i=1 ei(k +

1|t)>Piei(k + 1|t) ≤ ∑M
i=1 β

s+
i . Using the S-procedure

(see e.g., Boyd et al. (1994)) we can write (9) as the
linear matrix inequality in (23), where P̄i = T>i PiTi and
Q̄i = W>i QiWi are lifted to global variable spaces, and
Acl = (A+BKΩ). Due to the sparse structure of Acl, we
can write (23) as the two sufficient conditions in (24) for
all i ∈ M. Multiplying (24a) by diag

(
P−1
Ni
, I
)

from both,
the left and right, and applying the Schur complement
(see e.g., Boyd et al. (1994)) results in constraint (22c).
Therefore, constraints (22b)-(22f) enforce the implication
(9) and ensure that Ωa is an RPI set. 2

Based on the solution P ∗i of problem (22), it is possible to
introduce local sets Ωai = {ei ∈ Rni |e>i P ∗i ei ≤ βai } such
that e(k|t) ∈ Ωa is equivalent to

∀i ∈M ∃ βai ≥ 0 : ei(k|t) ∈ Ωai ,

M∑
i=1

βai ≤ 1. (25)

Note that the existence of some local βai for a given e(k|t) ∈
Ωa is not related to the variables βs∗i and βs+∗i , which
are introduced when designing (22) to derive distributed
sufficient conditions for the global invariance condition (9).

Remark 4.1. While introducing βsi and βs+i in (22) can
improve the synthesis of Ωa, it requires the global consen-
sus constraints in (22b). The additional design flexibility
can, e.g., be beneficial when the scale of the local distur-
bances differs significantly, by allowing for a growing set for
systems with larger disturbances, when other systems can
compensate for the growth. Depending on the problem, βsi
and βs+i can also be fixed to fully distribute (22), e.g., to
1/M, while maintaining its feasibility.

Remark 4.2. The block-diagonal structure of Ωa obtained
through (22) is more restrictive compared to the block-
sparse structure of the ellipsoidal tube introduced in Conte
et al. (2013). However, since in (22) we simultaneously
optimize over KΩ,i, one could also use this distributed
controller to obtain a structured ellipsoidal tube using
the synthesis problem (23) in Conte et al. (2013), with
a feasible solution being PNi

= ViT
>
i P

∗
i TiV

>
i and S̄i = 0.
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M∑
i=1

A>clP̄iAcl A>clP̄iG 0
G>P̄iAcl G

>P̄iG 0
0 0 −βs+i

+ τi

0 0 0
0 −Q̄i 0
0 0 qi

+ τM+1

−P̄i 0 0
0 0 0
0 0 βsi

 �0, (23)

[
(ANi

+BiKΩ,i)
>
Pi (ANi

+BiKΩ,i)− τM+1ViT
>
i PiTiV

>
i (ANi

+BiKΩ,i)
>
PiGi

G>i Pi (ANi
+BiKΩ,i) G>i PiGi − τiQi

]
�0, (24a)

τM+1β
s
i − βs+i + τiqi ≤0. (24b)

m1

k12

d12

m2 · · · mM−1

kM−1M

dM−1M

mM

p1 p2 pM−1 pM

F1 F2 FM−1 FM

Fig. 2. Chain of M masses connected by springs and
dampers.

5. NUMERICAL EXAMPLES

In this section we show the behavior of the introduced
distributed safety framework in numerical simulations. All
experiments were run using MATLAB on an Intel Core
i7 2.7 GHz machine with 20 GB of RAM. We used the
YALMIP toolbox Löfberg (2004) with MOSEK as solver.
We show that the introduced safety certificate is able to
ensure constraint satisfaction and compare the regulation
of a distributed system to the origin using two different
unsafe nominal controllers against directly applying robust
distributed MPC according to Conte et al. (2013).

We consider a chain of M masses mi interconnected by
springs and dampers with local forces Fi as inputs to the
system. A schematic of the system is shown in Figure 2.

Such a system could, e.g., be used to model a vehicle
platoon, which possibly reduces energy consumption and
enhances safety of road traffic (Li et al., 2015). In the
following we consider a numerical example with M = 9
masses and parameter values mi = 1, kij = 0.1 and
dij = 0.1. The local disturbances are constrained to
Wi = {wi ∈ R2|w>i wi ≤ 1.1e− 3}. We use a discrete-time
model obtained by Euler forward method with sampling
time of 0.2[s]. To show constraint satisfaction we use a
nominal feedback control law according to Conte et al.
(2016) as input uLi

to regulate the local subsystems to
their local origins. This control law can be obtained from
data by estimating the mean system dynamics. The local
positions of the subsystems are constrained to |pi| ≤
1[m], with the exception of subsystem 2, where we set
−1[m] ≤ p2 ≤ 0.1[m], the local velocities to |vi| ≤
1[m/s] and the inputs to |ui| ≤ 5. The local states are
relative to a local coordinate system, which potentially is
moving with a constant velocity. The introduced synthesis
procedure in Section 4 with τM+1 = 0.055 and setting
βsi = βs+i = 1/M allowed to obtain a structured ellipsoidal
tube contained within the state constraints. The synthesis
procedure described in Conte et al. (2013) does not allow
to adapt the shape of the tube to the tight constraint
of subsystem 2, and did not result in a feasible tube to
tighten the constraints for the same system parameters.
We simulate the system for 20 time steps with a prediction
horizon N = 10 for the safety framework. In Figure 3 we

−0.1 0 0.1

−0.4

−0.2

0

0.2

0.4 x2(0)

p2 [m]

v 2
[m

/
s]

Subsystem 2

0 0.5 1

−0.4

−0.2

0

0.2

0.4

x8(0)

p8 [m]

v 8
[m

/
s]

Subsystem 8

state constraints tightened constraints
safe state evolution learning state evolution

Fig. 3. Local state space (position and velocity) of the
subsystems 2 and 8 in the chain with system evolution
over 20 time steps.

can see that the distributed control law uL2
slows down

subsystem 2 very slowly and therefore leads to violation
of the state constraints. The DMPSC framework is able
to slow down the system on a short horizon and keep it
safely around the origin. For subsystem 8 we can see, that
the safety framework does not change the evolution of the
local system and allows to directly apply uL8

.

For the same numerical system example, we analyzed
the closed-loop performance according to local stage costs
li(xNi

, ui) = 1/2 · x>Ni
IxNi

+ u>i Iui where I is an identity
matrix with matching dimension. We compare two differ-
ent well performing policies, where the safety framework
is needed to ensure constraint satisfaction, with a robust
distributed MPC scheme, which is able to handle state and
input constraints. The three different controller variants
are: The linear feedback control law combined with the
safety certificate as in the example before (DMPSC 1),
a nominal distributed MPC controller without terminal
cost and constraints, combined with the safety certificate
(DMPSC 2) and a robust distributed MPC control law
according to Conte et al. (2013) (RDMPC). We use a
prediction horizon of N = 10 for the DMPSC, the nominal
and the robust MPC control law. The box-plot in Figure
4 shows the resulting closed-loop costs for 20 simulations
with different initial positions over 20 simulation steps.
We can see that the cases DMPSC 1 and 2 have lower
costs than the case RDMPC. This shows that using the
safety framework in connection with an unsafe controller
can lead to a better performance. For our implementation,
the case DMPSC 1 on median needed 35% less solver time
compared to the case RDMPC. For the case DMPSC 2
the solver time was only about 7% lower, since finding
the nominal MPC control law is more computationally
intensive than a linear feedback control law.
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Fig. 4. Box-plot of accumulated closed-loop costs.

6. CONCLUSION

In this paper we introduced a distributed safety frame-
work, which is able to ensure constraint satisfaction of
distributed linear systems with coupled dynamics and
bounded additive disturbances in connection with any
learning-based controller. In our numerical examples we
showed, that this can potentially lead to a better perfor-
mance in terms of cost, while being computationally more
efficient.
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