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Abstract: In the context of coalitional games, we present a partial operator-theoretic char-
acterization of the approachability principle and, based on this characterization, we interpret
a particular distributed payoff allocation algorithm to be a sequence of time-varying para-
contractions. Then, we also propose a distributed payoff allocation algorithm on time-varying
communication networks. The state in the proposed algorithm converges to a consensus in the
”CORE” set as desired. For the convergence analysis, we rely on an operator-theoretic property
of paracontraction.
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1. INTRODUCTION

Coalitional game theory provides an analytical framework
and mathematical formalism, to study the behavior of
selfish and rational agents, when they cooperate. Inter-
estingly, this scenario arises in many applications, such as
demand side energy management [Han et al. (2018)], in
power networks for transmission cost allocation [Zolezzi
and Rudnick (2002)] and cooperation between microgrids
in distribution networks [Saad et al. (2011)], in various
areas of communication networks by [Saad et al. (2009)],
[Saad et al. (2008)] and as conceptual foundation for coali-
tional control [Fele et al. (2017)].
Specifically, a coalitional game with transferable utility
consists of a set of agents referred as players, who can form
coalitions, and a characteristic function that determines
the value of each coalition. Note that a selfish agent will
cooperate with other agents only if this coalition results
in increasing its own benefit. The latter is determined
by the payoff the agent receives from the value generated
by a coalition. The design of criteria for determining this
payoff has received acute attention by research community,
such as Scarf (1967), Shapley (1953), Schmeidler (1969),
Maschler et al. (1971). The solutions proposed determine
the stability of a coalition, i.e., whether the coalition re-
mains intact or gets defected by its agents. One of the
most widely studied solution concepts is the CORE which
ensures the stability of a game.
The problem we address in this paper is finding a payoff
that belongs to CORE and hence encourages cooperation.
Our practical treatment of this problem is in a multi-
agent scenario, where players interact autonomously and
in distributed manner to arrive at common agreement on
a payoff vector in the CORE. In this direction, Lehrer
(2003) presented an allocation process which converges
to the CORE (or if this is empty, to a least-CORE).
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Smyrnakis et al. (2019) also consider an allocation process
but under noisy observations and dynamic environment.
Bauso et al. (2014) provide conditions for an averaging
process, with dynamics subject to controls and adversar-
ial disturbances, under which the allocations converge to
consensus in the desired set. Nedich and Bauso (2013)
propose an elegant distributed bargaining algorithm which
converges to a random CORE payoff allocation. The key
inspiration, however, of our work is the distributed payoff
allocation algorithm proposed by Bauso and Notarstefano
(2015). Their algorithm is based on the approachability
principle, which is a geometric condition introduced in
Blackwell’s approachability Theorem [Blackwell (1954)].
The approachability principle provides a way to approach
a particular set and hence can be exploited to reach the
CORE in the context of coalitional game theory.
Contribution: In this paper, we first show that the ap-
proachability condition contains a paracontraction opera-
tor. Briefly, an operator T : Rn → Rn is said to be a para-
contraction if, for any fixed point y = T (y) and x ∈ Rn,
x 6= y, it holds that ‖T (x)−y‖ < ‖x−y‖. These operators
form the subclass of, perhaps more known, quasi-non-
expansive mappings [Bauschke et al. (2011)].
Secondly, we propose a distributed payoff allocation al-
gorithm, in context of coalitional games over time-varying
communication networks. The state of proposed algorithm
converges to a consensus vector that belongs to the CORE.
Our approach to prove convergence of our algorithm relies
on the paracontraction property of the adopted operator.
Organization of the paper : In Section 2, we provide the
mathematical background for coalitional games and dis-
tributed allocation process. In Section 3, we discuss the
approachability principle and recall the distributed payoff
allocation algorithm by Bauso and Notarstefano (2015).
In Section 4, we provide a partial operator-theoretic char-
acterization of the approachability principle, and we dis-
cuss algorithm in [Bauso and Notarstefano (2015)]. In
Section 5, we propose an algorithm for distributed allo-
cation in coalitional games and establish its convergence
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using operator-theoretic properties. Further, we assess the
convergence speed of proposed algorithm in Section 6, and
in Section 7, we conclude the paper.
Notation: R and N denote the set of real and natural
numbers, respectively. Given a mapping M : Rn →
Rn,fix(M) := {x ∈ Rn | x = M(x)} denotes the set
of fixed points. Id denotes the identity operator. For a
closed set S ⊆ Rn, the mapping projS : Rn → S denotes
the projection onto S, i.e., projS(x) = arg miny∈S ‖y−x‖.
A⊗B denotes the Kronecker product between the matrices
A and B. IN denotes an identity matrix of dimension
N ×N . dist(x, S) denotes the distance of x from a closed
set S ⊆ Rn, i.e., dist(x, S) := infy∈S‖y − x‖.

2. MATHEMATICAL BACKGROUND ON
COALITIONAL GAMES

A coalitional game consists of a set of agents, indexed by
I = {1, . . . , N}, who cooperate to achieve selfish interests.
This cooperation results in generation of utility as defined
by the characteristic function v. Formally,

Definition 1. (Coalitional game): A transferable utility
(TU) coalitional game is a pair G = (I, v), where I =
{1, . . . , N} is the index set of the agents and v : 2I → R is
a characteristic function which assigns a real value, v(S),
to each coalition S ⊆ I. v(I) is the value of so-called grand
coalition. By convention, v(0) = ∅. �

The idea of coalitional game is that the value attained by
a coalition S, i.e. ,v(S) has to be distributed among the
members of the coalition, thus each agent receives a payoff.

Definition 2. (Payoff vector): Let S ⊆ I be a coalition of
coalitional game (I, v). A payoff vector is a vector x ∈ R|S|
where, xi represents the share of agent i ∈ S of v(S). �

Let us state two important characteristics of a payoff
vector which will further help us in explaining the solution
concept of a coalitional game. First, for a game with a
grand coalition I, a payoff vector x ∈ RN is said to be
efficient if

∑
i∈I xi = v(I). In words, all of the value

generated by grand coalition will be distributed among
the agents. Second, a payoff vector is rational if for every
possible coalition S ⊆ I we have

∑
i∈S xi ≥ v(S). Note

that this should also hold for singleton coalitions S = {i}
i.e. xi ≥ v(i),∀i ∈ I. It means that, payoff allocated to
each agent should be at least equal to what they can get
individually or by forming any coalition S other than I.
A payoff vector which is both efficient and rational lies
in the CORE. CORE is the solution concept that relates
with the stability of a grand coalition. Where, the idea
of stability, in this context, is based on the disinterest of
agents in defecting a grand coalition. Formally,

Definition 3. (CORE): The CORE C of a coalitional game
(I, v) is the following set of payoff vectors:

C :=

{
x ∈ RN |

∑
i∈I

xi = v(I),
∑
i∈S

xi ≥ v(S),∀S ⊆ I
}
.

(1)
�

Each payoff allocation that belongs to CORE stabilizes
the grand coalition. It implies that no agent or coalition
S ⊂ I has an incentive to defect from the grand coalition.

Fig. 1. Visual illustration of the approachability principle.

In the sequel, we deal with the grand coalition only, there-
fore we use the CORE C as the solution concept. Note
from (1) that C is closed and convex. We also assume the
CORE to be non-empty through out the paper. Next, we
discuss a possible strategy of finding the payoff vector, in
a coalitional game G = (I, v), that belongs to CORE, C
in (1). Centralized methods for finding a vector x ∈ C
do not capture realistic scenarios of interaction among
autonomous selfish agents. Thus, distributed methods are
employed that allow agents to autonomously reach a com-
mon agreement on a payoff allocation, x ∈ C.
Generally, the distributed allocation is an iterative pro-
cedure in which, at each step, an agent i proposes a
utility distribution xi ∈ RN by averaging the proposals
of all agents and introducing an innovation factor. This
procedure aspires to finally reach at a mutually agreed pay-
off among participating agents. Eventually the proposed
utility distributions {xi}i∈I must reach consensus.

Definition 4. (Consensus set): The consensus setA ⊂ RN2

is defined as:

A := {col(x1, . . . ,xN ) ∈ RN2

| xi = xj ,∀i, j ∈ I}. (2)

�

Therefore, in this paper, we consider the problem of
computing a mutually agreed, payoff allocation vector in
the CORE, i.e., x̄ ∈ A ∩ CN , via an iterative distributed
allocation, i.e., x(k)→ x̄ as k →∞.

3. APPROACHABILITY PRINCIPLE AND
DISTRIBUTED PAYOFF ALLOCATION

3.1 Approachability principle

We now discuss a geometric principle which can guarantee
the convergence of a payoff allocation sequence to a target
set, which in our coalitional game theory context, is the
CORE C, as in (1). This principle, which we refer to
as approachability principle, is the geometric concept be-
hind the celebrated approachability theorem by Blackwell
[Blackwell (1954)].

Definition 5. (Approachability Principle)[Lehrer (2003),
3.2], Let (yk)k∈N be a sequence of uniformly bounded

vectors in Rn, with running average ȳk := 1
k

∑k
k′=1 yk′ ,

and let C be a non-empty, closed and convex set. If the
sequence satisfies the condition,

(ȳk − projC(ȳk))>(yk+1 − projC(ȳk)) ≤ 0, ∀k ∈ N, (3)

then lim
k→∞

dist(ȳk, C) = 0. �
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In Figure 1, we illustrate the approachability condition in
(3). Let us give a geometric interpretation: the hyperplane
through the point projC(ȳk), perpendicular to the vector
(ȳk − projC(ȳk)), which is the first term in (3), separates
the space into the half-spaces H+ and H−. The the ap-
proachability condition requires that, the innovation yk+1

and the average ȳk should not lie in the same half-space.
Among others, Bauso and Notarstefano (2015) have used
the approachability principle to design a distributed payoff
allocation algorithm which converges to a consensus vector
in the CORE in (1). Let us recall their setup and solution
algorithm in next subsection.

3.2 A time-varying distributed payoff allocation process

Consider a set of agents I = {1, . . . , N} who syn-
chronously propose a distribution of utility at each discrete
time step k ∈ N. Specifically, each agent i ∈ I proposes
a payoff distribution x̂i(k) ∈ RN , where the jth element
denotes the share of agent j proposed by agent i. Then,
each agent i computes x̂i by averaging the proposals by his
neighboring agents and then by generating an innovation
vector x as follows:

x̂(k + 1) = (1− αk)Akx̂(k) + αkx(k + 1), ∀k ∈ N, (4)

where (αk)k∈N is a sequence of step sizes, with αk := 1
k+1 ,

and Ak := A(k)⊗ IN represents an adjacency matrix.
Now, Let the communication graph vary over time as
G(k) = (I, E(k)). Specifically, (j, i) ∈ E(k) means that
there is an active link between agents i and j at time k. In
[Bauso and Notarstefano (2015), Assumption 2], the graph
sequence (G(k))k∈N is assumed to be Q−connected.

Assumption 1. There exists an integerQ ≥ 1 such that the

graph (I,∪Ql=1E(l+k)) is strongly connected, for k ≥ 0. �

The communication links in G(k) are weighted using an
adjacency matrix A(k) = [ai,j(k)]N×N , whose element ai,j
represents the weight assigned by agent i to the payoff
distribution proposed by agent j, x̂j(k). By [Bauso and
Notarstefano (2015), Assumption 1], the adjacency matrix
is always doubly stochastic with positive diagonal.

Assumption 2. For all k ≥ 0, the matrix A(k) =
[ai,j(k)]N×N satisfies following conditions:

(i) It is doubly stochastic;
(ii) its diagonal elements are strictly positive, i.e.,

ai,i(k) > 0,∀i ∈ I;
(iii) ∃ γ > 0 such that ai,j(k) ≥ γ when ai,j(k) > 0. �

Furthermore, at each time k, the agents generate an
innovation vector x(k) in (4), satisfying approachability
condition, as formulated in (3). Specifically, let w(k) :=
Akx̂(k), with x̂(k) as in (4), then following is postulated
in [Bauso and Notarstefano (2015), Assumption 4]:

Assumption 3. For each k ∈ N, the innovation vector
x(k + 1) in (4) satisfies the following inequality:

(w(k)− projC(w(k)))
>

(x(k + 1)− projC(w(k))) ≤ 0,
(5)

where C is the CORE set as in (1). �

Moreover, to fulfil the conditions of the approachability
principle, the innovation vector is uniformly bounded,
[Bauso and Notarstefano (2015), Assumption 4].

Assumption 4. Let x(k + 1) be innovation vector in (4).
There exist L > 0, such that ‖xi(k + 1)‖ ≤ L,∀k ≥ 0.

The main result regarding the iteration in (4) by Bauso
and Notarstefano (2015) is that, if Assumptions 1−4 hold
then the average allocation vector x̂(k) will converge to
the set A∩ CN . In the context of coalitional game theory,
this implies that through the distributed allocation process
in (4), the agents will reach a common agreement on the
payoff distribution, which lies in the CORE.

4. OPERATOR THEORETIC CHARACTERIZATION

4.1 Approachability principle as a paracontraction

In this subsection, we aim at providing an operator-
theoretic characterization of the approachability condition
in (5), and present an interesting operator contained by
approachability condition which holds a paracontraction
property. To proceed, we first define the notion of para-
contraction.

Definition 6. (Paracontraction): A continuous mapping
M : Rn → Rn is a paracontraction, with respect to a
norm ‖ · ‖ on Rn, if

‖M(x)− y‖ < ‖x− y‖,
for all x, y ∈ Rn such that x /∈ fix(M), y ∈ fix(M). �

The approachability condition in (5), given w(k) =
Akx̂(k) provides us the criterion for generating an inno-
vation vector x(k + 1) to be used in the iterative process
in (4). In the next statement, we will present an alterna-
tive formulation for the approachability condition which,
interestingly, is the sum of a paracontracting operator and
arbitrary vectors with specific geometric meaning.

Lemma 1. Let β ∈ [0, 1), QC := 2projC − Id be the over-
projection operator, v⊥(k) = v⊥(wi(k)) be an arbitrary
vector that belongs to the hyperplane orthogonal to the
vector u := (wi(k) − projC(wi(k))) in (5) and v−(k) =
v−(wi(k)) be a vector orthogonal to v⊥(k) in the direction
opposite to vector u, (Figure 2). Then, the following equa-
tion corresponds exactly to the approachability condition
in (5):

xi(k + 1) = (1− β)projC(wi(k)) +βQC(wi(k))
+v⊥(k) + v−(k).

(6)

�
In Figure 2, we illustrate (6) for some β ∈ (1/2, 1).

Proof. To show that (6) corresponds to the approacha-
bility condition, let us plug (6) into (5). In the remainder
of the proof, we drop the dependence on k for ease of
notation.

(wi − proj(wi))
>︸ ︷︷ ︸

u

( x+︸︷︷︸
(6)

−proj(wi)) ≤ 0

⇔ (u)>((1− β)projC(wi) + β QC(wi)︸ ︷︷ ︸
2projC(wi)−wi

+v⊥ + v− − proj(wi)) ≤ 0
⇔ (u)>(β(−u) + v⊥ + v−) ≤ 0
⇔ −β(u)>(u) + (u)>v⊥︸ ︷︷ ︸

0

+(u)>v− ≤ 0

⇔ −β‖u‖2 − |u| |v−| ≤ 0,

Since all the steps are equivalent and the vectors v⊥ and
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(a) (b)

Fig. 2. Illustration of the approachability condition in (6):
projection and over-projection (a); innovation x+

i (b).

v− can be chosen arbitrarily for each given wi(k), and
since any point in H− can be written in the form in (6),
we conclude that (6) is equivalent to the approachability
condition in (5). �

Let us now consider the particular case of (6) with v⊥ =
v− = 0, and define the dependence of x(k+ 1) from w(k)
via an operator T :

∀i ∈ I : x+
i = (1− β)projC(wi) + βQC(wi)

= ((1− β)projC + βQC)︸ ︷︷ ︸
Ti

(wi)

= Ti(wi).

(7)

The operator Ti := (1 − β)projC(·) + βQC(·) in (5) is
a mapping from w(k) to x(k + 1) which, by Lemma 1,
satisfies the approachability condition in (5). Using this
operator Ti, we can give the following representation to
the process of generation of an innovation vector x(k+ 1)
in (4), which is equivalent to the particular case in (5) of
the approachability condition.

x(k + 1) = T (w(k)) :=

 T1(w1(k))
...

TN (wN (k))

 . (8)

Next, we present an operator-theoretic property of the
operator T in the following statement.

Theorem 1. The operator T : Rn → Rn defined in (5)−(8)
is a paracontraction. �

Before presenting the proof of Theorem 1, we provide two
technical statements, which we exploit later in the proof.

Lemma 2. (Projection and Over-projection operators):
Let C ⊂ Rn be a non-empty, closed and convex set. Then,
with respect to the Euclidean norm ‖ · ‖2:

(i) the projection operator projC is a paracontraction;
(ii) the over projection operator, QC := 2projC − Id, is

non-expansive. �

Proof. (i): If C is closed and convex then projC is a
paracontraction, [Elsner et al. (1992), Example 2].
(ii): By [Bauschke et al. (2011), Cor. 4.10]. �

Lemma 3. Let M be a paracontraction, B be a non-
expansive operator, with fix(M) ∩ fix(B) 6= ∅ and α ∈
(0, 1). Then, C := (1−α)M +αB is a paracontraction. �

Proof. Let y ∈ fix(M) ∩ fix(B) and x 6= y. Then:

‖C(x)− C(y)‖ = ‖((1− α)M + αB)x

− ((1− α)M + αB)y‖
= ‖(1− α)(Mx−My) + α(Bx−By)‖
≤ (1− α)‖Mx− y‖+ α‖(Bx− y)‖
< (1− α)‖x− y‖+ α‖(x− y)‖
= ‖x− y‖,

where we have used the triangular inequality and then
the definition of paracontraction for M . Therefore, with
‖C(x) − C(y)‖ < ‖x − y‖, we obtain the definition of
paracontraction. �

Remark 1. Lemma 3 also holds if both operators are
paracontractions (with the same proof). �

We are now ready to present the proof of Theorem 1.

Proof. (Theorem 1): At each time k an agent i generates
an innovation vector xi(k + 1) in (4), satisfying the
restricted approachability condition in (5). By Lemma
2, the operator T in (8) is a convex combination of a
paracontraction, projC(·) and a non-expansive operator,
QC(·). Thus, by Lemma 3, it is a paracontraction. �

4.2 Distributed allocation process as a sequence of
time-varying paracontractions

The result in Theorem 1 further allows us to characterize
an operator-theoretic property of the iteration in (4).
We show that, under a particular case of approachability
condition in (5), the iteration generates a sequence of
time-varying paracontractions. To prove this, we recall two
useful results related to paracontractions.

Proposition 1. (Composition of paracontracting opera-
tors): Suppose M1,M2 : Rn → Rn are paracontractions
with respect to same norm ‖ · ‖ and fix(M1)∩fix(M2) 6= ∅.
Then the composition M1 ◦M2 is a paracontraction with
respect to the norm ‖ · ‖ and fix(M1 ◦M2) = fix(M1) ∩
fix(M2), [Fullmer and Morse (2018), Prop. 1]. �

Proposition 2. (Doubly stochastic matrix): Let A be a
doubly stochastic matrix with strictly positive diagonal
elements. Then, the linear operator defined by the matrix
A⊗In is a paracontraction with respect to the mixed vector
norm ‖ · ‖2,2, [Fullmer and Morse (2018), Prop. 5]. �

Using the operator T in (8) and w(k) = Akx̂(k) as in (5),
we can rewrite (4) as:

w(k + 1) = (1− αk)Akw(k) + αkAkT (w(k)), ∀k ∈ N.
(9)

Note that, the step-size sequence (αk)k∈N in (4) is specified
to be αk = 1

k+1 by Bauso and Notarstefano (2015). Here,
we can generalize it subject to the following assumption.

Assumption 5. Let (αk)k>0 be a sequence such that αk ∈
(0, 1),∀k ≥ 0,

∑∞
k=0 αk =∞, and

∑∞
k=0 α

2
k <∞. �

Let us also define an operator Sk := (1 − αk)Ak(·) +
αkAkT (·), which in turn allows us to represent the it-
eration in (9) more concisely as:

w(k + 1) = Sk(w(k)). (10)

With the latter formulation, we can now conveniently
characterize the paracontraction property of the operator
Sk, according to the corollary below.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2735



Corollary 1. Let the operator T : Rn → Rn be as in
(8). Then, for each k ∈ N, the operator Sk in (10) is a
paracontraction. �

Proof. By Theorem 1, the operator T is a paracontrac-
tion. Furthermore, by Proposition 1 and 2, the composi-
tion Ak ◦ T (·) is also a paracontraction. This fact and
Proposition 2 imply that for each k ∈ N the operator
Sk := (1− αk)Ak(·) + αkAkT (·) is a convex combination
of paracontractions and hence, by Remark 1 on Lemma 3,
is a paracontraction. �

Remark 2. Corollary 1 also holds if, for all k ∈ N, αk =
α ∈ (0, 1) in (9). �

The results in Theorem 1 and Corollary 1 provide an
interesting operator-theoretic insight into the structure of
algorithm presented by Bauso and Notarstefano (2015).
We use this insight to design our own distributed payoff
allocation algorithm, which we present in the next section
along with its convergence proof.

5. DISTRIBUTED ALLOCATION VIA
PARACONTRACTION OPERATORS OVER

TIME-VARYING NETWORKS

In this section, we present our distributed allocation algo-
rithm and exploit the results derived in Section 4 to prove
its convergence. The algorithm we propose is similar, in
structure, to iteration presented in (9), so the same defini-
tions hold except for the step size α, which is considered
to be fixed here. In fact, the paracontraction property of
the employed operator in proposed algorithm, allows us
to prove the convergence, even with the fixed α. Further,
we will show in Section 6 via numerical simulations that
the algorithm actually performs faster with an appropriate
choice of fixed step size α.
Let the elements of the iteration, i.e., the set of agents
I, the operator T , the vector w(k) and the matrix Ak =
A(k)⊗IN be as in (9), defined in Subsection 3.2. Then, the
distributed allocation procedure on time-varying networks,
takes the form:

w(k+1) = (1−α)Akw(k)+αAkT (w(k)), ∀k ∈ N. (11)

Note that, in our proposed iteration in (11), there are two
differences compared to (9). First, the step size α is fixed
and secondly the elements of communication matrix A(k)
can take values from finite set. The latter implies that
there are finite number of adjacency matrices available,
for the communication among agents. Formally,

Assumption 6. Elements of communication matrix Ak,
i.e., ai,j(k),∀(i, j) ∈ I, take the values in a finite set. �

We can also redefine the operator S in (10) with fixed α
as Sk := Ak((1 − α)Id + αT (·)) to write (11) in compact
form as:

w(k + 1) = Sk(w(k)), ∀k ∈ N. (12)

Note that, because of fixed step size α in (11) and
Assumption 6, the operator sequence (Sk)k∈N will belong
to a finite family of paracontractions. This will allow us
to exploit the following theorem, proved by Fullmer and
Morse (2018), later for our convergence result.

Lemma 4. (Fullmer and Morse (2018))
LetM = {M1, . . . ,Mm} be a set of paracontractions such

that
⋂

M∈M fix(M) 6= ∅. Let the communication graph be
Q−connected and consider the iteration

x(k + 1) = M(Ak(x(k))),

where M(x) := col(M1(x1), . . . ,Mm(xm)). Then, the
state x(k) converges to a state in the set A ∩ fix(M) as
k →∞. �

We now have the necessary tools and algorithmic setup
to show, in the following theorem, that the iteration in
(11)/(12) converges to a consensus vector, see A in (2),
which belongs to CORE, C in (1).

Theorem 2. Let α ∈ (0, 1] and let the operator T : Rn →
Rn be a paracontraction with fix(T ) = CN in (1). Let
Assumptions 1 − 3 and 6 hold. Then, the iteration in
(11)/(12) is such that:

(i) (Sk)k∈N is a sequence of time-varying paracontrac-
tions;

(ii) lim
k→∞

w(k) = w∗, for some w∗ ∈ A ∩ CN ,

where C is the CORE set (1) and A is the consensus set
(2). �

Proof. (i): It follows directly from Remark 2 on Corollary
1.
(ii): Let M := (1 − α)Id + αT (·), so that the iteration
(12) reads as w(k + 1) = AkM(w(k)). To apply Lemma
4 it is convenient to exchange the order of M and Ak by
defining a new state z for (12):

w(k + 1) = AkM(w(k))
= AkM ◦ · · ·A1 M ◦A0 M(w(0)).︸ ︷︷ ︸

z(0)︸ ︷︷ ︸
z(1)

Then, the iteration becomes z(k + 1) = M(Ak(z(k))).
Further, it follows from assertion (i), Assumption 6, the
fact that fix(M) = fix(T ) and Lemma 4 that lim

k→∞
z(k) =

z∗, for some z∗ ∈ A ∩ CN . �

We emphasize that Theorem 2 shows the ability of
operator-theoretic tools to describe algorithms in general
form. For instance, our algorithm in (10) allows a mecha-
nism designer to choose an operator T in (11) to possibly
steer the consensus towards a particular payoff to the set
C in (1). The only requirements are that should be a
paracontraction and that fix(T ) = CN .

6. NUMERICAL SIMULATIONS

In our numerical simulations, we consider a coalitional
game (I, v) played among N = 4 agents with a set of
agents as I = {1, 2, 3, 4}. Coalitions, including the single-
ton, are assigned with a value specified by characteristic
function v. We set, v({1}) = 4, v({2}) = 3, v({3}) =
0, v({4}) = 3, v({1, 2}) = 5, v({3, 4}) = 3, v({1, 2, 3}) =
7, v(I) = 10. Now, a payoff vector, as in Definition 2, that
belongs to CORE, C in (1) must allocate each agent at-
least its individual value, sum of their allocations should
be vN = 10 and be group rational.
The agents communicate over time-varying graphs associ-
ated with the adjacency matrices A(k). Here, we set the
adjacency matrices to be:
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Fig. 3. (a): Trajectories of dist(w(k),A ∩
CN )/dist(w(0),A ∩ CN ) with α = 1/(k + 1) for β =
1/5, 4/5 and α = 1/2 for β = 1/5, 4/5. (b):
Trajectories of dist(w(k),A∩CN )/dist(w(0),A∩CN )
with α = 1/4, α = 1/2, α = 3/4 and α = 1/(k + 1).

A(2k + 1) =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

 , A(2k + 2) =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

 ,
for all k ∈ N. Note that this graph sequence satisfies As-
sumption 1 with Q = 2, and the elements of the adjacency
matrices satisfy Assumption 2 with γ = 1/2.
For the initial assignments, we assume that each agent
allocates entire value of coalition, i.e., v(I) = 10 to it-
self. For example, the initial proposal by agent 1 will be
w1(1) = [ 10 0 0 0 ]>. Finally, we apply the iteration in
(11) with the operator T = (1− β)projC(·) + βQC(·), and
as expected, the local allocations converge to A ∩ CN .
In Figure 3(a), we compare the trajectories of normalized
distances dist(w(k),A∩CN )/dist(w(0),A∩CN ), by vary-
ing β for a specified αk. We can observe that a higher value
of β corresponds to a faster convergence. In Figure 3(b),
we use the same metric and observe the convergence speed
while varying α. As expected, the convergence of iteration
with fixed step size α, is faster compared to a decreasing
sequence (αk)k∈N as in [Bauso and Notarstefano (2015)].

7. CONCLUSION

The ”approachability principle” can be generally described
via a paracontraction property. Consequently, distributed
payoff allocation algorithms can be designed with fixed
step sizes and over time-varying communication graphs.
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