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Abstract: This paper proposes a comprehensive optimization model that considers not only
the economic dispatch (ED) of the combined heat and power (CHP) units, but also the demand
response (DR) of consuming units in the energy management system, where each individual
unit can exchange the information with its neighbours. In this optimization problem, there are
energy balance constraints and individual local constraints. Particularly, the progresses of the
power dispatch and the heat dispatch of each CHP unit are coupled through a feasible polygon
region constraint, and the power demands of each consumer among different periods are also
coupled due to the requirement of the total power consumption. To achieve the optimal energy
coordination of the underlying system, we propose a decentralized alternating direction method
of multipliers (ADMM), under connected communication network of individuals, such that each
CHP unit and consumer can simultaneously implement their own optimal strategies based on
an agreed energy price derived by a consensus protocol. The convergence and optimality of
the proposed method are guaranteed under certain conditions. Simulation results are shown to
demonstrate the developed results.

Keywords: Combined heat and power (CHP), demand response (DR), economic dispatch
(ED), decentralized optimization, ADMM, consensus protocol.

1. INTRODUCTION

The energy network system has been largely impacted due
to the increasing of energy demands, such as electric vehi-
cles (EVs), air conditioners and heating pipes. Therefore,
extensive research has been dedicated to how to mitigate
these negative impacts by methods like the demand side
management (DSM) Esther and Kumar (2016). Due to
the privacy and autonomy of the individuals, as well as
the heavy communication signals and high computational
complexity of centralized methods, it is more practical to
solve the DSM problems by the decentralized methods.

In Ma et al. (2016), the authors adopted the real-time price
model, which has been widely applied for demand response
(DR) as one of the main DSM activities, to shift the power
consumption of deferrable loads in a decentralized way. DR
can shift the loads in peak times and fill the valley, which
not only reduces the users’ energy bill but also increases
the energy efficiency and quality.

DR problems mainly happen at the demand side, while
at the supply side, economic dispatch (ED) approaches
are implemented to obtain the optimal allocation of the
generation units to satisfy the user demand which is
usually assumed to be constant Nemati et al. (2018).

⋆ This work was supported by the National Natural Science Foun-
dation (NNSF) of China under Grant 61873303. It is also supported
by the Beijing Institute of Technology Research Fund Program for
Young Scholars.

Consequently, we are motivated to develop an energy ser-
vice framework which integrates the ED and DR problems
to maximize the total profit in the energy network in-
cluding both generation and demand units. The combined
heat and power (CHP) system as one of the co-generation
units can produce electricity and thermal energy simulta-
neously with high energy efficiency, which has attracted
the worldwide interest from academia and industry. In a
CHP system, usually the power capacity limits are related
to the heat productions of CHPs and vice versa, which
brings difficulties to handle the power dispatch and the
heat dispatch of CHPs Guo and Henwood (1996).

The proposed profit maximization problem for power and
heat coordination is an optimization problem subject to
the energy balance constraint and individual constraints.
Furthermore, certain coupling constraints are introduced
among different periods of the power demand of each
individual consumer. The progresses of the heat dispatch
and the power dispatch are also coupled by the heat-
power feasible polygon region constraints of CHPs. We will
implement the CHP economic dispatch and the consumer
demand response with these constraints in an integrated
way.

We further suppose in this paper that each individual is
connected with each other via a communication network,
and they can exchange information with their neighbors.
In Nguyen et al. (2018), a decentralized approach based
on consensus theory was derived to obtain the optimal

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4092



energy updates, but it did not consider the coupling
constraints in the energy system. While in Yi et al. (2020),
a distributed neurodynamic-based approach considering
coupled inequality constraints was proposed in a multi-
energy system with the information exchanged among
neighboring units, but the demand response of consumers
was not considered.

For achieving the optimal solution to the underlying con-
strained problem, we introduce a decentralized Alternating
Direction Method of Multipliers (ADMM) Boyd et al.
(2010). In the proposed energy system, the communica-
tions graph topology is assumed to be connected. The
decentralized coordination without any central entities is
often formulated as a consensus problem. Hence, in the
proposed ADMM method, we further adopt a typical con-
sensus protocol to derive a pair of agreed parameters which
are later proved to be the power and heat energy prices.
It is verified that under certain conditions, the energy
system can converge to the optimal solution by applying
the proposed decentralized method.

The contributions of this paper are summarized as follows:

• We propose a novel multi-energy coordination problem
which considers not only the economic dispatch of
CHPs, but also the demand response of consumers. The
satisfaction model of each individual and the related
system profit maximization model are introduced with
certain coupling constraints.

• A fully decentralized method is developed to effectively
handle the constrained optimization problem with the
optimal solution guaranteed.

• The proposed method based on the consensus protocol
only utilizes the local communications among the neigh-
boring individuals to get the agreed energy price.

The rest of the paper is organized as follows. Section 2 in-
troduces the energy system model including both the CH-
Ps and consumers, and formulates the energy coordination
problems. In Section 3, a decentralized ADMM method
based on the consensus protocol is developed to obtain the
optimal solution to the underlying optimization problem.
The convergence and optimality are guaranteed under
certain conditions. Numerical illustrations are shown in
Section 4. We conclude the paper in Section 5.

2. FORMULATION OF ENERGY COORDINATION

2.1 Energy System Model

We study the coordination problem in a specific energy
system composed of CHP populations N ≡ {1, ..., N},
and multiple consumers M ≡ {1, ...,M} over a multi-time
horizon T ≡ {1, ..., T}. For demonstration, we assume that
there’s no other power generators and heat boilers. The
CHPs generate electricity and heat at the same time to
satisfy the demands of consumers.

The generated power and heat of CHP n ∈ N are denoted
by pnt and hnt (with units of MW) respectively, which
are assumed to be constant at each time slot t ∈ T .
We consider the extraction-condensing CHP units whose
feasible region can be described as a polygon region. The
region of CHP n could be formulated as Wu et al. (2018):


hn,min ≤ hnt ≤ hn,max

pnt ≤ w1
n − w2

n · hnt
pnt ≥ max{w3

n − w4
n · hnt, w5

n · hnt + w6
n},

(1)

where hn,min, hn,max are the lower and upper bounds on
the generated heat, and parameters w1

n, w
2
n, w

3
n, w

4
n, w

5
n, w

6
n

reflect the ratios of generated power to heat under different
operation mode of CHP n.

We say the operation strategy un , (unt; t ∈ T ) with
unt = [pnt, hnt]

⊤ is admissible, if it satisfies the above
inequality constrains for any time t ∈ T . The set of
admissible operation strategies of CHP n is denoted by Un,
and the set of admissible strategies for CHP populations
is denoted by U such that

U ,
{
u ≡ (un;n ∈ N ); s.t. un ∈ Un

}
. (2)

Let p̄mt and h̄mt denote the power and heat demand
of consumer m ∈ M at time t, and define the control
strategy as ūm , (ūmt; t ∈ T ) with ūmt = [p̄mt, h̄mt]

⊤.
The strategy is admissible, if

p̄mt

{
∈ [0, γmt], in case t ∈ Tm
= 0, otherwise

, and
T∑

t=1

p̄mt = Γm,

(3a)

h̄mt

{
∈ [0, ϖmt], in case t ∈ Tm
= 0, otherwise

, (3b)

where Tm with Tm ⊂ T , γmt and ϖmt respectively
represent the consuming interval, upper bounds on the
rate of consumed power and heat at t, and Γm denotes the
total power demand over T . The set of admissible control
strategies for consumer m is denoted by Ūm, and the set
of admissible strategies for the consumer populations is
denoted by Ū such that

Ū ,
{
ū ≡ (ūm;m ∈ M); s.t. ūm ∈ Ūm

}
. (4)

For guaranteeing the power and heat balance in the energy
system, the strategies of all individuals are required to
satisfy the following equalities:

N∑
n=1

(1− ηn)pnt =
M∑

m=1

(1 + η̄m)p̄mt, (5a)

N∑
n=1

(1− ϱn)hnt =

M∑
m=1

(1 + ϱ̄m)h̄mt (5b)

for all t ∈ T , n ∈ N ,m ∈ M, where ηn, η̄m, ϱn, ϱ̄m ∈ (0, 1)
denote the power and heat loss coefficients. The generated
losses are due to the energy transmitted through the
transmission lines or pipes and low quality equipments.

2.2 Topology Description of Individual Interaction

We assume that each individual unit can exchange the
local information with its neighbours to satisfy the supply-
demand balance constraint in (5). The communication
among individuals could be described by an undirected
graph which is commonly used in the multi-agent sys-
tem.The undirected graph of the system can be denoted
by G , ⟨O, E⟩ where O ≡ {1, · · · , N,N + 1, · · · , N +M}
and E denote the vertex set and edge set, respectively.

Let e = (i, j) denote each edge of graph G with i, j ∈ O,
which means that individual i can interact with individual
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j via the local information transmission. The neighboring
set of individual i and its cardinality are denoted by
Vi , {j ∈ O, (i, j) ∈ E} and Di , ||Vi||, respectively.
Denote by yij the element of the adjacency matrix Y of G,
such that yij = 1 in case (i, j) ∈ E and yij = 0 otherwise.

Let D , diag{Di}i=1,··· ,N+M . Thus the Laplacian matrix

of graph G is defined by L , D − Y.

2.3 Problem Formulation

In this paper, we aim to minimize the total system cost
consisting the operation cost of CHPs and the consumer’s
local cost during the whole coordination periods.

More specifically, the operation cost of CHP n ∈ N at t
can be represented as below Fang et al. (2018):

Cn(unt) = c0,n + c1,npnt + c2,np
2
nt

+ c3,nhnt + c4,nh
2
nt + c5,npnthnt,

(6)

where c0,n, c1,n, c2,n, c3,n, c4,n, c5,n are cost coefficients of
CHP n. The last term c5,npnthnt reflects the coupling
relationship of the heat and the electricity.

Consequently, the profit function of CHP n is

Wn(unt) , πptpnt(1− ηn) + πhthnt(1− ϱn)− Cn(unt),
(7)

where πpt and πht are the prices of the electricity and heat
at time t.

Meanwhile, the profit function of consumer m at t can be
given:

W̄m(ūmt) ,Fm(p̄mt)− πptp̄mt(1 + η̄m)

+Hm(h̄mt)− πhth̄mt(1 + ϱ̄m),
(8)

where Fm(p̄mt) and Hm(h̄mt) denote the satisfaction func-
tions of consumer m at t with respect to its consumed
electricity and heat. We will use the following form to
represent Fm(p̄mt) which is a continuous differentiable
concave function and has been widely adopted to model
the behavior of power users Nguyen et al. (2018):

Fm(p̄mt) =


βmp̄mt − αmp̄

2
mt, if p̄mt ≤

βm
2αm

β2
m

4αm
, if p̄mt >

βm
2αm

(9)

with prescribed parameters αm and βm which reflect the
individual conditions.

The function Hm(h̄mt) is adopted with respect to the
difference between the actual demand and the nominal
demand (reference demand) h̄r

m ,
(
h̄rmt; t ∈ T

)
as be-

low Wang et al. (2015):

Hm(h̄mt) = −ᾱmt(h̄mt − h̄rmt)
2, (10)

where ᾱmt > 0 denotes the deviation penalty parameter
which reflects the relative importance or satisfaction of
reaching the expected heat demand at different periods.
h̄r
m can be predicted and anticipated based on the histori-

cal demand data. Actually, the user heat demand could be
captured from the ambient and desired indoor temperature
related to the user’s comfort Wang et al. (2018).

The total system profit function is given as the summa-
tion of all individual profits over the whole periods T .
The maximization problem of the system profit can be

transformed into a minimization problem of the system
cost by changing the sign of the profit function. Thus, the
objective function of the coordination problem is expressed
as follows:

J(u, ū) = −
∑
t∈T

{ ∑
n∈N

Wn(unt) +
∑

m∈M

W̄m(ūmt)

}
=

∑
t∈T

{ ∑
n∈N

Cn(unt)−
∑

m∈M
Qm(ūmt)

}
, (11)

where Qm(ūmt) = Fm(p̄mt) + Hm(h̄mt) and the last
equality holds by (5).

By considering the constraints proposed in Section 2.1,
the centralized coordination problem is formulated as the
following optimization problem:

Problem 1.

min
u∈U,ū∈Ū

∑
t∈T

{ ∑
n∈N

Cn(unt)−
∑

m∈M

Qm(ūmt)

}
s.t. (5), ∀t ∈ T ,

(12)

where U and Ū are defined above. �
The centralized methods in the literature can be applied
to solve Problem 1. However, it may create privacy issues,
heavy communication and computation burdens. There-
fore, we will develop a decentralized consensus-based AD-
MM for the underlying constrained optimization problem.

3. DECENTRALIZED IMPLEMENTATION

3.1 ADMM Method for Coordination Problem

In this section, Problem 1 will be dealt with by apply-
ing the ADMM method which is commonly adopted in
network systems for the decentralized operation Boyd
et al. (2010). For simplicity, we define a matrix U ≡[
{Un}n=1,··· ,N ; {Ūm}m=1,··· ,M

]
= [u; ū], i.e., the matrix

U is the combination of the vectors u and ū.

To solve the underlying problem, we first introduce an
auxiliary variable Z =

[
{Zn}n=1,··· ,N ; {Z̄m}m=1,··· ,M

]
≡

U with Znt = [Zp,nt, Zh,nt]
⊤ and Z̄mt = [Z̄p,mt, Z̄h,mt]

⊤,

and define the closed convex sets: Π1 =
{
U ∈ R(2N+2M)T :∑N

n=1(1−ηn)pnt =
∑M

m=1(1+η̄m)p̄mt,
∑N

n=1(1−ϱn)hnt =∑M
m=1(1+ ϱ̄m)h̄mt, ∀t ∈ T

}
and Π2 =

{
Z ∈ R(2N+2M)T :

Zn ∈ Un, n = 1, · · · , N, Z̄m ∈ Ūm,m = 1, · · · ,M
}
. The

indicator functions of Π1 and Π2 are given as follows:

I1(U) =

{
0, if U ∈ Π1

+∞, otherwise
, I2(Z) =

{
0, if Z ∈ Π2

+∞, otherwise.

Consequently, Problem 1 can be reformulated as below:

min
∑
t∈T

{ ∑
n∈N

Cn(unt)−
∑

m∈M

Qm(ūmt)

}
+ I1(U) + I2(Z)

s.t. U = Z.

(13)

Remark: Since the coupling constraints illustrated in (3)
are introduced, the above optimization problem can not
be decomposed into sub-problems with respect to the
individual time slots, while in Nguyen et al. (2018) the op-
timal solution is implemented sequentially and forwardly
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over the whole periods without considering these coupling
constraints.

The indicator functions I1(U) and I2(Z) are closed, proper
and convex since the sets of constraints in the optimization
problem (13) are all closed nonempty convex sets. Conse-
quently, the objective function in (13) is proper, closed,
and convex, which establishes the sufficient conditions for
the optimal solution by applying ADMM method Boyd
et al. (2010).

The augmented Lagrangian of (13) is:

Lρ(U,Z, V ) =
∑
t∈T

{ ∑
n∈N

Cn(unt)−
∑

m∈M
Qm(ūmt)

}
+ I1(U) + I2(Z) +

ρ

2
∥U − Z + V ∥22,

where ρ > 0 is a penalty factor and V is the scaled
dual variable. The ADMM iterations are as follows with
additional proximal terms:

Uk+1 := argmin
U

Lρ(U,Z
k, V k) +

1

2
(U − Uk)⊤Φ(U − Uk)

Zk+1 := argmin
Z

Lρ(U
k, Z, V k) +

1

2
(Z − Zk)⊤Ψ(Z − Zk)

V k+1 := V k − κρ(Uk − Zk),
(14)

where Φ,Ψ, κ > 0 satisfy:

Φ > ρ(
1

µ1
− 1)I, Ψ > ρ(

1

µ2
− 1)I, µ1 + µ2 < 2− κ

for µ1 > 0, µ2 > 0.

The variables U,Z, V are updated in parallel with respect
to the values of previous iteration. The ADMM method in
(14) is called Jacobian ADMM approach in the literature,
whose convergence is verified in Deng et al. (2017).

For simplicity, let Φ = ϕI and Ψ = ψI, such that

ϕ > ρ(
1

µ1
− 1), ψ > ρ(

1

µ2
− 1).

Actually, Problem 1 can be directly solved in a decentral-
ized way by the proposed Jacobian ADMM approach, in
which each individual needs to share the local information
with all other individuals. However, in our energy system,
each individual can only interact with its neighbours.

3.2 The Consensus Update of Uk+1

This section illustrates an update method to implement
Uk+1 in a decentralized way based on the consensus
protocol.

It is easily known from the definition of the indication
function I1(U) that Uk+1 in (14) can be obtained by
solving the following optimization problem:

min
U

F (U)

s.t.
∑
n∈N

(1− ηn)pnt =
∑

m∈M

(1 + η̄m)p̄mt, ∀t ∈ T∑
n∈N

(1− ϱn)hnt =
∑

m∈M

(1 + ϱ̄m)h̄mt, ∀t ∈ T

(15)

with F (U) =
∑

t∈T

{∑
n∈N Cn(unt)−

∑
m∈MQm(ūmt)

}
+

ρ
2∥U − Zk + V k∥22 +

ϕ
2 ∥U − Uk∥22.

It gives that the strong duality holds since (15) is a convex
optimization problem. Hence, we can get the optimal
solution Uk+1 of (15) by applying the Karush-Kuhn-
Tucker conditions Bertsekas (1999), such that:

∂F (U)

∂unt

∣∣∣
unt=uk+1

nt

=
{
λ̂k+1
t

∂Ep

∂unt
+ γ̂k+1

t

∂Eh

∂unt

}∣∣∣
unt=uk+1

nt

(16a)

∂F (U)

∂ūmt

∣∣∣
ūmt=ūk+1

mt

=
{
λ̂k+1
t

∂Ep

∂ūmt
+ γ̂k+1

t

∂Eh

∂ūmt

}∣∣∣
ūmt=ūk+1

mt

(16b)

where Ep =
∑

n∈N (1−ηn)pnt−
∑

m∈M(1+ η̄m)p̄mt, Eh =∑
n∈N (1 − ϱn)hnt −

∑
m∈M(1 + ϱ̄m)h̄mt, λ̂

k+1
t and γ̂k+1

t
are the optimal Lagrange multipliers at iteration k+1, for
all t ∈ T , n ∈ N and m ∈ M.

Consequently, based on (16a) and (6) we have the following
update of pnt and hnt, ∀n ∈ N
pk+1
nt =

{
λ̂k+1
t (1− ηn) + ϕpknt + ρ(Zk

p,nt − V k
p,nt)

− c1,n − c5,nh
k+1
nt

}
/
{
2c2,n + ρ+ ϕ

} (17a)

hk+1
nt =

{
γ̂k+1
t (1− ϱn) + ϕhknt + ρ(Zk

h,nt − V k
h,nt)

− c3,n − c5,np
k+1
nt

}
/
{
2c4,n + ρ+ ϕ

} (17b)

which can be rewritten in short by

pk+1
nt = akntλ̂

k+1
t + bkntγ̂

k+1
t − cknt (18a)

hk+1
nt = ãkntλ̂

k+1
t + b̃kntγ̂

k+1
t − c̃knt (18b)

where the coefficients aknt, b
k
nt, c

k
nt and ãknt, b̃

k
nt, c̃

k
nt are de-

rived from (17).

And for consumer m ∈ M, based on (16b), (9) and (10)
we have the update of p̄mt and h̄mt at k + 1, t ∈ T as
follows:

p̄k+1
mt =



−λ̂k+1
t (1 + η̄m) + ϕp̄kmt + ρ(Z̄k

p,mt − V̄ k
p,mt) + βm

2αm + ρ+ ϕ
,

if p̄kmt ≤
βm
2αm

;

−λ̂k+1
t (1 + η̄m) + ϕp̄kmt + ρ(Z̄k

p,mt − V̄ k
p,mt)

ρ+ ϕ
,

if p̄kmt >
βm
2αm

;

(19a)

h̄k+1
mt =

{
− γ̂k+1

t (1 + ϱ̄m) + ρ(Z̄k
h,mt − V̄ k

h,mt)

+ ϕh̄kmt + 2ᾱmth̄
r
mt

}
/
{
2ᾱmt + ρ+ ϕ

} (19b)

which can be rewritten in short by

p̄k+1
mt = −θkmtλ̂

k+1
t + ϑkmt, h̄

k+1
mt = −θ̃kmtγ̂

k+1
t + ϑ̃kmt, (20)

with θkmt, ϑ
k
mt and θ̃

k
mt, ϑ̃

k
mt determined from (19).

Furthermore, the optimal solution Uk+1 must satisfy the
equality constraints in (15). Substituting (18) and (20) into
these constraints leads to

λ̂k+1
t =

∑N
n=1 I

k
c,nt +

∑M
m=1 I

k
ϑ,mt − γ̂k+1

t

∑N
n=1 I

k
b,nt∑N

n=1 I
k
a,nt +

∑M
m=1 I

k
θ,mt

γ̂k+1
t =

∑N
n=1 I

k
c̃,nt +

∑M
m=1 I

k
ϑ̃,mt

− λ̂k+1
t

∑N
n=1 I

k
ã,nt∑N

n=1 I
k
b̃,nt

+
∑M

m=1 I
k
θ̃,mt

where Ikc,nt = (1−ηn)cknt, Ikϑ,mt = (1+ η̄m)ϑkmt, I
k
b,nt = (1−

ηn)b
k
nt, I

k
a,nt = (1−ηn)aknt, Ikθ,mt = (1+η̄m)θkmt, I

k
c̃,nt = (1−
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ϱn)c̃
k
nt, I

k
ϑ̃,mt

= (1 + ϱ̄m)ϑ̃kmt, I
k
ã,nt = (1 − ϱn)ã

k
nt, I

k
b̃,nt

=

(1− ϱn)b̃
k
nt, I

k
θ̃,mt

= (1 + ϱ̄m)θ̃kmt.

It is known that the multipliers λ̂k+1
t and γ̂k+1

t are re-
spect to the information of all individuals. However, the
information of each individual can only be transmitted
to its neighbours. Therefore, we introduce a decentralized
manner illustrated in the following theorem to compute

λ̂k+1
t and γ̂k+1

t .

Definition 1. A graph G can be called connected if for
every pair (i, j) of vertices, i is reachable from j.

Theorem 3.1. Assume that the graph G is connected,
and the initial values of all individuals that need to be
exchanged with their neighbours are set to be:

x0nt = [Ika,nt, I
k
b,nt, I

k
c,nt, I

k
ã,nt, I

k
b̃,nt

, Ikc̃,nt]
⊤,

x̄0mt = [Ikθ,mt, 0, I
k
ϑ,mt, 0, I

k
θ̃,mt

, Ik
ϑ̃,mt

]⊤,
(21)

for all n ∈ N ,m ∈ M and t ∈ T .

Then we apply the following consensus protocol:

xτ+1
it = xτit − ζ

∑
j∈Vi

yij(x
τ
it − xτjt), ∀t ∈ T (22)

where τ represents the iteration step of the process and
yij is given in Section 2.2, and ζ > 0 satisfies

ζ max
(i,j)∈E

{Di −Dj} < 2. (23)

Consequently, all individuals can reach the consensus
vector x∗t = [w∗

1,t, w
∗
2,t, w

∗
3,t, w

∗
4,t, w

∗
5,t, w

∗
6,t]

⊤ as τ → +∞,
where

w∗
1,t =

∑N
n=1 I

k
a,nt +

∑M
m=1 I

k
θ,mt

N +M
, w∗

2,t =

∑N
n=1 I

k
b,nt

N +M
,

w∗
3,t =

∑N
n=1 I

k
c,nt +

∑M
m=1 I

k
ϑ,mt

N +M
, w∗

4,t =

∑N
n=1 I

k
ã,nt

N +M
,

w∗
5,t =

∑N
n=1 I

k
b̃,nt

+
∑M

m=1 I
k
θ̃,mt

N +M
,

w∗
6,t =

∑N
n=1 I

k
c̃,nt +

∑M
m=1 I

k
ϑ̃,mt

N +M
.

Hence, we have

λ̂k+1
t =

w∗
3,tw

∗
5,t − w∗

2,tw
∗
6,t

w∗
1,tw

∗
5,t − w∗

2,tw
∗
4,t

, γ̂k+1
t =

w∗
1,tw

∗
6,t − w∗

3,tw
∗
4,t

w∗
1,tw

∗
5,t − w∗

2,tw
∗
4,t

.

(24)

Proof: For the sake of brevity, we omit the details of the
proof Nguyen et al. (2018).

Consequently, λ̂k+1
t and γ̂k+1

t can be calculated by each
individual in a decentralized way. Substituting (24) into
(18) and (20), Uk+1 in (14) is directly obtained.

3.3 The Summary of Proposed Decentralized ADMM

The optimal solution to Problem 1 can be implemented in
parallel by applying the ADMM iterations in (14), which
is summarized in Algorithm 1.

The update of Z is implemented in a decentralized way due
to the decoupling property of the admissible set and the
objective function in (14), such that each individual could

get the optimal solution Zk+1
n , n ∈ N or Z̄k+1

m ,m ∈ M by
solving the following local optimization problems:

min
Zn∈Un

ρ

2
∥Uk

n − Zn + V k
n ∥22 +

ψ

2
∥Zn − Zk

n∥22, (25a)

min
Z̄m∈Ūm

ρ

2
∥Ūk

m − Z̄m + V̄ k
m∥22 +

ψ

2
∥Z̄m − Z̄k

m∥22. (25b)

Similarly, the update V k+1 in (14) could be carried out in
parallel. Each individual only needs to solve:

V k+1
n := V k

n − κρ(Uk
n − Zk

n), n ∈ N , (26a)

V̄ k+1
m := V̄ k

m − κρ(Ūk
m − Z̄k

m), m ∈ M. (26b)

We will refer to rk+1 = Uk+1 − Zk+1 and sk+1 =
−ρ(Zk+1 − Zk) as the primal residual and dual residual
at iteration k + 1, respectively. The update process in the
proposed method is repeated until

∥rk+1∥ ≤ ϵpri and ∥sk+1∥ ≤ ϵdual (27)

where ϵpri > 0 and ϵdual > 0 are feasibility tolerances.

Algorithm 1. (Implementation of Energy Coordination via
the Decentralized Consensus-Based ADMM.)

• Set the initial state U0 = 0, Z0 = 0, V 0 = 0;
• Set the feasibility tolerances ϵpri, ϵdual;
• Set k = 0, ∥r∥ > ϵpri and ∥s∥ > ϵdual ;
• While ∥r∥ > ϵpri or ∥s∥ > ϵdual

- All individuals implement the consensus protocol (22)

with the initial values in (21), then calculate λ̂k+1
t

and γ̂k+1
t by (24).

- Determine the update of Uk+1
n , Ūk+1

m based on (17)
and (19), the update Zk+1

n , Z̄k+1
m in (25), and

V k+1
n , V̄ k+1

m in (26) for n ∈ N ,m ∈ M indepen-
dently.

- Update r = Uk+1 − Zk+1; s = −ρ(Zk+1 − Zk);
- Update k := k + 1. �

Remark: The convergence criterion in (27) could be com-
puted by each individual in paralle based on the consensus
protocol, which is introduced in Nguyen et al. (2018).

Furthermore, we consider the pricing scheme for the pro-
posed energy system. At iteration step k+1 in Algorithm 1,
denote the desired electricity price and heat energy price
of each CHP unit and consumer respectively by πk+1

p,nt , π
k+1
h,nt

and π̄k+1
p,mt, π̄

k+1
h,mt at t for all n ∈ N ,m ∈ M.

When each CHP unit and consumer tend to maximize
their own profits, based on (7) and (8) we have the
following equalities:

∂Wn(unt)

∂pnt
=
∂Wn(unt)

∂hnt
=
∂Wm(ūmt)

∂p̄mt
=
∂Wm(ūmt)

∂h̄mt
= 0,

which gives
∂Cn

∂pnt
= (1− ηn)π

k+1
p,nt ,

∂Cn

∂hnt
= (1− ϱn)π

k+1
h,nt,

∂Fm

∂p̄mt
= (1 + η̄m)π̄k+1

p,mt,
∂Hm

∂h̄mt
= (1 + ϱ̄m)π̄k+1

h,mt.

(28)

It means that the price profile is coincident with the
marginal cost.

Let π∗
p,nt, π

∗
h,nt and π̄∗

p,mt, π̄
∗
h,mt denote the optimal (con-

verged) prices of each CHP unit and consumer, λ∗t and
γ∗t denote the optimal Lagrange multipliers at t, and V ∗
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represents the optimal value of scaled dual variable. It’s
verified that the optimal price profile can be obtained
under certain conditions shown as theorem below.

Theorem 3.2. As the penalty parameter ρ → 0, the opti-
mal electricity prices π∗

p,nt and π̄
∗
p,mt approach the optimal

Lagrange multiplier λ∗t , and the optimal heat energy prices
π∗
h,nt and π̄

∗
h,mt approach multiplier γ∗t , ∀n ∈ N ,m ∈ M.

Proof: It is derived based on Karush-Kuhn-Tucker condi-
tions. For brevity, we omit the details of the proof. �

4. NUMERICAL RESULTS

In this section, for illustrating the proposed results we will
present the simulations on a network topology specified in
Fig. 1, which composes of 2 CHP units and 3 aggregated
demand units. The parameters of CHP units’ cost func-
tions and consumers’ utility functions are taken from Guo
and Henwood (1996); Nguyen et al. (2018). Assume all the
users have a common power capacity size of 65 MWh. The
stopping criterions ϵpri and ϵdual are all set as 10−3, and
the penalty parameter ρ is selected to be 0.01.

Fig. 2 shows the evolution of
∑

i∈N ,M ∥xτ+1
i − xτi ∥22 given

in Theorem 3.1 with ζ = 0.5. We can know that the
consensus protocol converges to the desired tolerance 10−3

only in about 12 iterations. Fig. 3 (left) displays the
uncontrolled base demand, and the total demand which is
the summation of base demand and all deferrable loads. It
shows that the deferrable loads can be shifted to the valley
by applying the proposed method. The heat demand is
illustrated in Fig. 3 (right). There has a deviation between
the reference heat demand and the actual demand, which
is respect to the penalty parameter ᾱmt given in (10).

CHP1

CHP2

User 1 User 2

User 3

Fig. 1. Network topol-
ogy of the energy
system.
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Fig. 2. Convergence of
the consensus pro-
tocol.
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Fig. 3. Aggregate coordination strategies of power and
heat.

5. CONCLUSION

The paper explores the coordination of the power and heat
in the energy management system, which considers the ED
problems of CHP units and DR problems of consumers.
The objective is to maximize the total profit of the system
subject to the energy balance constraint and local con-
straints of each individual. There is no central entity and
the individual local information can only be exchanged
with its neighbours. A decentralized consensus-based AD-
MM approach is developed to achieve the optimal solution,
in which the agreed energy price is derived by applying
the consensus protocol. The convergence and optimality
are verified under certain conditions.
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