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Abstract:

It is known that strictly unstable linear systems that are subject to nonvanishing

additive stochastic noise with unbounded supports cannot be stabilized by using deterministi-
cally bounded control inputs. In this paper, we explore similar impossibility results for scenarios
where the expected value of the squared control input norm is subject to constraints and the
support of the noise distribution is not necessarily unbounded. Specifically, we consider the
stabilization problem with control policies that have bounded time-averaged second moments.
We obtain values of such average second moment bounds, below which stabilization is not
possible and the second moment of the state diverges regardless of the choice of the control
policy and the initial state distribution. The results are illustrated with a numerical example.

Keywords: Stochastic systems, constrained control, instability analysis, networked control

1. INTRODUCTION

In the last few decades, the stabilization problem under
control input constraints has been investigated for deter-
ministic systems extensively (see Saberi et al. (2012) for an
overview). It has been established that linear deterministic
systems with strictly unstable system matrices cannot be
globally stabilized under bounded control inputs (Sontag,
1984; Sussmann et al., 1994).

More recently, with the increasing interest in stochastic
optimal and model predictive control approaches, con-
strained control of stochastic systems has become an im-
portant topic (Mesbah, 2016). As in the deterministic case,
stochastic systems also yield impossibility results. It has
been shown by Chatterjee et al. (2012) that bounded con-
trol policies cannot stabilize unstable linear stochastic sys-
tems with nonvanishing and unbounded additive stochas-
tic noise. Specifically, Chatterjee et al. (2012) considered
the control problem of a discrete-time linear stochastic sys-
tem and proved that when the distribution of the additive
noise has unbounded support and the system matrix has
an eigenvalue outside the unit circle of the complex plane,
the second moment of the system state diverges under
deterministically constrained control inputs.

To overcome the difficulties in the stabilization of strictly
unstable linear stochastic systems, considering probabilis-
tic constraints instead of hard deterministic constraints
can be a viable option. In particular, chance constraints
(Farina et al., 2015; Lorenzen et al., 2016) and constraints
based on the expected values of the states and control
inputs can be utilized. In this paper, we are interested in
deriving conditions under which stabilization is again not
possible even with probabilistic control input constraints.
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Specifically, we consider linear discrete-time stochastic
systems with additive noise and strictly unstable system
matrices. For the stabilization problem, we investigate a
class of control policies that have bounded time-averaged
second moments. This class is fairly large and contains
many existing control policies that are constrained de-
terministically or probabilistically. Our goal is to identify
the scenarios in which a stochastic system cannot be sta-
bilized with controllers from this class. To this end, we
obtain conditions on the system dynamics and additive
noise properties, under which the second moment of the
state diverges regardless of the particular choice of the
controller. Based on these conditions, we also provide a
method for using the eigenstructures of system matrices
in instability assessment. Our result allows us to obtain
impossibility results for networked control systems subject
to packet losses. We show that designing stabilizing con-
strained controllers for networked control systems under
noise is not possible if the average probability of successful
transmissions of control commands over the network is
known to be too small.

In our instability analysis, we use nonnegative-definite
Hermitian matrices to characterize the variance of the
noise projected on an unstable mode of the uncontrolled
system. This approach allows us to check instability of
stochastic systems with both unbounded and bounded
noise distributions. We note that Nair and Evans (2004)
and Chatterjee et al. (2012) previously discussed insta-
bility problems under unbounded noise distributions and
deterministically constrained controllers. The approaches
in those works are different from ours in that they are
based on the observation that unbounded distributions
guarantee nonzero probabilities for the events where the
noise norm exceeds certain values.
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The instability problem due to stochastic noise and prob-
abilistic control constraints was previously not consid-
ered in the literature. Existing works mostly deal with
deterministically-constrained controllers and explore their
use in the stabilization problem. For instance, in the case of
bounded noise with sufficiently small norms, control laws
with deterministic norm constraints were used for achiev-
ing practical stability by Blanchini (1990), Braslavsky and
Middleton (1993), Lin and Saberi (1995), Kolmanovsky
and Gilbert (1995), and Zhou et al. (2015). Such deter-
ministic norm constraints were also extended to determin-
istic rate and increment constraints by Bateman and Lin
(2002) as well as Mesquine et al. (2004). Moreover, in the
case of stochastic noise, deterministic control input norm
constraints have been incorporated in model predictive
control (Chatterjee et al., 2011; Hokayem et al., 2012;
Korda et al., 2014), nonlinear control (Min et al., 2018),
adaptive control (Yao and Zhang, 2019), and networked
control systems (Mishra et al., 2018). Stabilization results
presented in those works for stochastic noise with un-
bounded supports exclude systems with strictly unstable
system matrices, since such systems cannot be stabilized
by deterministically-constrained control inputs as pointed
out by Chatterjee et al. (2012). On the the hand, there
are also a few works that explore chance constraints in
optimization problems faced in control (e.g., Farina et al.
(2015) and Lorenzen et al. (2016)). However, instability
analysis is not the main concern in those works. We note
that instability of networked control systems was previ-
ously discussed in Cetinkaya et al. (2017), but the systems
analyzed in that work are noise-free and instability is
caused by the actions of a malicious attacker.

We organize the rest of the paper as follows. In Sec-
tion 2, we describe the bounded average-moment control
of discrete-time linear stochastic systems. We then present
our impossibility results on stabilization in Section 3. We
illustrate our results with a numerical example in Section 4
and conclude the paper in Section 5.

In this paper, N and Ny respectively denote the sets
of positive and nonnegative integers, || - || denotes the
Euclidean norm, Apin(H) and A\pax(H) respectively de-
note the minimum and maximum eigenvalues of a Her-
mitian matrix H € C"*"™. Moreover, H 3 represents the
unique nonnegative-definite Hermitian square root of a
nonnegative-definite Hermitian matrix H € C"*", satisfy-
ing HzH? = H and (H%)* — H3. The notations P[] and
E[-] respectively denote the probability and expectation
on a probability space (2, F,P) with sample space  and
o-algebra F. We use B(R") to denote the Borel o-algebra
associated with R™. Furthermore, ¢ denotes the complex
conjugate of a complex number ¢ € C, and C* denotes

the complex conjugate transpose of a complex matrix
CeC™ e, Cf; =Ciq,i€{1,...,m},j €{1,...,n}.

2. BOUNDED AVERAGE-MOMENT CONTROL

Consider the linear stochastic dynamical system given by
x(t+1) = Az(t) + Bu(t) + w(t), t € Ny, (1)

x(0) = xo,
where z(t) € R™ is the state, u(t) € R™ is the control
input, and w(t) € R™ is the noise. We assume that

w(0),w(1),... are independent and identically distributed.
Their distribution is represented with probability measure
¢: B(R™) — [0, 1] satisfying Plw(t) € W] = ¢(W), W €
B(R™), t € Ng. We further assume that the noise has zero
mean, that is, E [w(t)] = [, wé(dw) = 0, and moreover,
the initial state x¢ and the noise process {w(t) € R" }1en,
are mutually independent.

To characterize the class of control policies that we investi-
gate, we consider a filtration {F; C F}en, such that 1) xg
is Fo-measurable, 2) for each ¢t € N, the random variables
x(0),...,z(t), and w(0),...,w(t — 1) are Fr-measurable,
and 3) w(t) is independent of F;.

In this paper, we focus on Fi-adapted control policies,
that is, for each ¢ € Np, u(t) is Fi-measurable. Notice
that the static state feedback policy u(t) = 7(z(¢)) and
feedback policies of the form wu(t) = =w(t,z(0),...,z(t))
are J;-measurable. We note that the o-algebra F; is
allowed to include events associated with random variables
other than z(0),...,z(¢t), w(0),...,w(t— 1), and u(¢). For
instance, in the case of a networked control problem over a
communication channel that is subject to random packet
losses, an F;-measurable binary-variable [(¢) € {0,1} may
be used for denoting the status of the channel. In such a
case, the control input u(¢) may depend on [(¢).

Since w(t) is an additive noise and does not converge to
zero, the system state and its moments cannot converge
to 0 regardless of the control input. Therefore, instead
of asymptotic stabilization, we explore a weaker notion
of stabilization. In particular, we consider the bounded
second-moment stabilization notion, where the control goal
is to achieve sup,cy, E[[|2(t)]*] < oc.

It is shown by Chatterjee et al. (2012) that if the system
matrix A is strictly unstable (having one or more eigenval-
ues outside the unit circle of the complex plane) and the
projection of the noise w(t) onto an eigenspace associated
with an unstable eigenvalue has unbounded support, then
the system (1) cannot be stabilized by control laws sat-
isfying deterministic constraints of the form ||u(t)| < 4,
t € Ny, with @ € (0,00). In this paper, we investigate
similar impossibility results for the case where the expected
value of the norm of the control input is bounded. In
particular, we consider control policies that are bounded
in their time-averaged second moments as characterized in
the following definition.

Definition 1. A control policy has bounded average second
moment if

t—1
1 . .
S E[lu@|f] <a, teN, 2)
1=0
where @ > 0.

Notice that bounded control laws have bounded second
moments and thus have bounded average second moments.
This is represented by a chain of implications given as

Plllu(®)|®* <4, t € No] =1
— E[lu®)|?] <@, t € N

t—1
— Y E[u@P] <a teN. @)
i=0

Similarly, we have
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P||lu(t)||® <, t € Ng] =1

t—1
1
— P ltiz_gﬂu(i)HQ <, teN| =1
1 t—1
12 ~
— > E[luG)| <a teN, (4)
=0

which indicates that control laws that are bounded (on
average) also have bounded average second moments.
Note also that Definition 1 allows E[|u(t)||?] to exceed
@ at certain times, as long as (2) holds for all ¢ € N.
Moreover, risk-constrained control policies can also be
considered within the characterization of Definition 1. For
instance, if the Conditional-Value-at-Risk associated with
lu(t)||? is bounded by @, then (2) holds. This is because
E[||u(t)|?] is upper-bounded by the Conditional-Value-at-
Risk associated with ||u(t)||? (Uryasev and Rockafellar,
2001).

In this paper, we are interested in (2) as a way of charac-
terizing a large class of control policies that encapsulates
some of the existing (deterministically or probabilistically)
constrained control laws.

3. AN IMPOSSIBILITY RESULT ON STABILIZATION

Our goal in this section is to identify the cases where the
linear stochastic system (1) cannot be stabilized with con-
trol policies that satisfy (2). The following result provides
a characterization of those cases. Specifically, it provides
conditions on the system dynamics and 4, under which the
second moment of the state diverges.

Theorem 2. Consider the linear stochastic system (1). As-
sume there exist a nonnegative-definite Hermitian matrix
R # 0 and scalars oy, ay > 1 such that

arR < ATRA < auR, (5)
/ wT Rwe(dw) > 0. (6)

If the control policy is Fi-adapted and satisfies (2) with
q < {0’2 (ar, = 1)/ (avPu — aLfr + Br), if Pu #0,

0, otherwise,
(7
where Br, £ Anin(BTRB), fu 2 Amax(BTRB), and 0 =
\/ Jpn wT Rwo(dw), then the second moment of the state
diverges, that is,

. 27
Jim (1) = oo, (8)
for any initial state distribution.

Proof. First, we define the nonnegative-definite function
V:R™ — [0,00) by V(z) £ 2T Rx. Our initial goal is to
show that lim;—, o E[V (z(¢))] = .

Note that w(t) and u(t) are independent, and similarly
w(t) and z(t) are independent. Therefore, by E[w(t)] = 0,
we have E xT(t)ATRw(t)]r: E[zT(t)ATR]E[w(t)] = 0 and
E[uT(t)BTRw(t)] = E[ut(t)BTR|E[w(t)] = 0. Thus, it
follows from (1) that

E[V(z(t+1))] = Elz"(t + 1)Ra(t + 1)]
=E[z"(t)ATRAz(t)] + E[z" (t) AT RBu(t)]
+ E[u” (t)BTRAz(t)] + E[u (t) BT RBu(t)]
+ E[w™ (t) Rw(t)]. (9
By (5), we get E[zT(t)ATRAz(t)] > apE[xT (t)Rx(t)]
aLE[V (x(t))]. By using this inequality and E[w™ (t) Rw(t)
Jgn wT Rwe(dw) = 62 in (9), we obtain
E[V(x(t+1))] > aLE[V(z(t))] + E[zT (t) AT RBu(t)]
+ E[u"(t)BTRAz(t)]
+ E[u™ (t) BT RBu(t)] + 0. (10)

Notice that Sy = Amax(BTRB) > 0. We show divergence
of E[V(x(t))] separately for the case where Sy = 0 and
the case where Sy > 0.

~—

First, consider the case where Sy = 0. Notice that Sy = 0
implies RiB = 0, and thus RB = 0. Therefore, if
Bu = 0, then it follows from (10) that E[V (z(t + 1))] >
aLE[V(z(t))] + o2. Hence,

t—1
E[V(2(t))] > atE[V (2(0)] + 02> ab 1
=0

— LBV (@(0)] + 0% (af, 1) / (ar — 1),
implying lim;_, o E [V (x(t))] = oo, since o > 0 and oy, > 1.

Next, we consider the case where Sy > 0. It follows
from (10) with uT(t)BTRBu(t) > Amin(B*RB)||u(t)||* =
Brllu(t)|* that

E[V(x(t +1))] > aLE[V (x(t))] + E[zT (t) AT RBu(t)]
+E[u" (t) BT RAz(t)]

+ BLE[[u(®)[|*] + 0, t€Ng. (11)
Now, let
C2{c>1:a<0”(ar—1)/(couBfu —arBL+BL)}.
(12)

Since 4 satisfies (7), we have C # (. Next, let ¢ € C and
define v(¢) 2 éay/ (a1, — 1). Consider the square root R=

of matrix R. Since R? is a nonnegative-definite Hermitian
matrix and (&) > 0, we have

0< (\/%Réflm(t) + x/v(é)RéBu(t)>

- (%R%Aw) + \/we)R%Bu(t))

! T(t)ATRAx(t) + 2T (t) AT RBu(t)

1"
+uT (t)BTRAz(t) + v(&)u™ (t) BT RBuf(t),
which implies

zT () AT RBu(t) + u" (t)B" RAxz(t)

! 2T () AT RAz(t) — v(&)uT (t) BT RBu(t)

G
> —%aUV(f(t)) — (&) Bullu(®)||. (13)
Now by (11) and (13),
E[V(z(t +1))] > p(e)E[V (z(t))]
+0(@E[[u®)|?] + 0%, t€No, (14)
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where 1(¢) £ (aL -

Sau) and n(@) 2 (8- 2(&)8u). Tt
then follows from (14) that
E[V(z(t)] > u'(OE [V(ff(()))}

Zutlz

+ 0 Zut*ki(é), teN.

Efu(i)]?]

(15)

Since 1 < ar, < ay and ¢ > 1, we have vy(¢) > 1, and
thus p(¢) > 1 and n(¢) < 0. It follows from y(é) > 1 that
ut=17%(¢) is a nonincreasing function of i. Consequently,

by using Lemma A.1 (see Appendix) with f(i) £ pf='=%(¢)
and g( ) E[||lu(i)]]?], i € No, we obtam

Z’utlz ||’LL ,&Zutlzc

Furthermore since n(¢) < 0, it follows from (16) that

Zﬂtlz HU Z’utlzc 17)

Then by (15) and (17), we arrive at
E[V(z(t)] = u'(OE [V(I(U))]

(16)

+un z‘ut 1— z 2-2#}7172(6)
_ ot NN _2 Mt(é)_l
= p (OB [V(2(0))] + (an(e) +o?) MCETh
(18)
Since E[V (2(0))] > 0, it follows from (18) that
NN 2 Mt(é) —1
E[V(x(t))] = (an(e) + o) CESE (19)

Notice that since ¢ € C, we have
i < o? (ar, — 1) / (éayBy — avLBL + Br),
and hence, an(¢) + o0 = a(fr — ;247 ¢By) + 0 > 0. Since

an(é)+o? > 0 and lim;_, o (¢ ) 00, it follows from (19)
that lim; 0o E [V (2(t))] = 0.

Finally, since R # 0, we have Apnax(R) > 0. Thus,
noting that V(z(t)) < Amax(R)[|z(t)[?, we get [lz(t)]* >
(1/Amax(R)) V(z(t)), t € Ny, which implies (8).

Theorem 2 provides sufficient conditions under which the
closed-loop system is unstable and the second moment
of the state diverges. First, condition (5) in Theorem 2
is used for quantifying the instability of the uncontrolled
(u(t) = 0) system. Notice that if A is a strictly unstable
matrix (i.e., some of its eigenvalues are strictly outside
the unit circle of the complex plane), then there always
exists a nonnegative-definite Hermitian matrix that satis-
fies (5). This is further discussed in Section 3.1, where we
provide a method to find R satisfying (5) by exploiting
the eigenstructure of the matrix A. Notice that when a
nonnegative-definite matrix R satisfies (5), then the term
Jan wT Rwe(dw) in condition (6) represents the variance of
noise w(t) projected on an unstable mode of the open-loop
system. In particular, E[w™ (t)Rw(t)] = [p, w" Rwe(dw)
for each ¢t € Ny. Theorem 2 1nd1cates that when condi-
tions (5) and (6) hold, then it is not possible to stabilize

the system by using control laws with too small average
second moments. In particular, if the bound # of the time-
averaged second moment of the control input is small
such that (7) holds, then the second moment of the state
diverges.

We conduct the divergence analysis in Theorem 2 by
evaluating the expected trajectory of a Lyapunov-like
function V(x(t)) = 2T (t)Rz(t). Typically for showing
stability of stochastic systems, positive-definite symmetric
matrices are utilized. The analysis for the divergence
differ from stability analysis in two ways. First, R is
a nonnegative-definite matrix and thus the sublevel sets
{z € R": V(z) < v} need not be bounded. This allows
us to deal with A matrices that possess both stable and
unstable eigenvalues. Secondly, R is a Hermitian matrix
with possibly complex entries. This aspect is utilized for
systems where A may possess complex eigenvalues (see
Section 3.1). Notice that even though entries of R may
be complex, V(z(t)) takes real and nonnegative values,
because R is a Hermitian nonnegative-definite matrix.

8.1 Instability Conditions Based on the Eigenstructure of
the System Matriz

We now utilize the eigenstructure of the matrix A to
establish conditions for instability. Let ng € {1,...,n}
denote the sum of the geometric multiplicities of the
eigenvalues of A. Furthermore, let A\; € C, i € {1,...,ng},
be the distinct eigenvalues of A and v; € C™ be vectors
that satisfy

ATUZ‘ = )\ﬂ}i, 1€ {1,...,71(;}. (20)
Notice that if A; is a complex eigenvalue (i.e., A; ¢ R),
then the complex conjugate A; is also an eigenvalue of A.
In particular, by (20), we have

viA= N vl ie{l,...,ng}, (21)
where v} is the complex conjugate transpose of vec-
tor v;. In the result below, we use the eigenvalues \;,

i € {1,...,ng}, and the left-eigenvectors v; € C", i €
{1,...,ng} to characterize instability conditions.
Corollary 3. Consider the linear stochastic system (1)
with system matrix A and the pairs (A;,v;) in (20). Let

Ié{ie {1,...,ng}: |>\7,‘ > 1 and o; >0}7

Jn wTv;0FwH(dw). Suppose Z # 0. If the
control policy is F;-adapted and satisfies (2) with

where o; £ \/
7 ; 22
U < max g;, (22)
where
O'-2 (l)\Z‘Z — 1)
- ) if BU L Oa
[Xi|2(Bu,i — PL.i) + Br a7
0, otherwise,

/BL,i é )\min(BT'Ui’U;(B% BU,i é )\max<BTUiU;kB)7 1 S I>
then the second moment of the state diverges (i.e., (8)
holds) for any initial state distribution.

A
i =

Proof. By (20) and (21), we have
ATvwr A = A\vvl = | Ni2o0f, €. (23)

Here, notice that for each i € Z, v,uf € C"*" is a
nonnegative-definite Hermitian matrix. Thus, it follows
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Controller

Fig. 1. Control over a network subject to packet losses.

from (23) that (5) holds with R = v;v}, ar, = ay = |\|2
Furthermore, by definition, o; > 0 for i € Z. Therefore,
for each i € Z, it follows from Theorem 2 by setting
Br = Pui, Bu = Puy, and o = o; that under control
policies satisfying (2) with 4@ < ¢; the second moment of
the state diverges. Finally, (22) implies that there exists

i € T such that 4 < 7, implying divergence. O

Corollary 3 provides an approach for checking instability
of the system (1) by using the eigenvalues and the left-
eigenvectors of the matrix A.

3.2 Instability of Networked Control Systems

The results presented above can be used in obtaining
impossibility results for networked control systems. Specif-
ically, consider the networked control problem depicted in
Fig. 1, where the plant dynamics are given by (1).

In this problem, control input information that is trans-
mitted from the controller to the plant is subject to packet
losses. In the case of a packet loss, the input at the plant-
side is set to 0. In this setting, the plant input is given by
u(t) = (1 = I(t))uc(t), where uc(t) represents the control
input transmitted from the controller, and I(¢t) € {0,1}
is an indicator of a packet loss at time t (i.e., I(t) = 1
represents a packet loss and [(¢) = 0 represents a successful
transmission). Suppose that the transmitted control input
uc(t) is subject to the constraint P[|luc(t)]? < ic] = 1,
t € Ny, (with 4¢c € (0,00)) enforced by the controller.
Furthermore, assume for each ¢t € Ny that uc(t) and i(t)
are mutually independent. With ps(¢t) = P[I(t) = 0] de-
noting the probability of a successful transmission at time
t € Ny, we have E[[[u(t)|] = E[(1-1(t))Juc (8)]] = E[(1-
IO)E[luc@®l’] < P[1 —1(t) = lJic = ps(t)ic. As a
result, we obtain %Zf;é Ef[|u()]]?] < act Zf;é ps(i) for
t € N. Hence, if i 2 32'2) ps(i) < @, t € N, then (2) holds.

Theorem 2 indicates that the second moment of the net-
worked control system’s state diverges, if the average

successful transmission probability %ZZ;(I) ps(i) is con-

sistently small such that ¢ Zf;é ps(i) < @ holds for
every t € N with 4 satisfying the inequality (7). In other
words, knowing the probability of successful transmissions
is small, it is not possible to design a control law w(¢) that
guarantees stabilization.

4. NUMERICAL EXAMPLE

We consider the linear discrete-time model of the cart-
pendulum system from Kolmanovsky and Gilbert (1995).
This model is obtained via linearization in a sampled-data
control setup, and it is given by (1) with

1 0.1 —0.0506 —0.0017 0.0101
A= 0 1 -1.0240 —0.0506 B— 0.2024
0 0 1.0723 0.1024 |~ —0.0072
0 0 1.4628 1.0723 —0.1463

Instability region

001 002 003 004 005 006 007
Wo

Fig. 2. Region of instability with respect to noise distribution
parameters w2 and wy.

6l wy = 0.02, wy =0.03
_ 10 iy = 0.038, 1y = 0.04
= 10
;
= 102 4
0 20 40 60 80 100
Timelt]

Fig. 3. Trajectories of the second moment for different noise
distribution parameters.

It is shown by Kolmanovsky and Gilbert (1995) that the
control law

u(t) = sign(Kz(t)) min{0.5, | Kz (t)|} (24)
with K = [0.5451, 1.8357, 27.2815, 8.6552] guarantees
that the state of the system stays bounded if the initial

state xo and the disturbance vectors w(t), t € Ny, have
sufficiently small norms.

Different from the earlier work by Kolmanovsky and
Gilbert (1995), we explore the scenarios where {w(t)}ien,
is a stochastic process and look for conditions under which
the second moment of the system state diverges.

Suppose that the noise vector entries wq(f) € R and
wy(t) € R are independent random variables that are
uniformly distributed in the respective ranges [—g,ws)
and [—y4, Wy4], where wq,wy > 0. Furthermore, suppose
that wy(t) = 0, w3(t) = 0, t € Ng. Our results obtained for
control policies with bounded-average second moments are
applicable here, since (24) guarantees |u(t)| < 0.5, which
implies (2) with 4 = 0.25.

We check instability of the system with respect to pa-
rameters ws and wy. Specifically, (22) holds for the noise
distribution parameters in the shaded region of Fig. 2.
Thus, by Corollary 3, the second moment of the state
diverges for those parameter values. In Fig. 3, we show
the second moment E[||z(t)||?] of the state approximated
over 1000 sample trajectories with initial condition z¢ = 0.
For parameter values ws = 0.038,w,; = 0.04 (from the
instability region), the second moment is divergent. On the
other hand, for smaller values wy = 0.02,w4 = 0.03 (from
outside the region), the second moment of the state stays
bounded. Notice that even in the divergent case, E[||x(t)]|?]
stays small until around time 30. This happens because
the initial state is 0; therefore, the control law (24) does
not face saturation and is able to keep the state norm at
relatively small values for a while. For the setting with
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wo = 0.038, w4 = 0.04 there are sample noise realizations
where the control law saturates (u(t) € {—0.5,0.5}) as
time progresses, and the state starts to increase rapidly.
With the smaller values wy = 0.02,w4 = 0.03, this does
not happen and E[||z(t)||?] stays bounded.

5. CONCLUSION

We have investigated discrete-time linear stochastic sys-
tems with the goal of identifying the cases where stabiliza-
tion of these systems is not possible with control policies
that have bounded time-averaged second moments. First,
we obtained a general result that provides conditions, un-
der which the second moment of the system state diverges.
These conditions are given in terms of the system dynam-
ics and the bounding constant of the control constraint.
Then we obtained conditions based on the eigenstructures
of system matrices and applied our results to networked
control systems. In networked control systems, our results
provide limits for average successful packet transmission
probabilities below which stabilization is not possible.
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APPENDIX

Lemma A.1. Let f: Ny — [0,00), g: Ng — [0,00) be
nonnegative functions. If f is nonincreasing and g satisfies

t—1
> g(i) <gt, teN, (25)
i=0
where g > 0, then for every ¢t € N, we have
t—1 t—1
D@~ @) g <gy_ (f@) —f(1),  (26)
i=0 i=0
and moreover,
t—1 t—1
> f(gli)<g) f), teN (27)
i=0 i=0
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