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Abstract: Semantic interoperability is seen as the key to realize the ideas of the Industrial Internet of Things 

(IIoT). In order to equip technical systems with such a capability, a precise definition of the term 

“semantics” is needed. Complex IIoT devices can only be developed properly on a formal foundation. 

Existing approaches that intend to specify the term “semantics” are often more intuitively motivated. These 

include, for example, the knowledge pyramid or the Levels of Conceptual Interoperability Model (LCIM). 

The paper provides a formal definition of the term “semantics” and relates these existing approaches 
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1. INTRODUCTION 

The vision of the Industrial Internet of Things (IIoT) envisages 

that a large number of decentralized systems form a 

decentralized network of systems in which autonomous, 

intelligent entities act for the purpose of achieving their 

individual goals. The most basic motivation of this effort can 

be seen in making the enormous complexity of networks of 

systems, which is already enormous today and will potentially 

continue to grow in the future, more manageable by moving 

from a centralized approach based on the automation pyramid 

to a decentralized approach. A proper interaction of 

information processing systems requires semantic 

interoperability as a crucial prerequisite for the 

implementation of the Industrial Internet of Things. Following 

the idea of the cyber-physical (production) systems (CP(P)S), 

these “Things” as physical systems are extended by a digital 

representation in order to integrate the physical world into the 

information world (digitization). This digital representation is 

an information processing system, in the following only called 

“system” because the focus lies on these information 

processing entities. Fig. 1 illustrates the intended purpose of 

such an (information processing) system. 

 

Fig. 1. Digitization by adding information processing system 

to physical system. 

 

Fig. 2 schematically shows a simple network of systems in 

which individual systems interact as decentralized entities. 

 

Fig. 2. Network Of interacting systems 

 

The paper provides a formal definition of the term “semantics” 

which helps to further develop approaches for the semantic 

interoperability within those networks of systems. At the level 

of understanding, at least as far as terminology is concerned, 

this view of “semantics” is currently not established according 

to our findings. We regard these fundamental considerations 

as essential in order to solve further problems in practice-

oriented research activities in the future. It is not yet about their 

application to concrete problems, but about a proposal for a 

formally grounded perspective on the problem of “semantics” 

and the critical examination of the currently pursued 

approaches of the knowledge pyramid or the Levels of 

Conceptual Interoperability Model (LCIM) as well as 

ontologies. The paper takes a fundamental view and serves 

primarily to stimulate a scientific discourse on a precise 

definition of the term “semantics”. 

2. FUNDAMENTALS AND CRITICISM 

The semantics of data plays an important role in many efforts 

to advance digitization (PI4.0, 2016; PI4.0 2018). Everyone 

has an intuitive idea of what the meaning of semantics is. This 

intuitive notion of semantics has produced a number of models 
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that intend to refine the concept of semantics. These include, 

for example, the knowledge pyramid or the Levels of 

Conceptual Interoperability Model (LCIM) (Turnitsa, 2005). 

However, the implications of these models are sometimes 

rather weak or, on closer inspection, erroneous. The 

knowledge pyramid is presented below as a representative of 

a class of similar models. These models share the claim to 

provide a definition for semantics and related terms. In 

addition, further concepts related to formal semantics are 

presented and related to the definition proposed here. 

2.1 Knowledge Pyramid 

The transition from data up to knowledge and the actions that 

can be derived from it is vividly illustrated in the knowledge 

pyramid after Aamodt and Nygard (Aamodt and Nygård, 

1995) (Fig. 3). The lowest level (level 1) represents the set of 

symbols from which data can be composed according to a - 

possibly formal - syntax (level 2). This corresponds to the 

definition of formal languages as a set of words formed from 

an alphabet as a set of permitted symbols. As soon as data 

receives a semantics, i.e. its meaning is determined, the 

transition to information takes place (level 3). According to 

this model, the crosslinking of several pieces of information 

results in knowledge (level 4). This crosslinking is also seen 

as an addition of pragmatics. On this basis, actions can be 

derived – in other words: decisions can be made (level 5). The 

transitions between the levels therefore take place according to 

the triad syntax, semantics and pragmatics, which are also 

represented in the so-called semiotic triangle.  

 

Fig. 3. knowledge Pyramid. 

By assigning semantics to data, information is created. 

Knowledge results from the crosslinking of information. We 

see actions as information or knowledge in combination with 

an objective, which is represented as information or 

knowledge too. The transition from information to knowledge 

therefore takes place through crosslinking. This is vague, 

because depending on the perspective, what is regarded as 

elementary information from one perspective may well 

contain a substructure - i.e. a crosslinking of information - 

from another perspective. The transition from knowledge to 

action takes place by assigning an objective, or the intention, 

which determines which external effect must unfold in order 

to fulfil a certain purpose. This objective exists itself in the 

form of information or knowledge and therefore does not form 

a category of its own. These explanations support our view that 

the distinction made by the knowledge pyramid between 

information, knowledge and action is a phenomenological 

distinction, i.e. one that cannot be clearly identified from a 

formal perspective. If the principles of the knowledge pyramid 

are to be used for the realization of semantic interoperability - 

i.e. including the actual implementation and not only rough 

conceptual ideas - these must be sufficiently formalized. 

2.2 Ontologies 

Another widespread answer in the search for the definition of 

semantics is the concept of ontologies as one of several 

approaches for knowledge representation(Brachman and 

Levesque, 2004; Hildebrandt et al., 2017) Before knowledge 

can be processed by a system, it must be made available to it 

in a form of representation. For such forms of representation, 

a wide variety of approaches exist that differ in their 

expressiveness, e.g. glossaries, taxonomies, classifications or 

semantic networks/ontologies. The result of the application of 

such approaches are models that represent knowledge of one 

or more domains. Concepts and relations between these form 

the building blocks of an ontology which represent the 

vocabulary of one or more domains. A much quoted definition 

of the term comes from Rudi Studer, who - referring to 

definitions by Gruber and Borst - regards an ontology as a 

"formal, explicit specification of a shared conceptualization" 

(Studer, Benjamins and Fensel, 1998). Ontologies are 

described e.g. with RDF with tuples of the form <subject> 

<predicate> <object>. In RDF classes (concept), instances 

(individual), relations (object property) or literals (datatype 

property) can be represented. In this way, a graph is created 

whose nodes and edges can be uniquely identified, e.g. via a 

URI. The (automated) tracking of the edges makes it possible 

to browse the shared domain vocabulary. A simple example is 

shown in Fig. 4. 

 

Fig. 4. Example of a simple ontology. 

The problem is that ontologies, as representatives of 

approaches for knowledge representation, suggest that in order 

to make semantics of data machine-processable, they must be 

“described”. This means that semantics can be described and 

thus processed. This leads to the following circular conclusion: 

If the semantics of data is itself described by other data, who 

or what exactly describes the semantics of this description? In 

order to answer the question of what semantics of a term is, 

ontologies answer with a substitute description of this term. 

This is always continued without ever answering what 

“semantics” really means. Ontologies are therefore not an 

answer to the question “What is semantics?”, but merely a 

possibility to replace the semantics of one term with the 

semantics of other terms. However, we do not want to make 

replacements, but define the term of “semantics” itself. 

2.3 Semantics of Programs 

Theoretical computer science defines the concept of formal 

semantics. Its purpose is to make the meaning of programs 

specified using formal languages formally describable. 
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In general, a semantic function is constructed as a mapping of 

a program to the function calculated by this program (Stump, 

2013): 

𝐶: 𝑃 → 𝑓 

𝐶 denotes the semantic function, 𝑃 the set of syntactically 

correct programs, 𝑓: 𝛴 → 𝛴 the function calculated by the 

program and 𝛴 the set of possible memory allocations. 

There are several such formal semantics which differ in the 

mathematical representation of this semantic function, such as 

axiomatic semantics, denotational semantics and operational 

semantics (Stump, 2013; Nielson and Nielson, 2007). 

This view of the semantics of programs established in 

theoretical computer science is similar to the definition of 

semantics given in this paper. Both definitions explain 

semantics through an effect realized by a function associated 

with semantic-related entities. 

However, there is a difference between these entities and their 

association with this function. On the one hand, the formal 

semantics of programs does not address the meaning of atomic 

characters, but the meaning of a program resulting from the 

composition of several characters. On the other hand, the 

semantics of the program is represented directly by this 

function. In the definition given in this paper, however, this 

function is the system function of any system that accepts a 

character as a function argument and assigns it the calculable 

function value as a representation of its semantics. Here the 

semantics is represented by a single function value instead of 

by a whole function. In addition, this paper also considers the 

context dependency of the assignment of semantics to data, 

which is not the case with the aforementioned concepts. 

2.4 Semantics of Data Types 

In computer science, a data type is the combination of sets of 

permitted values for instances of that data type and the 

operations applicable to that data (Dale, 1996). It is defined by 

a signature. Such a signature initially defines only the names 

of the value sets and operations.  If, in addition, semantics is 

specified by defining the interpretation of these value sets and 

operations, a data type in a more specific sense results (Noble 

et al., 2018). 

Obviously, the term semantics also plays a role here. However, 

this refers to the meaning of a whole class of characters. This 

class of characters is defined by the semantics of the value sets. 

Its semantics is then specified for the entire class of these 

characters by the semantics of the operations applicable to it. 

Therefore, the concept for defining the semantics of data types 

serves a different purpose despite fundamental similarities to 

the definition of semantics given in this paper. Instead of 

defining a definition for the semantics of individual characters, 

i.e. concrete instances of a data type, the semantics of an entire 

class of such characters is defined. 

The similarity is that in both concepts the functions or 

operations applied to the characters or classes of characters are 

relevant. In the definition for semantics given here, these are 

system functions of data processing systems. In order to define 

the semantics of individual characters, the concrete application 

of such a function to characters and the resulting calculated 

function value must be considered instead of merely the 

general applicability of an operation to the corresponding data 

type. In addition, when considering the semantics of data 

types, unlike in this paper, no context dependency of the 

assignment of semantics is considered. 

2.5 Relation to OSI Reference Model 

The semantics of data is also relevant in the context of the OSI 

reference model (ISO/IEC, 1994). The relationship to the 

definition of semantics given in this paper is that in each layer 

of the OSI Reference Model, the layer-specific portions of a 

datagram are processed by functions of an implemented 

protocol. These functions can often be specified as state 

machines and correspond to the system functions used in the 

definition. Obviously, because of its generality, the given 

definition is applicable to any system function, so it is not 

relevant which layer of the OSI reference model it belongs to 

or whether it is part of a communication protocol stack at all. 

However, the definition can also be used well to explain how 

communication protocols semantically interpret the header 

data of a datagram relevant to them. The user data of a 

datagram is ultimately interpreted in the same way by the 

application located above the communication stack. 

2.6 Comparison of related concepts with proposed definition 

Table 1 summarizes the aforementioned relations of selected 

concepts to the semantics definition proposed herein. Thereby 

key similarities and differences are highlighted. 

Table 1 : Comparison of related concepts 

Concept Similarity Difference 

Knowledge 
Pyramid 

Some layers can be 

mapped directly to the 

proposed definition 

(see chapter 4) 

Some layers 

overlap in their 

meaning and thus 

cannot be 

distinguished 

(see chapter 4) 

Ontologies Intends to define 

semantics of arbitrarily 

complex terms/concepts 

Replaces term 

semantics by other 

terms semantics 

without addressing 

its functional aspect 

Semantics of 
Programs 

Relates semantics to 

mathematical functions 

representing an entities 

behavior 

Does not regard the 

context dependency 

of semantics 

Semantics of 
Data Types 

Relates semantics to 

mathematical functions 

applicable to (sets of) 

characters 

Does not regard the 

context dependency 

of semantics 

OSI 

Reference 

Model 

Proposed definition is 

applicable to any layer of 

the OSI model 

Relies implicitly on 

a similar semantics 

concept without 

explicitly defining 

it 
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3. PREREQUESITES FOR THE FORMAL DEFINITION 

OF THE TERM “SEMANTICS” 

3.1 Systems 

The concept of "system" is decisive in this work. Therefore, 

it should first be formally defined. The definition is a version 

of the definition of a system usual in the system theory 

adapted for the purposes pursued in this work (to be found 

e.g. in (Kilian, 2005)). In general all variables can be vectors. 

Any system can be described as a tupel 𝑆𝑦𝑠 =

(𝑇, 𝑋, 𝑈, 𝑌, 𝑥0, 𝑓) with : 

- Time Structure  = (𝑇, 𝑠𝑢𝑐𝑐) with : 

Successor function  s𝑢𝑐𝑐: 𝑇 → 𝑇,  𝑡′ = 𝑠𝑢𝑐𝑐(𝑡) 

- State set  𝑋 

- Input set 𝑈 

- Output Set  𝑌  

- Initial state  𝑥0 

- System function 𝑓 = (𝑓𝑖𝑛𝑡 , 𝑓𝑒𝑥𝑡) with : 

o 𝑓: 𝑋 ×  𝑈 → 𝑋 ×  𝑌 with : 

(𝑥(𝑡′), 𝑦(𝑡′)) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

o 𝑓𝑖𝑛𝑡: 𝑋 ×  𝑈 → 𝑋 with : 

𝑥(𝑡′) = 𝑓𝑖𝑛𝑡(𝑥(𝑡), 𝑢(𝑡)) 

o 𝑓𝑒𝑥𝑡: 𝑋 ×  𝑈 → 𝑌with : 

y(𝑡′) = 𝑓𝑒𝑥𝑡(𝑥(𝑡), 𝑢(𝑡)) 

For the later definition of the term “semantics” it is introduced 

that the input/output vector is composed of the input/output 

components to be considered (cons) for the assignment of 

semantics to data and the remaining (rest) input/output 

components: 

- 𝑢 = (𝑢𝑐𝑜𝑛𝑠, 𝑢𝑟𝑒𝑠𝑡) 

- 𝑦 = (𝑦𝑐𝑜𝑛𝑠 , 𝑦𝑟𝑒𝑠𝑡) 

3.2 System Setup  

Fig. 5 shows a minimal system architecture consisting of the 

system 𝑆𝑦𝑠𝑆 (S for Self) and the environment interacting with 

it. It depends on the definition of the system boundaries 

whether this environment consists of one, several or all other 

systems participating in the network. For simplification, it is 

assumed that this is one arbitrarily complex environment 

system 𝑆𝑦𝑠𝐸 (E for Environment). The notation for the 

description of the systems 𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠𝐸  corresponds to the 

general system description introduced above. 

 

Fig. 5. Considered System and its Environment. 

In the general case, the interaction behavior of a system is 

characterized by: 

Asynchronicity: A system is not blocked in its overall behavior 

by one specific interaction. 

Non-determinism: External systems (receivers) behave non-

deterministically from the point of view of the system under 

consideration (senders). 

State adhesion: The behavior of a system is stateful. 

Of course, networks of systems are conceivable in which the 

individual systems present themselves differently with regard 

to their interaction behaviour. But the most complex networks 

and those enabling the most possible degree of 

decentralization or autonomy show the above mentioned 

interaction behaviour. 

Here it becomes clear once again that with regard to the 

inputs/outputs a distinction is made between the currently 

considered ones (𝑢𝑐𝑜𝑛𝑠,𝑆, 𝑦𝑐𝑜𝑛𝑠,𝑆, 𝑢𝑐𝑜𝑛𝑠,𝐸, 𝑦𝑐𝑜𝑛𝑠,𝐸) and the 

remaining ones (𝑢𝑟𝑒𝑠𝑡,𝑆, 𝑦𝑟𝑒𝑠𝑡,𝑆, 𝑢𝑟𝑒𝑠𝑡,𝐸, 𝑦𝑟𝑒𝑠𝑡,𝐸). This 

distinction is important because the knowledge of 𝑆𝑦𝑠𝑆 
regarding all interactions of 𝑆𝑦𝑠𝐸  Is always limited to the 

information represented by 𝑢𝑐𝑜𝑛𝑠,𝐸 and 𝑦𝑐𝑜𝑛𝑠,𝐸. 𝑆𝑦𝑠𝑆 generally 

does not know the values of 𝑢𝑟𝑒𝑠𝑡,𝐸  and 𝑦𝑟𝑒𝑠𝑡,𝐸. 𝑆𝑦𝑠𝑆 knows 

however 𝑢𝑟𝑒𝑠𝑡,𝑆 and 𝑦𝑟𝑒𝑠𝑡,𝑆, since it enters the corresponding 

interactions itself. Exactly from this fact results the already 

mentioned non-determinism of all interaction partners. 

Because the interactions unknown to 𝑆𝑦𝑠𝑆 - those which 

𝑆𝑦𝑠𝐸  enters into with other external system participants - lead 

to the fact that the concrete behavior of 𝑆𝑦𝑠𝑆 cannot be 

determined from the point of view of 𝑆𝑦𝑠𝑆. This distinction is 

important later on in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8377



 

 

     

 

4. FORMAL DEFINITION OF THE TERM “SEMANTIC” 

Fig. 6 shows the transition from the traditional “Knowledge 

Pyramid” to the new “Knowledge Flow” proposed here.  

 

Fig. 6. From "knowledge Pyramid" to "Knowledge Flow". 

An essential statement of this model is the recharacterization 

of information - knowledge - action, which are regarded as 

layers in the knowledge pyramid. It seems to be more 

appropriate to describe these components as equally important 

aspects. This no longer implies that these aspects are 

completely sequentially or hierarchically related to each other. 

The components of the knowledge flow, namely symbols, 

data, information, knowledge, action, are the same as in the 

knowledge pyramid. The sequential transition from symbols to 

data is also assumed by adding syntax in the sense of rules for 

the composition of data from elementary symbols. The 

subsequent transition from (unprocessed) data is also regarded 

as a delimitable sequential step. So far this is also in line with 

the LCIM up to and including the level “Syntactic 

Interoperability”. After this transition a (core) semantics is 

assigned to the data in the context of the (data) processing 

(information), this is embedded in a context (knowledge) and 

a decision is derived from it (action), which ultimately leads to 

a result of the processing. However, it is generally not possible 

to sequence these three aspects of the processing. Instead, 

processing of data in general has these three aspects at the 

same time. In addition - in contrast to the aforementioned 

models - precise criteria for the separability of these aspects 

are to be given here in the following. 

The following considerations are valid for any system  𝑆𝑦𝑠𝑆. 

Therefore, no distinction is made between 𝑆𝑦𝑠𝑆 and  𝑆𝑦𝑠𝐸 . 

According to Fig. 5 𝑢𝑐𝑜𝑛𝑠 is regarded as an input of  𝑆𝑦𝑠𝑆. As 

mentioned above, 𝑆𝑦𝑠𝑆 generally receives further inputs, 

which are collectively referred to as 𝑢𝑟𝑒𝑠𝑡. The proposed 

definition for the semantics 𝑆𝑒𝑚 of 𝑢𝑐𝑜𝑛𝑠 from the point of 

view of 𝑆𝑦𝑠𝑆 is: 

SemSys,x(t)(u(t)cons) = 

        {(x(t′), y(t′) )|

x(t′) = fint(x(t), (u(t)cons, u(t)rest)),

y(t′) = fext(x(t), (u(t)cons, u(t)rest)),

u(t)restU

}         (1) 

 

This is a 𝑆𝑦𝑠𝑆 -specific set - called 𝑆𝑒𝑚 - that contains all the 

pairs (𝑥(𝑡′), 𝑦(𝑡′)) that can result from 𝑓𝑖𝑛𝑡 and 𝑓𝑒𝑥𝑡  with any  

𝑢𝑟𝑒𝑠𝑡 and fixed 𝑥(𝑡). 𝑥(𝑡) is fixed, since the assignment of 

semantics to 𝑢𝑐𝑜𝑛𝑠 is to depend on the context, expressed by 

the state 𝑥(𝑡). 𝑢𝑟𝑒𝑠𝑡 is arbitrary, since the semantics of a certain 

input 𝑢𝑐𝑜𝑛𝑠 influences the result of the processing of this input 

without interdependence on the remaining interactions of 

𝑆𝑦𝑠𝑆. 𝑡′ denotes the next time step after 𝑡. With regard to the 

traditional knowledge pyramid, the semantic assignment thus 

defined covers the roles of the levels “information” and 

“knowledge”. With regard to the LCIM, the semantic mapping 

thus defined covers the roles of the levels “Semantic 

Interoperability” and partly “Pragmatic Interoperability”. We 

want to call the context-independent part of semantics “core 

semantics” (CoSe), the context-dependent part we call “side 

semantics” (SiSe). This distinction can be found in various 

other approaches: Linguistics distinguishes between 

denotation and connotation or semantics and pragmatics 

(Bussmann and Lauffer , 2008). 

Ultimately, however, the system 𝑆𝑦𝑠𝑆 should deliver one 

concrete result (𝑥(𝑡′), 𝑦(𝑡′)) instead of a whole set of such 

results. Therefore, in addition the definition of the decision 

𝐷𝑒𝑐 of  𝑆𝑦𝑠𝑆 as reaction to an input 𝑢𝑐𝑜𝑛𝑠 is made: 

DecSys,x(t)(u(t)rest) = 

     {(x(t′), y(t′) )|

x(t′) = fint(x(t), (u(t)cons, u(t)rest)),

y(t′) = fext(x(t), (u(t)cons, u(t)rest)),

u(t)consU

}         (2) 

 

Similar to before, this is a 𝑆𝑦𝑠𝑆 - specific set - called 𝐷𝑒𝑐 - that 

contains all the pairs (𝑥(𝑡′), 𝑦(𝑡′))  that can result from 𝑓𝑖𝑛𝑡 

and 𝑓𝑒𝑥𝑡  at any 𝑢𝑐𝑜𝑛𝑠 and fixed 𝑥(𝑡). 𝑥(𝑡) is fixed, because this 

decision should depend on the context, expressed by the state 

𝑥(𝑡). 𝑢𝑐𝑜𝑛𝑠 is arbitrary, because the use of the freedom of 

decision regarding the reaction to a certain input 𝑢𝑐𝑜𝑛𝑠 depends 

only on the remaining interactions 𝑢𝑟𝑒𝑠𝑡 of 𝑆𝑦𝑠𝑆. 𝑡′ denotes the 

next time step after 𝑡.With regard to the traditional knowledge 

pyramid, the decision making defined in this way is congruent 

with the role of the “action” level. With regard to the LCIM, 

the decision making thus defined covers the roles of all levels 

starting from “Pragmatic Interoperability”. For the levels 

above, LCIM does not provide any clearly defined - i.e. as 

formal as possible - criteria for distinguishing them from each 

other. 

The result (𝑥(𝑡′), 𝑦(𝑡′)) realized by 𝑆𝑦𝑠𝑆 in response to 

receiving the input 𝑢𝑐𝑜𝑛𝑠 is simply the intersection 

(𝑥(𝑡′), 𝑦(𝑡′))  = S𝑒𝑚 ∩  𝐷𝑒𝑐. For deterministic system 

functions 𝑓, the cardinality of the set S𝑒𝑚 ∩  𝐷𝑒𝑐 equals 1 

(𝑥(𝑡′), 𝑦(𝑡′)). This determinism has to be distinguished from 

the non-deterministic interaction behavior, which results from 

incomplete knowledge regarding the interaction partner. As 

already mentioned, nothing restrictive can be said about the 

order of the calculation of 𝑆𝑒𝑚 and 𝐷𝑒𝑐, i.e. they are aspects, 

not layers. 

This realized result corresponds exactly to the result of the 

system function: S𝑒𝑚 ∩  𝐷𝑒𝑐 = 𝑓(𝑥(𝑡), (𝑢(𝑡)𝑐𝑜𝑛𝑠 , 𝑢(𝑡)𝑟𝑒𝑠𝑡)) 

. It is now possible to determine the system behavior by linking 

semantics and decision instead of using the system function. 
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This serves at the same time as validation of the given 

definitions for semantics and decision. 

A simple equivalence criterion for determining the equality of 

semantics of two inputs 𝑢1 and 𝑢2 is the verification of the 

equation 𝑆𝑒𝑚𝑆𝑦𝑠,𝑥(𝑢1) = 𝑆𝑒𝑚𝑆𝑦𝑠,𝑥(𝑢2). The equivalence 

relation is the set of all pairs of 𝑢𝑈 that have the same 

meaning, thus:  Ä𝑅𝑈 × 𝑈. The equivalence class of an 

element 𝑢1 𝑈 is: [𝑢1] = {𝑢𝑈 |𝑢1~𝑢}. But these 

equivalence considerations are not necessary to define the 

meaning of one input 𝑈. 

It is evident that this definition is applicable to any system. 

Because the underlying system concept does not make any 

restrictions regarding the characterization of the system 

function. Thus, for example, it is irrelevant whether the system 

is a continuous system described by differential equations or a 

discrete system described by state machines. 

The formal definitions will now be supported by a few more 

easily understandable statements: First of all, the idea is that 

each piece of data in itself is completely semanticless. Only 

when data is processed by the recipient the semantics is 

assigned, i.e. data gets that meaning that the recipient attaches 

to it. The semantics of an input from the recipient's point of 

view is therefore what “happens” 𝑆𝑒𝑚𝑆𝑦𝑠(𝑢𝑐𝑜𝑛𝑠(𝑡))-related 

after the input has been received by the recipient. “Happen” 

means: transition to (𝑥(𝑡′), 𝑦(𝑡′)), in other words: execution 

of 𝑓. The 𝑆𝑒𝑚𝑆𝑦𝑠(𝑢𝑐𝑜𝑛𝑠(𝑡))-related part of (𝑥(𝑡′), 𝑦(𝑡′)) 

aggregates the semantics assigning processing of the input. 

The semantics of an output from the sender's point of view, on 

the other hand, is the intended meaning, that is, the semantics 

that is assigned by the receiver according to the sender's 

expectation. Of course, this expectation does not have to apply. 

In this case, it is a misunderstanding in colloquial terms. This 

model is also easily transferable to human interaction: Sender 

and receiver exchange data. These data processing units are 

here 2 people. If input data arrives at the recipient, e.g. the 

reading of a character string, a processing occurs as a result. 

For example, the recipient imagines the real object designated 

by this character string visually, associates certain emotions 

with this idea and possibly derives from it a behavior that can 

be observed from outside. 

5.  EXAMPLE 

Fig.7. shows an example network of interacting systems, based 

on Fig. 5. In addition, the 𝑢𝑟𝑒𝑠𝑡/𝑦𝑟𝑒𝑠𝑡  processing system 

𝑆𝑦𝑠3𝑟𝑑 is shown in grey.  

 

Fig. 7. Example of interacting systems. 

 

In the example, the focus is on the semantic-assigning system  

with 𝑆𝑦𝑠𝐸 = (𝑇, 𝑋, 𝑈, 𝑌, 𝑥0, 𝑓) with: 

 

𝑋 = {𝑟𝑒𝑎𝑑𝑦, 𝑏𝑢𝑠𝑦} 

 

𝑈 = {𝑂𝑓𝑓𝑒𝑟𝐴, 𝑂𝑓𝑓𝑒𝑟𝐵} 
 

𝑌 = {𝑂𝑓𝑓𝑒𝑟𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂} 

 

𝑥0 = 𝑟𝑒𝑎𝑑𝑦 

Table 2: System Function 𝑓𝑆𝑦𝑠𝐸
. 

xE(t) ucons,E(t) urest,E(t) ycons,E(t) yrest,E(t) xE(t′) 

ready OfferA OfferA OfferNIO OfferNIO busy 

ready OfferA OfferA OfferNIO OfferIO busy 

ready OfferB OfferB OfferIO OfferNIO busy 

ready OfferB OfferB OfferNIO OfferIO busy 

The time structure  𝑇 is here regarded as arbitrary, because it 

has no relevance for the core statements of the example. 

𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠3𝑟𝑑 can send the input characters 𝑂𝑓𝑓𝑒𝑟𝐴  

and 𝑂𝑓𝑓𝑒𝑟𝐵 , which can be processed by 𝑆𝑦𝑠𝐸  and each 

represent a rather bad or rather good contract offer. 𝑆𝑦𝑠𝐸  can 

respond with contract rejection or contract acceptance, which 

is communicated to the sender by the output characters 

𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂 (for bad 𝑂𝑓𝑓𝑒𝑟𝐴) or 𝑂𝑓𝑓𝑒𝑟𝐼𝑂 (for good 

𝑂𝑓𝑓𝑒𝑟𝐵). In the example the capacity of contract acceptance 

by 𝑆𝑦𝑠𝐸  is limited to 1, thus 𝑆𝑦𝑠3𝑟𝑑 is given higher priority if 

both interaction partners 𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠3𝑟𝑑 are offering 

𝑂𝑓𝑓𝑒𝑟𝐵, which is considered to be a good contract offer. In 

the concrete example 𝑆𝑦𝑠𝑆 sends the character 𝑢𝑐𝑜𝑛𝑠,𝐸 =

𝑂𝑓𝑓𝑒𝑟𝐵 and 𝑆𝑦𝑠3𝑟𝑑 the character 𝑢𝑟𝑒𝑠𝑡,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝐵.  𝑆𝑦𝑠𝐸  

responds to this with 𝑦𝑐𝑜𝑛𝑠,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂 and 𝑦𝑟𝑒𝑠𝑡,𝐸 =

𝑂𝑓𝑓𝑒𝑟𝐼𝑂 according to the system function 𝑓𝑆𝑦𝑠𝐸
, since 𝑆𝑦𝑠3𝑟𝑑 

is preferred for contract acceptance. 

As an example, the semantics 𝑆𝑒𝑚 of the character 𝑦𝑐𝑜𝑛𝑠,𝑆 =

𝑢𝑐𝑜𝑛𝑠,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝐵  sent by 𝑆𝑦𝑠𝑆 is considered. According to 

the previously introduced formal definition of semantics, this 

corresponds to the set of all possible results after processing of 

this character by 𝑆𝑦𝑠𝐸 with arbitrary influence by 𝑆𝑦𝑠3𝑟𝑑 : 

𝑆𝑒𝑚𝑆𝑦𝑠𝐸,𝑟𝑒𝑎𝑑𝑦(𝑂𝑓𝑓𝑒𝑟𝐵) = 

{(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂)), 

(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂))} 
 

It should be noted that the reply from 𝑆𝑦𝑠𝐸  to 𝑆𝑦𝑠𝑆 depends on 

the contractual offer made by 𝑆𝑦𝑠3𝑟𝑑 , as 𝑆𝑦𝑠3𝑟𝑑 is considered 

to be a preferred contracting party. 

𝑆𝑦𝑠𝐸 's decision freedom 𝐷𝑒𝑐 regarding the decision 

concerning the offer made by 𝑆𝑦𝑠𝑆 was defined as the amount 

of all processing results of 𝑢𝑟𝑒𝑠𝑡,𝑆 = 𝑂𝑓𝑓𝑒𝑟𝐵 under any 

influence by 𝑆𝑦𝑠𝑆 : 

𝐷𝑒𝑐𝑆𝑦𝑠𝐸,𝑟𝑒𝑎𝑑𝑦(𝑂𝑓𝑓𝑒𝑟𝐵) ={(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂))} 

The intersection of semantics 𝑆𝑒𝑚 and decision 𝐷𝑒𝑐 finally 

provides the concrete result of this interaction between 𝑆𝑦𝑠𝑆, 

𝑆𝑦𝑠𝐸   and 𝑆𝑦𝑠3𝑟𝑑 as specified in Fig. 7: 
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S𝑒𝑚 ∩  𝐷𝑒𝑐=((𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂))) 

Thus, the concrete system behaviour of 𝑆𝑦𝑠𝐸  can be explained 

as a conjunction between the semantics assigned to the input 

characters and the decision taken thereon regarding the 

acceptance or rejection of the contract. 

6. SUMMARY AND OUTLOOK 

The paper provides a formal definition of the term 

“semantics”. At the level of understanding, at least as far as 

terminology is concerned, this view of the concept of 

semantics is, according to our findings, currently not 

established. Instead, there are a number of intuitively 

motivated approaches that intend to specify the concept of 

semantics, such as the knowledge pyramid or the LCIM. The 

paper presented these approaches and critically placed them in 

the context of the proposed formal definition. It serves as an 

invitation to a scientific discourse on a precise definition of the 

term “semantics”. Definitions which rely on informal intuition 

only and do not provide precise criteria are likely to be of little 

value if one wishes to derive something concretely helpful 

from them for future practical work. This includes the 

definition of a reference model for the interaction semantics of 

network systems (Reich and Schröder, 2017) , which forms the 

basis for understanding the question of semantic 

interoperability - as the key to the design of future IIoT devices 

and cyber-physical systems. Similarly, standards that verbally 

specify the semantics of domain vocabulary do not meet 

criteria such as "uniqueness" or "machine interpretability". 

Instead, the semantics-assigning system function of the 

receiver system under consideration, which processes the 

received character, would have to be specified. In many 

practical cases, this is extremely time-consuming. Therefore, 

semantics cannot always be reasonably defined in this way. 

However, existing standards are often subject to restrictions 

regarding "machine interpretability". In order to increase this, 

the higher effort in accordance with the semantics definition 

given in this paper may be worthwhile. A few standardization 

projects are already implementing the ideas shown, e.g. 

VDI/VDE Guideline 2193/2: Language for I4.0 components - 

Interaction protocol for bidding procedures [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

Aamodt, A. and Nygård, M. (1995). ‘Different roles and 

mutual dependencies of data, information, and knowledge 

- An AI perspective on their integration’, Data and 

Knowledge Engineering, 16(3), pp. 191–222. doi: 

10.1016/0169-023X(95)00017-M. 

Ariel, M. (2012). Defining Pragmatics. Cambridge University 

Press. 

Brachman, R. & Levesque, H. (2004). Knowledge 

Representation and Reasoning. 1st Edition ed. s.l.:s.n. 

Dale, N. B. (1996). Abstract data types: Specifications, 

implementations, and applications. D.C. Heath. 

Hildebrandt, C. et al. (2018). ‘Semantic modeling for 

collaboration and cooperation of systems in the 

production domain’, IEEE International Conference on 

Emerging Technologies and Factory Automation, ETFA, 

pp. 1–8. doi: 10.1109/ETFA.2017.8247585. 

ISO/IEC. (1994). ISO/IEC 7498-1 - Information technology — 

Open Systems Interconnection — Basic Reference Model: 

The Basic Model. 

Kilian, C. (2005). Modern Control Theory. Delmar Cengage 

Learning. 

Nielson, H. R. and Nielson, F. (2007). Semantics with 

Applications: An Appetizer. Springer-Verlag London. 

Nobel, J. et Al. (2018). Abstract and Concrete Data Types vs 

Object Capabilities. In: Müller, P.; Schaefer, I. (eds) 

Principled Software Development. Springer, Cham. 

Platform Industrie 4.0 (PI4.0) (2016). ‘Aspects of the Research 

Roadmap in Application Scenarios’, Platform Industrie 

4.0, pp. 3, 10–11. 

Platform Industrie 4.0 (PI4.0) (2018). ‘The Structure of the 

Administration Shell: Trilateral Perspective from France, 

Italy and Germany’, p. 64. Available at: 

https://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-

2018-trilaterale-coop.pdf?__blob=publicationFile&v=5. 

Reich, J. and Schröder, T. (2017). ‘A reference model for 

interaction semantics’. Available at: 

http://arxiv.org/abs/1801.04185. 

Studer, R., Benjamins, V. R. and Fensel, D. (1998). 

‘Knowledge engineering: Principles and methods’, Data 

& Knowledge Engineering, 25(1), pp. 161–197. doi: 

https://doi.org/10.1016/S0169-023X(97)00056-6. 

Stump, A. (2013). Programming Language Foundations. John 

Wiley & Sons. 

 Turnitsa, C. (2005). Extending the levels of conceptual 

interoperability model. Proceedings IEEE summer 

computer simulation conference, IEEE CS Press. 

VDI/VDE. (2019). Guideline 2193/2 - Language for I4.0 

components - Interaction protocol for bidding 

procedures. 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8380


