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Abstract: Studying the arterial hemodynamic response plays a crucial role in the understanding
and the treatment of cardiovascular diseases. Due to the difficulty of measuring the arterial blood
flow, its estimation through a particular arterial vessel, using non-invasive arterial pressure
waveform measurements, has always been an important topic in physiology. For instance,
knowing the blood flow in a specific site of the arterial network helps in the detection of arterial
stenosis. It may also help in the diagnosis of heart valve’s diseases. In this paper, an algorithm
based on modulating functions is proposed to estimate the arterial blood flow as well as to
calibrate the conventional Windkessel model using arterial blood pressure signals measured in a
particular site of the arterial system. The algorithm is presented and illustrated through several

numerical tests.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) are the primary cause of
death worldwide, with a reported fatality rate of over 17
million (31 % of all global deaths) in 2015, Ruan et al.
(2018). In general, CVDs affect the blood flow, either by
narrowing or blocking the blood vessels causing arterial
stenosis that can generate heart attacks, or by damaging
the heart valves, which control the flow of blood into and
out of the heart. In the view of this, the investigation of
the blood flow through the arterial network, has always
been an imperative subject matter in both physiology and
biomedical engineering. It is commonly known that per-
ceiving and analysing the blood flow waveform in a specific
site of an artery, provide relevant information about the
physiological state of the cardiovascular system. However,
the existing tools for the non-invasive measurement of
the blood flow are either complex to use, uncomfortable,
expensive or do not provide reliable measurements as they
may need additional pre-processing, Fossan et al. (2018);
Ledezma (2012); Bidhult et al. (2019).

Mathematical modeling of the arterial hemodynamics has
been subject of intensive studies, Lazakidou (2011). The
models usually describe the blood flow dynamics and are
characterized by parameters that have physiological at-
tributes. These models vary in term of dimensionality,
from 0-Dimension (0D), which are given by time depen-
dent ordinary differential equations (ODE) and usually
referred to as lumped parametric models, to 3-Dimension
(3D) models, which take into account the spatial vari-
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ability and are described by partial differential equations
(PDE), Bahloul and Laleg-Kirati (2018); Grinberg et al.
(2009). As the model’s dimensionality increases, its accu-
racy increases as well as its complexity.

Many studies showed the potential of 0D models in repre-
senting the overall behavior of the arterial network with a
reduced number of characteristic parameters that have a
physical relevance, Zhou et al. (2019). As a lumped param-
eter model, the well-known Windkessel model (WK) has
been considered, for a long time in this regard. Originally
formulated by Frank in 1899, the conventional WK model,
known as two-element Windkessel (WK2), considers the
whole arterial network as an elastic reservoir that receives
as input the blood flow, from the heart. This elastic
reservoir ensures the continuous flow through the arterial
system even after the closure of the valves in the diastolic
phase. As depicted in figure 1, the electrical analogue of
WK2 consists of a capacitor (C) connected in parallel to a
resistor (R,) representing the total arterial compliance and
peripheral resistance, respectively, Westerhof et al. (2019).
Over the last decade, the potential use of the WK model
in clinical routine has been investigated. For instance, it
can serve as a tool to estimate physiological parameters
which are not possible to evaluate and quantify directly,
in a non invasive way, such as the arterial compliance or
the local arterial stiffness.

Several estimation algorithms have been proposed in the
literature, Kind et al. (2010), for the identification of
the Windkessel model’s parameters. These algorithms are
based on iterative numerical optimization methods, with
a recursive trust region, which minimize an error between
the real and predicted data, in both time or/and frequency

16507



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

domains. Although, these approaches are reliable, they
are computationally expensive and often depend on the
initialization. They are also not robust against noise. Addi-
tionally, these algorithms require both blood pressure and
blood flow signals. Even if the blood pressure waveform is
widely accessible, there are still several limitations in mea-
suring blood flow signal. Indeed, blood pressure sensors are
easier to set up and more readily available in both popular
and clinical practices than blood flow sensors. Therefore,
there is a growing interest in developing new estimation
tools that can estimate jointly and accurately the model’s
parameters and the blood flow from non invasive available
measurements of the arterial blood pressure.

In this paper, we propose a finite-time estimation method
based on the so-called modulating functions (MF) to esti-
mate jointly the blood flow in a specific site of the arterial
network and the two-element Windkessel model’s param-
eters. The concept of modulating functions is not new,
dating from its first introduction by Shinbrot, Shinbrot
(1957), in 1957. MF based-estimation is a non-asymptotic
method that has been successfully used in parameters’
identification for both integer order systems Co and Ydstie
(1990); Balestrino et al. (2000); Guo et al. (2014) and
fractional order systems Liu et al. (2013); Wei et al. (2019).
MF based estimation methods offer several advantages
Belkhatir and Laleg-Kirati (2017); Belkhatir et al. (2018);
Asiri (2017). For example, it is computationally less costly
compared to optimization based methods and do not re-
quire initial conditions. In addition, it is robust against
noise and numerically more stable as the numerical com-
putation of noisy measurements’ derivatives is avoided.

The rest of this paper is organized as follows. Section 2
introduces some preliminary results on the mathematical
formulation of the arterial Windkessel model and mod-
ulating functions. Modulation function based-algorithm
for the joint estimation of the arterial blood flow and
WK2 parameters is proposed in Section 3. Some numerical
examples that illustrate the performance of the proposed
algorithm are provided in Section 4 along with a discussion
of the results. Finally, the conclusion and future work are
given in section 5.

2. PRELIMINARIES
2.1 Windkessel Model

The concept of Windkessel representation was borrowed
from electrical circuit analogy, where the electrical voltage
corresponds to the arterial blood pressure and the current
corresponds to the blood flow through the arteries. With
reference to Fig. 1, we present in this part the mathemat-
ical formulation of Frank’s Windkessel as follow:

On the basis of the conservation mass, the input arterial
blood flow, Q,(t), pumped from the left ventricle of the
heart to the arterial vascular bed can be expressed as:

Qa(t) == Qstored(t) + Qout (t)a (1)

where Qstored(t) is the blood stored in the arterial tree and
Qout(t) corresponds to the flow out of the arterial system.
Qout is supposed to be proportional to the aortic blood
pressure P,(t), that is:

Heart Arteries Per:%pheral
Resistance
K_\u/’@—\u/\
—>

P, C Ryp

Fig. 1. Schematic representation of the electrical analog
of the two element Windkessel model. It consists of a
capacitor (C), connected in parallel to a resistor (R,)
accounting for the total arterial compliance and the
total peripheral resistance, respectively.

Quualt) = 3 Palt), @
p

where R, is the total peripheral resistance. Regarding to

Qstored(t), it is defined as the rate of flow by taking the

first derivative of the blood volume V() equation for the

time, that is:

Qstm‘ed(t) - %it) (3)
L Av(t) dP(t) dPu(1)
Qstored(t) - dPa(t) dt =C dt (4)

c

where C'= ;1‘3/(1 ((tt)) is a proportionality constant accounting

for the total arterial compliance. Substituting (2) and (4)
into (1) yield:

_dP(t) 1
Qun(t) = T+ 2P, )
Equation (5) can be written as:
dP,(t
F; (t) =T dt( ) +Pa(t)’ (6)

where Fj,(t) = RpQin(t) and the time constant 7 equals
to the product R,C'.

2.2 Modulating functions

Definition, Preisig and Rippin (1993): Let [0,T] C
R, n € N m € N with m < n—-1, and ¢,, be a
function defined on [0,7] between which ¢, depends on
m. The function ¢, is called (n,m)" order (generalized)
modulating function on [0, 77, if it satisfies the following
properties: for p=10,1,2, ..., n—1,

(P1) ém(t) € C™([0,T])
(P2) ¢! (0) = 0,
(P3) ¢)(T) =0,

where T' > 0 and p refers to the order of the derivative
and C™([0,7]) (n € N*) denotes the space of n times
continuously differentiable functions over [0, 7.

In the following, we recall the integration by part formula
which is essential in the application of the modulating
functions to parameters identification
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Lemma: Let f,g € C"(R), where n € N*. Then, for
any interval [0, 7] UR, we have:

) sosvom=cor [0

L [f 0 gm0 O

t=0
k=0

t)dt +

s
In the case where f is a MF, the term S in (7) is equal to 0.
Hence, the MF will allow the transfer of the differentiation
of the input or/and output to the differentiation of the
MF which can be done analytically and thus will avoid
numerical un-stability.

2.3 Modulating functions based-estimation method

The MF based method is a non-asymptotic estimation
approach where the basic idea is to transform the esti-
mation problem for a differential equation into a solution
problem of a set of algebraic integral equations. Thanks to
its properties, MF based estimation approach is considered
to be very fast and easy to implement. In addition, by dint
of the integration by part criteria (Lemma) along with
modulating function properties (P2-P3 in the definition)
the MF based method is robust with respect to corrupting
noises. In the following, we present the main steps of a MF
based method.

1- Multiply the differential equa-
tion by a set of modulating functions

2- Integrate over a finite-time interval

3- Apply the integration by parts formula
to convert the derivative operation from the

4- Apply the properties of the modulating
functions to eliminate the boundary values

5- Formulate and solve the lin-
ear system of algebraic equations

Fig. 2. Modulating function-based estimation method’s
procedure

)

3. JOINT ESTIMATION OF THE ARTERIAL BLOOD
FLOW AND WINDKESSEL MODEL’S PARAMETERS

After defining the MF-based estimation procedure and
its properties, in this section, we show the application of
this approach to system (6) for the sake of estimating

the input Fj,(t) along with the time constant 7, from
the measured output given by the arterial blood pressure
waveform, P,(t). Hence, the generic estimation problem
can be formulated as follows:

Given the ODE (6), the output signal P,(t)

for t € [0,T), jointly find estimates (Ey,(t),7)
for the unknown input signal and time constant.

EP

As the main concept of the MF based method is to write
the differential equation as a set of algebraic integral
equations, as an elementary step, we need to decompose
the input signal Fj,(t) in the space spanned by a set of
known basis functions {3;(¢)}}_,, as follow:

\4
)= &Bib), (8)
i=1

where {¢;}Y;, V € N*, will be considered the unknown
projection parameters. Accordingly, (6) can be written as:

v
Z &iBi(t)

P, denotes the derivative of P,(t) with respect to time.
Based on this projection, the estimation problem can be
formulated as follows:

Given the ODE (9) and the output signal P,(t) for
t € 10,T), jointly find estimates ({&(t)}Y_,,7) for
the unknown projection weights and time constant.

In what follows, the different steps of the proposed algo-
rithm are presented to solve EP*, and hence EP:

= TF,(t) + Pa(t), (9)

EP*

Step 1: Multlply (9) by a set of modulating functions
G, for m=1,..., M.:

t) Z EBi(t) = dm(t)T
=1

Integrate over the time interval [0,T]:

v T
;gi/o b (t)Bi(t)dt =

T/Tc/)m(t)P t)dt+/Tqu(t)P £)dt

It is worth to note that one of the main offered advantages
by the MF-based method is that the integral in this step
has an effect to dampen and filter the noise of the measured
signals.

Py(t) + ¢m(t)Pa(t)  (10)

Step 2:

(11)

Step 3: Applying formula (7) given in the Lemma, we
obtain:

1% T . |
g & on (0800t — 7| 750~ /0 pa(t)%(ﬂdt] _

T
/ G (t) P (t)dt
’ (12)

where Sy = ¢, (0) P, (0) and St = ¢, (T) Po(T') contain all
the boundary values that are equal to 0 based on (P1-P3).

Step 4: Eliminate the null boundary values and form
the linear system:
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T

- A . T
; & 0¢m(t)ﬁi(t)dt +7 /0 Py () (t)dt= o% ()P, (t)dt
(13)

Equation (13) can be written as a linear system, that is:

N
> 0 Api=bn, m=1,. M, (14)
i=1
and its compact form is as follow:
A6 =D, (15)

where A € RM*N N =V 4+ 1 and b € R™. The vector

6 € RY comprises the projections weight along with the

characteristic time constant parameter 7, that is:
9 = (51 52 fv T)T

where (.)7 denotes the transpose of a row vector.

(16)

The constitution of the components of A and b are given
in Algorithm 1.

Algorithm 1 Construction algorithm of A and b
for m = 1:1:M do

% Forming A
for j = 1:1:N-1 do
T
A(m, i) = / b ()31 (1)t
0

end for

T
Am,N) = [ du(OP. ()t
0
% Forming b

T
b(m, 1) = / G (1) P (1)

end for

Step 5: Solving the linear problem: For a given blood
pressure signal P, (t), a set of M modulating functions and
a set of V' basis functions to project the input signal Fj,,
the estimate of parameters’ vector § = (& & ... & 7)T
is computed by solving the following linear system of
equations:

Af =, (17)
Remark: There exist several types of modulating func-
tions in the literature, such as polynomial and spline MFs,
Fedele and Coluccio (2010), Asiri (2017). The number
of modulating functions (M) depends on the number of
unknown parameters (N). The minimum number of MF is
equal to N. However it has been noticed that increasing M

may help improve the estimation and especially in presence
of noise . In this study, we chose M > 2N.

4. RESULTS AND DISCUSSION

The proposed algorithm has been tested using in-silico
data set which has been generated from a validated one-
dimensional numerical model of the arterial network, by

Table 1. Arterial characteristics of three virtual
subjects. T, corresponds the cardiac period,
SV is the stroke volume, SP is the systolic
blood pressure value, D P is the diastolic blood
pressure value and 7 is the time constant.

Parameter
T, [sec] | SV [ml] | SP [mmHg] | DP [mmHg| | 7
Subject
Subject 1 0.83 66.40 98.04 67.22 1.26
Subject 2 0.83 83.00 105.07 78.52 1.53
Subject 3 0.95 99.60 103.93 69.25 1.38

Willemet et al. (2015). This database consists of hemo-
dynamic signals (e.g. pressure, flow and distension wave-
forms) at all arterial locations. It presents arterial hemo-
dynamic of virtual healthy adult subjects in which the
cardiac and arterial parameters vary within physiologi-
cal ranges. This in-silico data set is able to mimic the
major hemodynamic properties sensed in—vivo. For this
study, we selected 3 virtual subjects with different arterial
characteristics, as shown in table 1. In the last column
of table 1, we present the true constant time 7 that will
be subject to estimation along with the input Fj,. The
explored hemodynamic signals are measured at the level
of the ascending aorta. The proposed algorithm has been
implemented in Matlab and applied in both noise-free and
noisy cases. In the noise corrupted case, white Gaussian
random noise with zero mean has been added to the output
signal P, (¢t) with different levels (1%, 3%, 5%, 10%). Then,
the effectiveness and robustness of the method is evaluated
by calculating the relative error (RE %) between the true
parameter (7) and the estimated one (7), and the real

input (Fin) and its estimate (Fj,) as follows:

REparameter = H‘I‘—l;mb X 100%

|| Fin—Fin]| (17)
REipput = Tl 2 x 100%
The following modulating function has been used:
¢m (t) — t]b[+q+1—m(T _ t)q+7n (18)

where m = 1, 2, ... ,M with M is the total number of
modulating functions and ¢ € RT is a degree of freedom
parameter, Belkhatir and Laleg-Kirati (2018).

Fig. 3 shows the reconstruction results of the input blood
flow in the absence of noise using a Jacobi polynomial
projection basis, for the three Subjects. For these estima-
tions, we took (M = 14, ¢ = 1.3) for Subjects 1 & 2, and
(M = 17,g = 0.65) for Subject 3. V = 7 projection basis
functions have been considered for subjects 1 & 2, and
(V = 8) for subject 3. We observe from the reconstruction
and absolute error plots for subjects 1 and 2 which have

Table 2. Relative error (%) of the estimated
parameter and blood flow input for three dif-
ferent virtual subjects.

_2 Fin—F;
» RE (%) HT\lTHTQH2 %100 || TIT;’”L?:HQ %100
ubject
Subject 1 24.63 14.00
Subject 2 3.17 16.15
Subject 3 14.37 13.75
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Fig. 3. Estimated input blood flow Fj;, in noise-free by blood pressure for three different subjects using Jacobi polynomial

basis with unknown time constant parameters 7.

cardiac periods equal to 0.83 sec, that the estimation
results are affected at the boundary, unlike subject 3 with
a cardiac period equals to 0.95 sec where this effect is
attenuated. The relative errors for both parameter and
input estimations are reported in Table 2. It is clear, from
these results, that the algorithm gives the best parameter
estimation performance in the case of subject 2, but at the
expense of the input estimation accuracy. Unlike, subject 3
presents the best performance in term of input estimation.

Fig. 4 shows the reconstruction result along with the
absolute error of multi-cycles blood flow input. Since the
results are similar for all the subjects, we present only the
reconstruction plot of subject 1. For this simulation, we
took M = 223 and ¢ = 4. For the projection basis, we
used 43 cubic b-splines functions. It is clear from this plot
that the estimation result is less accurate in the first two

Table 3. Relative error (%) of estimated pa-
rameter and and blood flow input for corrupted
output by different noise level (up to 10%)

_; Fon—F;
o RE (%) ”THTHTZHQ % 100 | Z%7LZ:||2 %100
oise level
0% noise 24.63 13.75
1% noise 18.11 14.50
3% noise 3.62 19.01
5% noise 8.69 25.80
10% noise 24.63 36.89

cycles, then it converges along the remaining cycles. Based
on our extensive numerical investigations, we noticed that
as much as we increase the number of cycle, the algorithm
requires more basis functions as well as MFs, to converge.
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Fig. 4. Estimated multi-cycle input blood flow signal, in the absence of noise, using cubic b-splines basis.

In addition, whatever the number of estimated cycles, the
first two cycles are always not well estimated.

Fig. 5 illustrates the effect of the noise level while the
number of MFs is fixed to (M = 14) and the number
of basis functions (V' = 7), in the case of subject 1.
We observe from this investigation that the estimation
results are not accurate at the amplitude. In addition, if
we increase the number of basis functions and MFs, the
error might be cancelled.

—Estimated Fin(t) (0 % noise)
—.—.Estimated Fin(t) (1 % noise)
—.—-Estimated Fin(t) (8 % noise)

Estimated Fin(t) (5 % noise)
- - Estimated Fin(t) (10 % noise) | |
—Exact Fin(t)

500 -

400 -

w
o
(=]

200

Blood Flow [ml/s]

100

\\\\\\

_100 | Il 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time [sec]

Fig. 5. Estimated blood flow input in noise-free (black)
and noisy (1%, 3%, 5% and 10% noise level) cases by
known blood pressure waveform.

Based on the above results and from the extensive numer-
ical investigations that we conducted, it is worth to point
the following observations:

e The total number of MFs affects the proposed algo-
rithm performance. There exist a minimal number of
MFs to get a good performance, then increasing M
within a certain range will not affect the performance
of the algorithm significantly. In the noisy case in-
creasing M improves the estimation results.

e The choice of the projection basis and the number of
functions affects the performance of the algorithm.
We think that this choice depends on the prior
knowledge of some properties of the estimated input
such as smoothness and periodicity.

5. CONCLUSION

The estimation of the blood flow and arterial characteristic
parameters is of great potential in the understanding and
treatment of cardiovascular diseases. In this paper, we
explore the use of identification-based modulating func-
tion methods for finite-time joint estimation of the arte-
rial blood flow and the standard two element Windkessel
model’s parameters. The proposed algorithm can han-
dle different input estimation scenarios such as one-cycle
blood flow in both noise-free and noisy cases, and multi-
cycle input. The extensive numerical investigations have
resulted in useful observations and guidelines for potential
and effective implementation of this algorithm.

In the future, further work should be conducted to refine
more the tuning of the algorithm. Furthermore, we plan
to investigate more on the numerical issues encountered
in solving the linear problem within the last step of the
algorithm. In fact, the condition number of the matrix
inverse depends on the type and number of MFs which
may lead to some numerical issues. In addition, in order
to validate the proposed algorithm, we plan to use sev-
eral sets of real hemodynamic data for both normal and
abnormal subjects with different age, while analyzing and
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comparing the results between the proposed algorithm and
other different asymptotic and non-asymptotic estimation
approaches. This phase should be conducted closely with
experts in the cardiology field to interpret and better
understand the obtained estimates.
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