

Formal Definition of the Term “Semantics” as a Foundation for Semantic

Interoperability in the Industrial Internet of Things

Tizian Schröder * Christian Diedrich *

*Institute for Automation Engineering, Otto-von-Guericke-University, Universitätsplatz 2,

Magdeburg, Germany (e-mail :{tizian.schroeder, christian.diedrich}@ovgu.de).

Abstract: Semantic interoperability is seen as the key to realize the ideas of the Industrial Internet of Things

(IIoT). In order to equip technical systems with such a capability, a precise definition of the term

“semantics” is needed. Complex IIoT devices can only be developed properly on a formal foundation.

Existing approaches that intend to specify the term “semantics” are often more intuitively motivated. These

include, for example, the knowledge pyramid or the Levels of Conceptual Interoperability Model (LCIM).

The paper provides a formal definition of the term “semantics” and relates these existing approaches

critically to the proposed definition.

Keywords: Semantics, Semantic Interoperability, Network of Interacting Systems, Industrial Internet of

Things (IIoT), Knowledge Pyramid, Levels of Conceptual Interoperability Model (LCIM), Ontologies.

1. INTRODUCTION

The vision of the Industrial Internet of Things (IIoT) envisages

that a large number of decentralized systems form a

decentralized network of systems in which autonomous,

intelligent entities act for the purpose of achieving their

individual goals. The most basic motivation of this effort can

be seen in making the enormous complexity of networks of

systems, which is already enormous today and will potentially

continue to grow in the future, more manageable by moving

from a centralized approach based on the automation pyramid

to a decentralized approach. A proper interaction of

information processing systems requires semantic

interoperability as a crucial prerequisite for the

implementation of the Industrial Internet of Things. Following

the idea of the cyber-physical (production) systems (CP(P)S),

these “Things” as physical systems are extended by a digital

representation in order to integrate the physical world into the

information world (digitization). This digital representation is

an information processing system, in the following only called

“system” because the focus lies on these information

processing entities. Fig. 1 illustrates the intended purpose of

such an (information processing) system.

Fig. 1. Digitization by adding information processing system

to physical system.

Fig. 2 schematically shows a simple network of systems in

which individual systems interact as decentralized entities.

Fig. 2. Network Of interacting systems

The paper provides a formal definition of the term “semantics”

which helps to further develop approaches for the semantic

interoperability within those networks of systems. At the level

of understanding, at least as far as terminology is concerned,

this view of “semantics” is currently not established according

to our findings. We regard these fundamental considerations

as essential in order to solve further problems in practice-

oriented research activities in the future. It is not yet about their

application to concrete problems, but about a proposal for a

formally grounded perspective on the problem of “semantics”

and the critical examination of the currently pursued

approaches of the knowledge pyramid or the Levels of

Conceptual Interoperability Model (LCIM) as well as

ontologies. The paper takes a fundamental view and serves

primarily to stimulate a scientific discourse on a precise

definition of the term “semantics”.

2. FUNDAMENTALS AND CRITICISM

The semantics of data plays an important role in many efforts

to advance digitization (PI4.0, 2016; PI4.0 2018). Everyone

has an intuitive idea of what the meaning of semantics is. This

intuitive notion of semantics has produced a number of models

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8374

that intend to refine the concept of semantics. These include,

for example, the knowledge pyramid or the Levels of

Conceptual Interoperability Model (LCIM) (Turnitsa, 2005).

However, the implications of these models are sometimes

rather weak or, on closer inspection, erroneous. The

knowledge pyramid is presented below as a representative of

a class of similar models. These models share the claim to

provide a definition for semantics and related terms. In

addition, further concepts related to formal semantics are

presented and related to the definition proposed here.

2.1 Knowledge Pyramid

The transition from data up to knowledge and the actions that

can be derived from it is vividly illustrated in the knowledge

pyramid after Aamodt and Nygard (Aamodt and Nygård,

1995) (Fig. 3). The lowest level (level 1) represents the set of

symbols from which data can be composed according to a -

possibly formal - syntax (level 2). This corresponds to the

definition of formal languages as a set of words formed from

an alphabet as a set of permitted symbols. As soon as data

receives a semantics, i.e. its meaning is determined, the

transition to information takes place (level 3). According to

this model, the crosslinking of several pieces of information

results in knowledge (level 4). This crosslinking is also seen

as an addition of pragmatics. On this basis, actions can be

derived – in other words: decisions can be made (level 5). The

transitions between the levels therefore take place according to

the triad syntax, semantics and pragmatics, which are also

represented in the so-called semiotic triangle.

Fig. 3. knowledge Pyramid.

By assigning semantics to data, information is created.

Knowledge results from the crosslinking of information. We

see actions as information or knowledge in combination with

an objective, which is represented as information or

knowledge too. The transition from information to knowledge

therefore takes place through crosslinking. This is vague,

because depending on the perspective, what is regarded as

elementary information from one perspective may well

contain a substructure - i.e. a crosslinking of information -

from another perspective. The transition from knowledge to

action takes place by assigning an objective, or the intention,

which determines which external effect must unfold in order

to fulfil a certain purpose. This objective exists itself in the

form of information or knowledge and therefore does not form

a category of its own. These explanations support our view that

the distinction made by the knowledge pyramid between

information, knowledge and action is a phenomenological

distinction, i.e. one that cannot be clearly identified from a

formal perspective. If the principles of the knowledge pyramid

are to be used for the realization of semantic interoperability -

i.e. including the actual implementation and not only rough

conceptual ideas - these must be sufficiently formalized.

2.2 Ontologies

Another widespread answer in the search for the definition of

semantics is the concept of ontologies as one of several

approaches for knowledge representation(Brachman and

Levesque, 2004; Hildebrandt et al., 2017) Before knowledge

can be processed by a system, it must be made available to it

in a form of representation. For such forms of representation,

a wide variety of approaches exist that differ in their

expressiveness, e.g. glossaries, taxonomies, classifications or

semantic networks/ontologies. The result of the application of

such approaches are models that represent knowledge of one

or more domains. Concepts and relations between these form

the building blocks of an ontology which represent the

vocabulary of one or more domains. A much quoted definition

of the term comes from Rudi Studer, who - referring to

definitions by Gruber and Borst - regards an ontology as a

"formal, explicit specification of a shared conceptualization"

(Studer, Benjamins and Fensel, 1998). Ontologies are

described e.g. with RDF with tuples of the form <subject>

<predicate> <object>. In RDF classes (concept), instances

(individual), relations (object property) or literals (datatype

property) can be represented. In this way, a graph is created

whose nodes and edges can be uniquely identified, e.g. via a

URI. The (automated) tracking of the edges makes it possible

to browse the shared domain vocabulary. A simple example is

shown in Fig. 4.

Fig. 4. Example of a simple ontology.

The problem is that ontologies, as representatives of

approaches for knowledge representation, suggest that in order

to make semantics of data machine-processable, they must be

“described”. This means that semantics can be described and

thus processed. This leads to the following circular conclusion:

If the semantics of data is itself described by other data, who

or what exactly describes the semantics of this description? In

order to answer the question of what semantics of a term is,

ontologies answer with a substitute description of this term.

This is always continued without ever answering what

“semantics” really means. Ontologies are therefore not an

answer to the question “What is semantics?”, but merely a

possibility to replace the semantics of one term with the

semantics of other terms. However, we do not want to make

replacements, but define the term of “semantics” itself.

2.3 Semantics of Programs

Theoretical computer science defines the concept of formal

semantics. Its purpose is to make the meaning of programs

specified using formal languages formally describable.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8375

In general, a semantic function is constructed as a mapping of

a program to the function calculated by this program (Stump,

2013):

𝐶: 𝑃 → 𝑓

𝐶 denotes the semantic function, 𝑃 the set of syntactically

correct programs, 𝑓: 𝛴 → 𝛴 the function calculated by the

program and 𝛴 the set of possible memory allocations.

There are several such formal semantics which differ in the

mathematical representation of this semantic function, such as

axiomatic semantics, denotational semantics and operational

semantics (Stump, 2013; Nielson and Nielson, 2007).

This view of the semantics of programs established in

theoretical computer science is similar to the definition of

semantics given in this paper. Both definitions explain

semantics through an effect realized by a function associated

with semantic-related entities.

However, there is a difference between these entities and their

association with this function. On the one hand, the formal

semantics of programs does not address the meaning of atomic

characters, but the meaning of a program resulting from the

composition of several characters. On the other hand, the

semantics of the program is represented directly by this

function. In the definition given in this paper, however, this

function is the system function of any system that accepts a

character as a function argument and assigns it the calculable

function value as a representation of its semantics. Here the

semantics is represented by a single function value instead of

by a whole function. In addition, this paper also considers the

context dependency of the assignment of semantics to data,

which is not the case with the aforementioned concepts.

2.4 Semantics of Data Types

In computer science, a data type is the combination of sets of

permitted values for instances of that data type and the

operations applicable to that data (Dale, 1996). It is defined by

a signature. Such a signature initially defines only the names

of the value sets and operations. If, in addition, semantics is

specified by defining the interpretation of these value sets and

operations, a data type in a more specific sense results (Noble

et al., 2018).

Obviously, the term semantics also plays a role here. However,

this refers to the meaning of a whole class of characters. This

class of characters is defined by the semantics of the value sets.

Its semantics is then specified for the entire class of these

characters by the semantics of the operations applicable to it.

Therefore, the concept for defining the semantics of data types

serves a different purpose despite fundamental similarities to

the definition of semantics given in this paper. Instead of

defining a definition for the semantics of individual characters,

i.e. concrete instances of a data type, the semantics of an entire

class of such characters is defined.

The similarity is that in both concepts the functions or

operations applied to the characters or classes of characters are

relevant. In the definition for semantics given here, these are

system functions of data processing systems. In order to define

the semantics of individual characters, the concrete application

of such a function to characters and the resulting calculated

function value must be considered instead of merely the

general applicability of an operation to the corresponding data

type. In addition, when considering the semantics of data

types, unlike in this paper, no context dependency of the

assignment of semantics is considered.

2.5 Relation to OSI Reference Model

The semantics of data is also relevant in the context of the OSI

reference model (ISO/IEC, 1994). The relationship to the

definition of semantics given in this paper is that in each layer

of the OSI Reference Model, the layer-specific portions of a

datagram are processed by functions of an implemented

protocol. These functions can often be specified as state

machines and correspond to the system functions used in the

definition. Obviously, because of its generality, the given

definition is applicable to any system function, so it is not

relevant which layer of the OSI reference model it belongs to

or whether it is part of a communication protocol stack at all.

However, the definition can also be used well to explain how

communication protocols semantically interpret the header

data of a datagram relevant to them. The user data of a

datagram is ultimately interpreted in the same way by the

application located above the communication stack.

2.6 Comparison of related concepts with proposed definition

Table 1 summarizes the aforementioned relations of selected

concepts to the semantics definition proposed herein. Thereby

key similarities and differences are highlighted.

Table 1 : Comparison of related concepts

Concept Similarity Difference

Knowledge
Pyramid

Some layers can be

mapped directly to the

proposed definition

(see chapter 4)

Some layers

overlap in their

meaning and thus

cannot be

distinguished

(see chapter 4)

Ontologies Intends to define

semantics of arbitrarily

complex terms/concepts

Replaces term

semantics by other

terms semantics

without addressing

its functional aspect

Semantics of
Programs

Relates semantics to

mathematical functions

representing an entities

behavior

Does not regard the

context dependency

of semantics

Semantics of
Data Types

Relates semantics to

mathematical functions

applicable to (sets of)

characters

Does not regard the

context dependency

of semantics

OSI

Reference

Model

Proposed definition is

applicable to any layer of

the OSI model

Relies implicitly on

a similar semantics

concept without

explicitly defining

it

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8376

3. PREREQUESITES FOR THE FORMAL DEFINITION

OF THE TERM “SEMANTICS”

3.1 Systems

The concept of "system" is decisive in this work. Therefore,

it should first be formally defined. The definition is a version

of the definition of a system usual in the system theory

adapted for the purposes pursued in this work (to be found

e.g. in (Kilian, 2005)). In general all variables can be vectors.

Any system can be described as a tupel 𝑆𝑦𝑠 =

(𝑇, 𝑋, 𝑈, 𝑌, 𝑥0, 𝑓) with :

- Time Structure = (𝑇, 𝑠𝑢𝑐𝑐) with :

Successor function s𝑢𝑐𝑐: 𝑇 → 𝑇, 𝑡′ = 𝑠𝑢𝑐𝑐(𝑡)

- State set 𝑋

- Input set 𝑈

- Output Set 𝑌

- Initial state 𝑥0

- System function 𝑓 = (𝑓𝑖𝑛𝑡 , 𝑓𝑒𝑥𝑡) with :

o 𝑓: 𝑋 × 𝑈 → 𝑋 × 𝑌 with :

(𝑥(𝑡′), 𝑦(𝑡′)) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

o 𝑓𝑖𝑛𝑡: 𝑋 × 𝑈 → 𝑋 with :

𝑥(𝑡′) = 𝑓𝑖𝑛𝑡(𝑥(𝑡), 𝑢(𝑡))

o 𝑓𝑒𝑥𝑡: 𝑋 × 𝑈 → 𝑌with :

y(𝑡′) = 𝑓𝑒𝑥𝑡(𝑥(𝑡), 𝑢(𝑡))

For the later definition of the term “semantics” it is introduced

that the input/output vector is composed of the input/output

components to be considered (cons) for the assignment of

semantics to data and the remaining (rest) input/output

components:

- 𝑢 = (𝑢𝑐𝑜𝑛𝑠, 𝑢𝑟𝑒𝑠𝑡)

- 𝑦 = (𝑦𝑐𝑜𝑛𝑠 , 𝑦𝑟𝑒𝑠𝑡)

3.2 System Setup

Fig. 5 shows a minimal system architecture consisting of the

system 𝑆𝑦𝑠𝑆 (S for Self) and the environment interacting with

it. It depends on the definition of the system boundaries

whether this environment consists of one, several or all other

systems participating in the network. For simplification, it is

assumed that this is one arbitrarily complex environment

system 𝑆𝑦𝑠𝐸 (E for Environment). The notation for the

description of the systems 𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠𝐸 corresponds to the

general system description introduced above.

Fig. 5. Considered System and its Environment.

In the general case, the interaction behavior of a system is

characterized by:

Asynchronicity: A system is not blocked in its overall behavior

by one specific interaction.

Non-determinism: External systems (receivers) behave non-

deterministically from the point of view of the system under

consideration (senders).

State adhesion: The behavior of a system is stateful.

Of course, networks of systems are conceivable in which the

individual systems present themselves differently with regard

to their interaction behaviour. But the most complex networks

and those enabling the most possible degree of

decentralization or autonomy show the above mentioned

interaction behaviour.

Here it becomes clear once again that with regard to the

inputs/outputs a distinction is made between the currently

considered ones (𝑢𝑐𝑜𝑛𝑠,𝑆, 𝑦𝑐𝑜𝑛𝑠,𝑆, 𝑢𝑐𝑜𝑛𝑠,𝐸, 𝑦𝑐𝑜𝑛𝑠,𝐸) and the

remaining ones (𝑢𝑟𝑒𝑠𝑡,𝑆, 𝑦𝑟𝑒𝑠𝑡,𝑆, 𝑢𝑟𝑒𝑠𝑡,𝐸, 𝑦𝑟𝑒𝑠𝑡,𝐸). This

distinction is important because the knowledge of 𝑆𝑦𝑠𝑆
regarding all interactions of 𝑆𝑦𝑠𝐸 Is always limited to the

information represented by 𝑢𝑐𝑜𝑛𝑠,𝐸 and 𝑦𝑐𝑜𝑛𝑠,𝐸. 𝑆𝑦𝑠𝑆 generally

does not know the values of 𝑢𝑟𝑒𝑠𝑡,𝐸 and 𝑦𝑟𝑒𝑠𝑡,𝐸. 𝑆𝑦𝑠𝑆 knows

however 𝑢𝑟𝑒𝑠𝑡,𝑆 and 𝑦𝑟𝑒𝑠𝑡,𝑆, since it enters the corresponding

interactions itself. Exactly from this fact results the already

mentioned non-determinism of all interaction partners.

Because the interactions unknown to 𝑆𝑦𝑠𝑆 - those which

𝑆𝑦𝑠𝐸 enters into with other external system participants - lead

to the fact that the concrete behavior of 𝑆𝑦𝑠𝑆 cannot be

determined from the point of view of 𝑆𝑦𝑠𝑆. This distinction is

important later on in this paper.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8377

4. FORMAL DEFINITION OF THE TERM “SEMANTIC”

Fig. 6 shows the transition from the traditional “Knowledge

Pyramid” to the new “Knowledge Flow” proposed here.

Fig. 6. From "knowledge Pyramid" to "Knowledge Flow".

An essential statement of this model is the recharacterization

of information - knowledge - action, which are regarded as

layers in the knowledge pyramid. It seems to be more

appropriate to describe these components as equally important

aspects. This no longer implies that these aspects are

completely sequentially or hierarchically related to each other.

The components of the knowledge flow, namely symbols,

data, information, knowledge, action, are the same as in the

knowledge pyramid. The sequential transition from symbols to

data is also assumed by adding syntax in the sense of rules for

the composition of data from elementary symbols. The

subsequent transition from (unprocessed) data is also regarded

as a delimitable sequential step. So far this is also in line with

the LCIM up to and including the level “Syntactic

Interoperability”. After this transition a (core) semantics is

assigned to the data in the context of the (data) processing

(information), this is embedded in a context (knowledge) and

a decision is derived from it (action), which ultimately leads to

a result of the processing. However, it is generally not possible

to sequence these three aspects of the processing. Instead,

processing of data in general has these three aspects at the

same time. In addition - in contrast to the aforementioned

models - precise criteria for the separability of these aspects

are to be given here in the following.

The following considerations are valid for any system 𝑆𝑦𝑠𝑆.

Therefore, no distinction is made between 𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠𝐸 .

According to Fig. 5 𝑢𝑐𝑜𝑛𝑠 is regarded as an input of 𝑆𝑦𝑠𝑆. As

mentioned above, 𝑆𝑦𝑠𝑆 generally receives further inputs,

which are collectively referred to as 𝑢𝑟𝑒𝑠𝑡. The proposed

definition for the semantics 𝑆𝑒𝑚 of 𝑢𝑐𝑜𝑛𝑠 from the point of

view of 𝑆𝑦𝑠𝑆 is:

SemSys,x(t)(u(t)cons) =

 {(x(t′), y(t′))|

x(t′) = fint(x(t), (u(t)cons, u(t)rest)),

y(t′) = fext(x(t), (u(t)cons, u(t)rest)),

u(t)restU

} (1)

This is a 𝑆𝑦𝑠𝑆 -specific set - called 𝑆𝑒𝑚 - that contains all the

pairs (𝑥(𝑡′), 𝑦(𝑡′)) that can result from 𝑓𝑖𝑛𝑡 and 𝑓𝑒𝑥𝑡 with any

𝑢𝑟𝑒𝑠𝑡 and fixed 𝑥(𝑡). 𝑥(𝑡) is fixed, since the assignment of

semantics to 𝑢𝑐𝑜𝑛𝑠 is to depend on the context, expressed by

the state 𝑥(𝑡). 𝑢𝑟𝑒𝑠𝑡 is arbitrary, since the semantics of a certain

input 𝑢𝑐𝑜𝑛𝑠 influences the result of the processing of this input

without interdependence on the remaining interactions of

𝑆𝑦𝑠𝑆. 𝑡′ denotes the next time step after 𝑡. With regard to the

traditional knowledge pyramid, the semantic assignment thus

defined covers the roles of the levels “information” and

“knowledge”. With regard to the LCIM, the semantic mapping

thus defined covers the roles of the levels “Semantic

Interoperability” and partly “Pragmatic Interoperability”. We

want to call the context-independent part of semantics “core

semantics” (CoSe), the context-dependent part we call “side

semantics” (SiSe). This distinction can be found in various

other approaches: Linguistics distinguishes between

denotation and connotation or semantics and pragmatics

(Bussmann and Lauffer , 2008).

Ultimately, however, the system 𝑆𝑦𝑠𝑆 should deliver one

concrete result (𝑥(𝑡′), 𝑦(𝑡′)) instead of a whole set of such

results. Therefore, in addition the definition of the decision

𝐷𝑒𝑐 of 𝑆𝑦𝑠𝑆 as reaction to an input 𝑢𝑐𝑜𝑛𝑠 is made:

DecSys,x(t)(u(t)rest) =

 {(x(t′), y(t′))|

x(t′) = fint(x(t), (u(t)cons, u(t)rest)),

y(t′) = fext(x(t), (u(t)cons, u(t)rest)),

u(t)consU

} (2)

Similar to before, this is a 𝑆𝑦𝑠𝑆 - specific set - called 𝐷𝑒𝑐 - that

contains all the pairs (𝑥(𝑡′), 𝑦(𝑡′)) that can result from 𝑓𝑖𝑛𝑡

and 𝑓𝑒𝑥𝑡 at any 𝑢𝑐𝑜𝑛𝑠 and fixed 𝑥(𝑡). 𝑥(𝑡) is fixed, because this

decision should depend on the context, expressed by the state

𝑥(𝑡). 𝑢𝑐𝑜𝑛𝑠 is arbitrary, because the use of the freedom of

decision regarding the reaction to a certain input 𝑢𝑐𝑜𝑛𝑠 depends

only on the remaining interactions 𝑢𝑟𝑒𝑠𝑡 of 𝑆𝑦𝑠𝑆. 𝑡′ denotes the

next time step after 𝑡.With regard to the traditional knowledge

pyramid, the decision making defined in this way is congruent

with the role of the “action” level. With regard to the LCIM,

the decision making thus defined covers the roles of all levels

starting from “Pragmatic Interoperability”. For the levels

above, LCIM does not provide any clearly defined - i.e. as

formal as possible - criteria for distinguishing them from each

other.

The result (𝑥(𝑡′), 𝑦(𝑡′)) realized by 𝑆𝑦𝑠𝑆 in response to

receiving the input 𝑢𝑐𝑜𝑛𝑠 is simply the intersection

(𝑥(𝑡′), 𝑦(𝑡′)) = S𝑒𝑚 ∩ 𝐷𝑒𝑐. For deterministic system

functions 𝑓, the cardinality of the set S𝑒𝑚 ∩ 𝐷𝑒𝑐 equals 1

(𝑥(𝑡′), 𝑦(𝑡′)). This determinism has to be distinguished from

the non-deterministic interaction behavior, which results from

incomplete knowledge regarding the interaction partner. As

already mentioned, nothing restrictive can be said about the

order of the calculation of 𝑆𝑒𝑚 and 𝐷𝑒𝑐, i.e. they are aspects,

not layers.

This realized result corresponds exactly to the result of the

system function: S𝑒𝑚 ∩ 𝐷𝑒𝑐 = 𝑓(𝑥(𝑡), (𝑢(𝑡)𝑐𝑜𝑛𝑠 , 𝑢(𝑡)𝑟𝑒𝑠𝑡))

. It is now possible to determine the system behavior by linking

semantics and decision instead of using the system function.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8378

This serves at the same time as validation of the given

definitions for semantics and decision.

A simple equivalence criterion for determining the equality of

semantics of two inputs 𝑢1 and 𝑢2 is the verification of the

equation 𝑆𝑒𝑚𝑆𝑦𝑠,𝑥(𝑢1) = 𝑆𝑒𝑚𝑆𝑦𝑠,𝑥(𝑢2). The equivalence

relation is the set of all pairs of 𝑢𝑈 that have the same

meaning, thus: Ä𝑅𝑈 × 𝑈. The equivalence class of an

element 𝑢1 𝑈 is: [𝑢1] = {𝑢𝑈 |𝑢1~𝑢}. But these

equivalence considerations are not necessary to define the

meaning of one input 𝑈.

It is evident that this definition is applicable to any system.

Because the underlying system concept does not make any

restrictions regarding the characterization of the system

function. Thus, for example, it is irrelevant whether the system

is a continuous system described by differential equations or a

discrete system described by state machines.

The formal definitions will now be supported by a few more

easily understandable statements: First of all, the idea is that

each piece of data in itself is completely semanticless. Only

when data is processed by the recipient the semantics is

assigned, i.e. data gets that meaning that the recipient attaches

to it. The semantics of an input from the recipient's point of

view is therefore what “happens” 𝑆𝑒𝑚𝑆𝑦𝑠(𝑢𝑐𝑜𝑛𝑠(𝑡))-related

after the input has been received by the recipient. “Happen”

means: transition to (𝑥(𝑡′), 𝑦(𝑡′)), in other words: execution

of 𝑓. The 𝑆𝑒𝑚𝑆𝑦𝑠(𝑢𝑐𝑜𝑛𝑠(𝑡))-related part of (𝑥(𝑡′), 𝑦(𝑡′))

aggregates the semantics assigning processing of the input.

The semantics of an output from the sender's point of view, on

the other hand, is the intended meaning, that is, the semantics

that is assigned by the receiver according to the sender's

expectation. Of course, this expectation does not have to apply.

In this case, it is a misunderstanding in colloquial terms. This

model is also easily transferable to human interaction: Sender

and receiver exchange data. These data processing units are

here 2 people. If input data arrives at the recipient, e.g. the

reading of a character string, a processing occurs as a result.

For example, the recipient imagines the real object designated

by this character string visually, associates certain emotions

with this idea and possibly derives from it a behavior that can

be observed from outside.

5. EXAMPLE

Fig.7. shows an example network of interacting systems, based

on Fig. 5. In addition, the 𝑢𝑟𝑒𝑠𝑡/𝑦𝑟𝑒𝑠𝑡 processing system

𝑆𝑦𝑠3𝑟𝑑 is shown in grey.

Fig. 7. Example of interacting systems.

In the example, the focus is on the semantic-assigning system

with 𝑆𝑦𝑠𝐸 = (𝑇, 𝑋, 𝑈, 𝑌, 𝑥0, 𝑓) with:

𝑋 = {𝑟𝑒𝑎𝑑𝑦, 𝑏𝑢𝑠𝑦}

𝑈 = {𝑂𝑓𝑓𝑒𝑟𝐴, 𝑂𝑓𝑓𝑒𝑟𝐵}

𝑌 = {𝑂𝑓𝑓𝑒𝑟𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂}

𝑥0 = 𝑟𝑒𝑎𝑑𝑦

Table 2: System Function 𝑓𝑆𝑦𝑠𝐸
.

xE(t) ucons,E(t) urest,E(t) ycons,E(t) yrest,E(t) xE(t′)

ready OfferA OfferA OfferNIO OfferNIO busy

ready OfferA OfferA OfferNIO OfferIO busy

ready OfferB OfferB OfferIO OfferNIO busy

ready OfferB OfferB OfferNIO OfferIO busy

The time structure 𝑇 is here regarded as arbitrary, because it

has no relevance for the core statements of the example.

𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠3𝑟𝑑 can send the input characters 𝑂𝑓𝑓𝑒𝑟𝐴

and 𝑂𝑓𝑓𝑒𝑟𝐵 , which can be processed by 𝑆𝑦𝑠𝐸 and each

represent a rather bad or rather good contract offer. 𝑆𝑦𝑠𝐸 can

respond with contract rejection or contract acceptance, which

is communicated to the sender by the output characters

𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂 (for bad 𝑂𝑓𝑓𝑒𝑟𝐴) or 𝑂𝑓𝑓𝑒𝑟𝐼𝑂 (for good

𝑂𝑓𝑓𝑒𝑟𝐵). In the example the capacity of contract acceptance

by 𝑆𝑦𝑠𝐸 is limited to 1, thus 𝑆𝑦𝑠3𝑟𝑑 is given higher priority if

both interaction partners 𝑆𝑦𝑠𝑆 and 𝑆𝑦𝑠3𝑟𝑑 are offering

𝑂𝑓𝑓𝑒𝑟𝐵, which is considered to be a good contract offer. In

the concrete example 𝑆𝑦𝑠𝑆 sends the character 𝑢𝑐𝑜𝑛𝑠,𝐸 =

𝑂𝑓𝑓𝑒𝑟𝐵 and 𝑆𝑦𝑠3𝑟𝑑 the character 𝑢𝑟𝑒𝑠𝑡,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝐵. 𝑆𝑦𝑠𝐸

responds to this with 𝑦𝑐𝑜𝑛𝑠,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂 and 𝑦𝑟𝑒𝑠𝑡,𝐸 =

𝑂𝑓𝑓𝑒𝑟𝐼𝑂 according to the system function 𝑓𝑆𝑦𝑠𝐸
, since 𝑆𝑦𝑠3𝑟𝑑

is preferred for contract acceptance.

As an example, the semantics 𝑆𝑒𝑚 of the character 𝑦𝑐𝑜𝑛𝑠,𝑆 =

𝑢𝑐𝑜𝑛𝑠,𝐸 = 𝑂𝑓𝑓𝑒𝑟𝐵 sent by 𝑆𝑦𝑠𝑆 is considered. According to

the previously introduced formal definition of semantics, this

corresponds to the set of all possible results after processing of

this character by 𝑆𝑦𝑠𝐸 with arbitrary influence by 𝑆𝑦𝑠3𝑟𝑑 :

𝑆𝑒𝑚𝑆𝑦𝑠𝐸,𝑟𝑒𝑎𝑑𝑦(𝑂𝑓𝑓𝑒𝑟𝐵) =

{(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂)),

(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂))}

It should be noted that the reply from 𝑆𝑦𝑠𝐸 to 𝑆𝑦𝑠𝑆 depends on

the contractual offer made by 𝑆𝑦𝑠3𝑟𝑑 , as 𝑆𝑦𝑠3𝑟𝑑 is considered

to be a preferred contracting party.

𝑆𝑦𝑠𝐸 's decision freedom 𝐷𝑒𝑐 regarding the decision

concerning the offer made by 𝑆𝑦𝑠𝑆 was defined as the amount

of all processing results of 𝑢𝑟𝑒𝑠𝑡,𝑆 = 𝑂𝑓𝑓𝑒𝑟𝐵 under any

influence by 𝑆𝑦𝑠𝑆 :

𝐷𝑒𝑐𝑆𝑦𝑠𝐸,𝑟𝑒𝑎𝑑𝑦(𝑂𝑓𝑓𝑒𝑟𝐵) ={(𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂))}

The intersection of semantics 𝑆𝑒𝑚 and decision 𝐷𝑒𝑐 finally

provides the concrete result of this interaction between 𝑆𝑦𝑠𝑆,

𝑆𝑦𝑠𝐸 and 𝑆𝑦𝑠3𝑟𝑑 as specified in Fig. 7:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8379

S𝑒𝑚 ∩ 𝐷𝑒𝑐=((𝑏𝑢𝑠𝑦, (𝑂𝑓𝑓𝑒𝑟𝑁𝐼𝑂, 𝑂𝑓𝑓𝑒𝑟𝐼𝑂)))

Thus, the concrete system behaviour of 𝑆𝑦𝑠𝐸 can be explained

as a conjunction between the semantics assigned to the input

characters and the decision taken thereon regarding the

acceptance or rejection of the contract.

6. SUMMARY AND OUTLOOK

The paper provides a formal definition of the term

“semantics”. At the level of understanding, at least as far as

terminology is concerned, this view of the concept of

semantics is, according to our findings, currently not

established. Instead, there are a number of intuitively

motivated approaches that intend to specify the concept of

semantics, such as the knowledge pyramid or the LCIM. The

paper presented these approaches and critically placed them in

the context of the proposed formal definition. It serves as an

invitation to a scientific discourse on a precise definition of the

term “semantics”. Definitions which rely on informal intuition

only and do not provide precise criteria are likely to be of little

value if one wishes to derive something concretely helpful

from them for future practical work. This includes the

definition of a reference model for the interaction semantics of

network systems (Reich and Schröder, 2017) , which forms the

basis for understanding the question of semantic

interoperability - as the key to the design of future IIoT devices

and cyber-physical systems. Similarly, standards that verbally

specify the semantics of domain vocabulary do not meet

criteria such as "uniqueness" or "machine interpretability".

Instead, the semantics-assigning system function of the

receiver system under consideration, which processes the

received character, would have to be specified. In many

practical cases, this is extremely time-consuming. Therefore,

semantics cannot always be reasonably defined in this way.

However, existing standards are often subject to restrictions

regarding "machine interpretability". In order to increase this,

the higher effort in accordance with the semantics definition

given in this paper may be worthwhile. A few standardization

projects are already implementing the ideas shown, e.g.

VDI/VDE Guideline 2193/2: Language for I4.0 components -

Interaction protocol for bidding procedures [17].

REFERENCES

Aamodt, A. and Nygård, M. (1995). ‘Different roles and

mutual dependencies of data, information, and knowledge

- An AI perspective on their integration’, Data and

Knowledge Engineering, 16(3), pp. 191–222. doi:

10.1016/0169-023X(95)00017-M.

Ariel, M. (2012). Defining Pragmatics. Cambridge University

Press.

Brachman, R. & Levesque, H. (2004). Knowledge

Representation and Reasoning. 1st Edition ed. s.l.:s.n.

Dale, N. B. (1996). Abstract data types: Specifications,

implementations, and applications. D.C. Heath.

Hildebrandt, C. et al. (2018). ‘Semantic modeling for

collaboration and cooperation of systems in the

production domain’, IEEE International Conference on

Emerging Technologies and Factory Automation, ETFA,

pp. 1–8. doi: 10.1109/ETFA.2017.8247585.

ISO/IEC. (1994). ISO/IEC 7498-1 - Information technology —

Open Systems Interconnection — Basic Reference Model:

The Basic Model.

Kilian, C. (2005). Modern Control Theory. Delmar Cengage

Learning.

Nielson, H. R. and Nielson, F. (2007). Semantics with

Applications: An Appetizer. Springer-Verlag London.

Nobel, J. et Al. (2018). Abstract and Concrete Data Types vs

Object Capabilities. In: Müller, P.; Schaefer, I. (eds)

Principled Software Development. Springer, Cham.

Platform Industrie 4.0 (PI4.0) (2016). ‘Aspects of the Research

Roadmap in Application Scenarios’, Platform Industrie

4.0, pp. 3, 10–11.

Platform Industrie 4.0 (PI4.0) (2018). ‘The Structure of the

Administration Shell: Trilateral Perspective from France,

Italy and Germany’, p. 64. Available at:

https://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-

2018-trilaterale-coop.pdf?__blob=publicationFile&v=5.

Reich, J. and Schröder, T. (2017). ‘A reference model for

interaction semantics’. Available at:

http://arxiv.org/abs/1801.04185.

Studer, R., Benjamins, V. R. and Fensel, D. (1998).

‘Knowledge engineering: Principles and methods’, Data

& Knowledge Engineering, 25(1), pp. 161–197. doi:

https://doi.org/10.1016/S0169-023X(97)00056-6.

Stump, A. (2013). Programming Language Foundations. John

Wiley & Sons.

 Turnitsa, C. (2005). Extending the levels of conceptual

interoperability model. Proceedings IEEE summer

computer simulation conference, IEEE CS Press.

VDI/VDE. (2019). Guideline 2193/2 - Language for I4.0

components - Interaction protocol for bidding

procedures.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8380

