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Abstract: Wastewater treatment plants are industries where the reduction of residual water
pollutant concentrations is performed. These kind of industries are characterised by applying
highly complex and nonlinear biochemical and biological processes. Thus, some of the concen-
trations involved in these processes have to be controlled to assure that they are maintained at
a given set-point. For that reason, different control strategies such as Proportional Integral (PI)
controllers, Model Predictive Controllers (MPC), Fuzzy Logic or Internal Model Controllers
(IMC) have been applied during the last years. However, the appearance of Artificial Neural
Networks (ANNs) is changing this scenario. They have been adopted to predict certain WWTP
parameters and then feed conventional controllers or even to implement some of them. Here, an
IMC approach implemented uniquely with Long Short-Term Memory (LSTM) cells to model
the direct and inverse models of the process under control is proposed. Furthermore, its stability
conditions are computed adopting a data-based test since no mathematical expressions of the
different models are considered. Results show that this approach is stable in the frequency region
where it is operating. Besides, control performance shows that this IMC is able to significantly
improve the Benchmark Simulation Model No.1 default PI control strategy.

Keywords: Artificial Neural Networks, Data-based control, Internal Model Control, Robust
Control, Wastewater Treatment processes.

1. INTRODUCTION

Nowadays, nearly all the industrial processes are being
controlled to assure they are yielding coherent values in-
stead of incoherent ones. In that sense, Wastewater Treat-
ment Plants (WWTP) are one of the industries where
control strategies are considered in most of the processes
they perform. The main objective of WWTPs is to treat
urban residual waters to reduce the amount of pollutants
and then spill the clean water into its natural cycle. To
achieve this reduction, WWTPs apply highly complex and
non-linear biological and biochemical processes to trans-
form the pollutant products into harmless ones. However,
these processes not always remove the pollutant products
completely. For that reason, regulations have been applied
in the form of limits specifying the maximum allowed
concentrations of pollutants. One clear example of them is
the European Directive 91/271 (Directive, EUW (1991)).

The biological and biochemical processes involved in the
pollutant reduction require certain parameters set at a
constant level depending on the pollutant concentrations.
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For that reason, different control strategies have been
considered accordingly to the type of WWTP. Since there
are a lot of WWTP architectures, the International Water
Association developed a WWTP framework simulating the
real behaviour of a general purpose plant, the Benchmark
Simulation Model No.1 (BSM1), whose main aim is to offer
generalisation, easy comparison and replicability of results.
Thus, any control strategy to be applied in WWTPs can
be tested previously in BSM1 (Copp (2002)).

The great majority of control strategies applied in WWTP
industries are devoted to managing certain concentrations
taking into account measurements from the different re-
actor tanks. This is the case of the BSM1 default control
strategy (Alex et al. (2008)). It tries to maintain the pol-
lutant concentrations at a given point in order to accom-
plish the regulations that apply, however, some violation
of pollutant concentration limits are still produced (Alex
et al. (2008)). For that reason, different and more complex
control strategies such as Model Predictive Controllers
(MPCs), Fuzzy Logic, and Internal Model Controllers
(IMCs) have been considered to improve the WWTPs con-
trol performance. For instance, in Shen et al. (2008), two
non-linear MPC approaches have been adopted to main-
tain the effluent quality below regulation limits. Another
approach corresponds to a supervised committee Fuzzy
Logic model which has been applied in Nadiri et al. (2018)
to predict the Chemical Oxygen Demand (COD), the
Biochemical Oxygen Demand (BOD) and the Total Sus-
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pended Solids (TSS) concentrations. Finally, in Vilanova
et al. (2018), an event-based IMC has been considered to
improve the BSM1 default control strategy.

The evolution of industry towards the Industry 4.0
paradigm as well as the incursion of Artificial Neural
Networks (ANNs) are changing the way of controlling
industrial processes (Sarvari et al. (2018)). In this case,
the adoption of ANNs in control strategies vary depend-
ing on their purpose. For instance, ANNs are considered
in some cases to predict WWTP effluent concentrations
and then feed Fuzzy Logic (Qiao et al. (2018)) or MPC
solutions (Sadeghassadi et al. (2018)). In other cases, the
ANNs determine which control strategy has to be adopted
and when it has to be activated (Pisa et al. (2019b)).
They have also been considered to implement the control
actuation. For instance, some IMCs consider ANNs to get
the direct and inverse relationship between the actuation
variables and the controlled ones. Doing so they are able
to decouple the complexity of the process under control
from the control itself (Pisa et al. (2019a)).

In this work, a data-based IMC strategy has been con-
sidered due to its simplicity, easy implementation and
good control performance (Vilanova et al. (2018)). This
new IMC approach, which adopts ANNs to implement the
direct and inverse models of the process under control, will
be in charge of controlling the dissolved oxygen (SO,5) of
the last WWTP aerated tank. The same approach was
considered in Pisa et al. (2019a), however, the stability
of the Multilayer Perceptron (MLP)-based IMC was not
computed. Here, the MLP nets will be substituted by Long
Short-Term Memory (LSTM) cells, which are able to gen-
erate a prediction model considering the time-correlation
between measurements. Furthermore, the stability of this
new IMC approach will be computed here to determine the
suitability of the controller and its frequency behaviour.

The structure of this work is as follows. The problem
conducted here and the proposed ANN-based solution are
presented in Sections 2 and 3. Then, the study of its
stability as well as the results obtained after evaluating
the proposed solution are shown in Sections 4 and 5. The
last section concludes the paper.

2. PROBLEM DEFINITION

BSM1 architecture considers five reactor tanks where the
biological and biochemical processes described by the Acti-
vated Sludge Model No.1 (ASM1) are implemented (Henze
et al. (1987)). Its default control strategies are focused on
tracking the nitrate-nitrogen (SNO,2) and dissolved oxygen
(SO,5) set-points (1 mg/L and 2 mg/L, respectively) by
means of PI controllers (see Fig. 1). Here, we are going
to focus on the second control loop, the one in charge
of the SO,5 set-point. This PI controller regulates the
SO,5 concentration to get 2 mg/L by means of modifying
the oxygen transfer coefficient of the fifth reactor tank
(KLa,5). However, it is observed that certain violations
of effluent pollutant concentrations are not avoided (Alex
et al. (2008)). For that reason, a new IMC control strategy
improving the default control will be implemented. It is
characterised by explicitly introducing the process under
control (P (z)) in the control loop (see Fig. 2). Besides, it
implements two mathematical models, the direct (Pdir(z))
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Fig. 1. BSM1 default control. Qin, Qpo, Qa, Qr and Qe

are the influent, the primary overflow, the internal
and external recirculation and the effluent flow rates,
respectively.

and its inverse (Pinv(z)), which model the direct and
inverse relationships between the actuation (u[n]) and the
controlled (y[n]) variables. The signal ỹ[n], which acts as
an input of the inverse model Pinv, corresponds to the
reference signal (r[n]) modified with the mismatch between
the real process P (z) and the direct model Pdir(z). There-
fore, the higher the accuracy of the models, the better the
IMC performance. However, the process under control is
usually highly-complex and non-linear. Thus, it has to be
linearised to determine Pdir(z) and Pinv(z) and therefore,
the accuracy of these models can be compromised.

As previously stated, the increasing interest on ANNs is
motivating their adoption in the control and automation
processes (Sarvari et al. (2018)) due to their ability in
modelling non-linear processes such as the ones present
in WWTP facilities (Da Silva et al., 2017, Chapter 1). For
instance, in Pisa et al. (2019a) two MLPs were considered
to implement the Pdir(z) and Pinv(z) models required by
the IMCs which substitute the PI controlling the SO,5

set-point. However, these networks are not able to take
into account the time-correlation between measurements
since they do not implement any memory cell. For that
reason, LSTM cells will be considered to implement the
IMC due to their suitability dealing with time-series and
sequence modelling (Goodfellow et al., 2016, Chapter 10).
Finally, a stability test of the control strategy will be
conducted since the WWTP processes present unmodelled
dynamics, uncertainties and non-linearities that compro-
mise the controller’s stability (Li and Zhu (2019)). In this
case, classical stability tests cannot be performed since
the proposed control strategy only relies on data obtained
from the real process. Therefore, a stability test based on
the estimation of the empirical transfer function of the
signals involved in the control process is adopted (Rojas
and Vilanova (2012)).
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Fig. 2. IMC structure. Pdir(z) and Pinv(z) are the direct
and inverse models or the process under control P (z).
H(z) corresponds to a low-pass filter adopted to avoid
bad behaviours at high frequencies.
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3. LSTM-BASED IMC APPROACH

3.1 LSTM-based IMC

The proposed IMC has been implemented by adopting
LSTM cells. The main point of these networks is that
they implement a memory cell able to model sequences
and time series. In terms of their memory cell, it considers
a cell state which is propagated through time with the
objective of storing the information of what has been
previously observed. Besides, this cell state is updated
accordingly to its input information. Therefore, the cell is
able to manage its internal state determining if the input
information is more relevant than the stored one or vice
versa (Goodfellow et al., 2016, Chapter 10). Thus, in this
work LSTMs are adopted to obtain the direct and inverse
models of the process under control since the considered
signals show a high correlation and time dependence. In
such a context, the behaviour of the proposed IMC (see
Fig. 2) is described as follows: The outputs of the process
and its direct model correspond to

y[n] = P (u[n] + d[n]) = SO,5[n]

ŷ[n] = Pdir(u[n]) = ŜO,5[n],
(1)

where u[n] = KLa,5[n] is the actuation variable and d[n]
are the weather perturbations entering in the real process.
Here, u[n] is computed by the IMC controller (C(z)) as

u[n] = C(ỹ[n]) = H(Pinv(ỹ[n])) = K̂La,5[n], (2)

where Pinv(z) is the inverse of the process under control,
ỹ[n] corresponds to the update of r[n] with the mismatch
between the real process and its direct model,

ỹ[n] = r[n]− e[n] = r[n]− (y[n]− ŷ[n]), (3)

and H(z) corresponds to a first order low-pass filter in
charge of managing the controller’s tolerance, i.e., the
behaviour of C(z) when unmodelled dynamics, inversion
uncertainties, etc, are present in the system (Pisa et al.
(2019a)). The filter cutt-off frequency ωc (rad/s) is deter-
mined accordingly to the stability test applied to the IMC.

The main point here is that Pdir(z) and Pinv(z) are
implemented adopting LSTM cells (see Fig. 3) to reduce
the mismatch between the real process and the direct
model as well as to avoid the loss of accuracy when the
inverse model is computed (Kandasamy et al. (2018); Pisa
et al. (2019a)). Thus, Pinv(z) and Pdir(z) are described as:

Pinv(z) = LSTMinv(z) Pdir(z) = LSTMdir(z). (4)

Both architectures consider a total amount of 5 elements:
the Sliding Window and the Normalisation layers, the
LSTM cell itself with 100 hidden neurons per gate, the
Linear activation function and the Denormalisation layer.
They have a total amount of 5 inputs and one output
signals which are determined accordingly to the purpose
of the net: (i) LSTMinv considers the controlled variable
(SO,5[n]) as one of the inputs and the actuation vari-

able (K̂La,5[n]) as its output; (ii) LSTMdir considers the
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Fig. 3. LSTMinv and LSTMdir architectures. Actuation
variable (kLa,5) is coloured in red whereas the con-
trolled one (SO,5) is coloured in blue.

K̂La,5[n] as one of the inputs and ŜO,5[n] as its output.
Furthermore, each architecture also considers the last pre-
dicted value as another input. Besides, both architectures
consider a common part of measurements to provide the
net with more information about the processes being mod-
elled. They correspond to the dissolved oxygen (SO,4),
the nitrate nitrogen (SNO,4) and the ammonium (SNH,4)
at the fourth reactor tank. In terms of the layers, the
Normalisation preprocessing one is in charge of normalis-
ing the input data towards zero-mean and unity variance
with the objective of addressing data heterogeneity. Then,
normalised data are sorted in time in the Sliding Window
preprocessing layer. The length of this sliding window
equals to 4 hours. Then, both LSTM cells predict the
corresponding measurements which go through the Linear
Activation Function to get the concentration prediction
(Da Silva et al., 2017, Section 1.3). Finally, they are de-
normalised in the Denormalisation Layer.

Each architecture has a total of 42901 parameters that
have been trained considering a whole year of BSM1 in-
fluent data sampled every 15 minutes (sampling frequency
of 1.11 mHz) when different equally distributed dry, rainy
and stormy weather episodes are considered. The LSTM
hyperparameters (number of cells and hidden neurons)
have been found performing a grid search: 200 training
epochs with Adam optimiser and a learning rate equal to 1·
10−3 have been considered. Then, the LSTM models have
been cross-validated adopting K-Fold method (5 folds)
(Bergmeir et al. (2018)). After this, early stopping and L2
penalty equal to 1 · 10−4 have been considered to mitigate
overfitting problems (Goodfellow et al., 2016, Chapter 7).

3.2 IMC stability study

The robust stability of the IMC structure has to be com-
puted in order to determine if the control approach can be
considered or not. However, the classical stability analyses
cannot be applied in our case since the proposed IMC is
completely based on LSTMs and therefore, on data. For
that reason, the stability of the proposed IMC approach
will be computed based on the test explained in Rojas and
Vilanova (2012). This test is mainly focused on the basis
that neither mathematical models of the process under
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control, nor for the inverse or direct models are available.
Hence, it infers the transfer functions of the different IMC
models by means of applying the Empirical Transfer Func-
tion Estimate (ETFE) (Ljung (1999)). ETFE considers
that the frequency response of a system (T (z)), whose
transfer function is unknown, can be inferred whenever
pairs of input/output data (u[n], y[n]) are available. There-
fore, its frequency response is computed as follows:

T̂ (ejω) =
Y (ejω)

U(ejω)
, (5)

where U(ejω) and Y (ejω) are the Fourier transforms of
input and output data, respectively. In such a context, the
data-based stability test says that a system is stable if

|P̂dir(ejω)Ĉ(ejω)lm(ω)| ≤ 1, (6)

where P̂dir(ejω) and Ĉ(ejω) are the frequency response
(inferred adopting (5)) of Pdir(z) and C(z), respectively.
1/|lm(ω)| is the multiplicative uncertainty bound which
is defined as the stability limit of the system. Thus, if the

product |P̂ (ejω)Ĉ(ejω)| is placed over 1/|lm(ω)| for a given
frequency, it means that the stability of the system is not
assured for this frequency (Rojas and Vilanova (2012)). In
this case, lm(ω) estimation is given by

lm(ω) =
|Pmismatch(ejω)|
|Pdir(ejω)| , (7)

where |Pmismatch(ejω)| is the frequency response inferred
from the mismatch e[n] between the outputs of the process

under control and the direct model when u[n] = K̂La,5[n] is
considered as the input: Pmismatch(ejω) = E(ejω)/U(ejω).

The pairs of input/output data required to infer the
different frequency responses are obtained considering an
open-loop configuration, i.e., each pair of input/output
data is obtained from each process when there is no
interaction among them. Once the different frequency
responses are inferred, the stability test is performed
for each one. If the stability criterion shown in (6) is
accomplished means that the IMC approach is stable.
Otherwise, the robust stability of the system can be
compromised for that frequency. Thus, after completing
the test, those frequency ranges where the system is
marginally stable will be determined.

4. RESULTS

Three tests have been conducted to determine the be-
haviour of the proposed IMC approach: (i) the Prediction
performance test; (ii) the Stability test; and (iii) the IMC
performance test. The first one is devoted to determin-
ing the prediction performance of the LSTM structures
adopted to model the inverse and direct relationships
between actuation and controlled variables of the process
under control, i.e., Pinv(z) and Pdir(z). The metrics con-
sidered in this test are the determination coefficient (R2),
the Mean Absolute Error Percentage (MAPE), which is
computed with denormalised data to avoid divisions by
zero, and the Root Mean Squared Error (RMSE), which

is measured in day−1 and mg/L in the cases of Pinv(z)
and Pdir(z), respectively (Islam et al. (2012)). Results will
be compared with the ones shown in Pisa et al. (2019a),
where a similar approach considering MLP networks is
proposed. The second test corresponds to the stability test
of the IMC approach. It will determine which are those
frequencies where the proposed approach is stable and
therefore, if the IMC can be adopted or not depending on
the frequency components of the signals involved in the
control process. Finally, the last test is performed once
the proposed IMC is implemented in BSM1 framework.
It will determine the behaviour of the IMC approach
when a closed-loop configuration is adopted. In this case,
the considered metrics are the Integrated Absolute Error
(IAE) and the Integrated Squared Error (ISE). Both are
computed considering the BSM1 simulation protocol, i.e.,
those samples representing the WWTP behaviour between
days 7 and 14 (Copp (2002)).

IAE =

day 14∑

n=day 7

|r[n]−y[n]| ISE =

day 14∑

n=day 7

(r[n]−y[n])2.

(8)

4.1 Prediction performance

The prediction performance of the LSTM cells involved in
the modelling of Pinv(z) and Pdir(z) has been contrasted
with the MLP adopted in Pisa et al. (2019a) after their
training process. Results in terms of the RMSE, MAPE
and R2 metrics are shown in Table. 1. As it is observed, the
improvements of the LSTM modelling the direct relation-
ships (LSTMdir) w.r.t. the MLP one are around a 40% and
a 77.42% in terms of RMSE and MAPE, respectively. In
the case of LSTMinv, its RMSE and MAPE improvements
w.r.t MLPinv are equal to a 45% and a 25.73%, respec-
tively. Both LSTM cells are able to improve a 1.01% the
MLPs’ R2 metric. Thus, these results show that LSTMs
are the best option to implement the IMC since the input
signals we are dealing with can be modelled as time-series.

4.2 Stability Test

Prediction performance has shown that LSTMs are the
best option to implement the IMC approach. However,
the stability of the LSTM cells and the whole structure
has to be computed before determining the behaviour
of the controller. As previously stated, the stability test
requires pairs of input/output data to infer the frequency
response of the different processes involved in the control.
In the input/output data generation of the process under
control and the direct model, hourly variations of the
actuation signal u[n] = KLa,5[n] between its minimum

Table 1. MLPs vs. LSTM prediction perfor-
mance

Net RMSE MAPE[%] R2

MLPdir 0.050 3.72 0.98

LSTMdir 0.030 0.84 0.99

Improvement [%] 40 77.42 1.01

MLPinv 0.082 5.48 0.98

LSTMinv 0.045 4.07 0.99

Improvement [%] 45 25.73 1.01

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16793



Stability Test

0 0.5 1 1.5 2 2.5 3 3.5
Frequency - (rad/s) 10-3

20 10-3

10 10-3

5 10-3

2 10-3

1 10-3

c - 
(ra

d/
s)

Fig. 4. Stability test performed to the IMC approach.
Notice that this test has been performed for different
configurations of H(z) ωc parameter.

and maximum values are considered. The rest of input
values correspond to the default BSM1 influent data.
The same pairs of input/output data will be used as the
output/input data of the inverse model.

lm(ω) is estimated to compute the multiplicative uncer-
tainty of the system. This uncertainty corresponds to the
bound determining the stability of the system since no
frequency components over it are allowed (Rojas and Vi-
lanova (2012)). Since Pdir(ejω) and C(ejω) are the inverse
of each other, the product between the two frequency
response should be 1 for all their components. However,
there are some ranges where the product differs from 1 and
is placed over the multiplicative uncertainty bound, which
means that the stability of the IMC is not assured. If this
is translated into the stability test, the frequencies where
|Pdir(ejω)·C(ejω)| is placed above the multiplicative uncer-
tainty bound are the ones where (6) is not accomplished.
Here is where H(z) makes sense because the lower the
ωc cutoff frequency, the lower the number of frequencies
where the IMC stability is compromised (see Fig. 4).

Notwithstanding, the attenuation effect of the filter is
also important: if ωc is set to a very low frequency, the

Fig. 5. |H(ejω)| vs. |KLa,5(ejω)| vs. |SO,5(ejω)|.

system stability will increase at the expense of degrading
predictions and control performance. In this case, after
analysing all the signals involved in the control process,
we have observed that the highest frequency component,
ω = 1.5 · 10−3 rad/s, corresponds to KLa,5(ejω) and
SO,5(ejω) signals (see Fig. 5). Then, a cut-off frequency
of ωc = 10 · 10−3 rad/s is considered in this work because
ωc is far enough of the input signals frequency components
as well as the filter’s attenuation effect is not appreciable
until the 2 · 10−3 rad/s (see Fig. 5). It is worth noting
that although the performed analysis is valid for the BSM1
model, it can be still applied in a real environment as long
as the BSM1 model is modified according to the real plant.

4.3 IMC performance

Finally, the IMC approach has been implemented in BSM1
to track the SO,5 concentrations. Weather perturbations
have been considered, therefore, the IMC performance will
show the suitability of this control approach in the set-
point tracking tasks when dry, rainy and stormy weathers
are present. Results are shown in Table 2, where the
IAE and ISE metrics are shown. Two different H(z)
configurations of the IMC approach are considered: ωc,1 =
10 · 10−3 rad/s and ωc,2 = 5 · 10−3 rad/s. It is worth to
notice that we have considered a variable SO,5 set-point
instead of a fix one at a value of 2 mg/L. Therefore,
default PI results will differ from the ones provided in Alex
et al. (2008). In that sense, the proposed IMC approach
is able to improve the IAE and ISE metrics around a 24%
and a 57% in average, respectively when ωc,1 equals to
10 ·10−3 rad/s. In the case where ωc,2 = 5 ·10−3 rad/s, the
improvements are decreased 17 and 23 percentage points
in average in terms of IAE and ISE. This means that
the tracking process is better performed when the LSTM-
based IMC approach is considered.

In terms of the H(z) configurations, the IMC performance
shows that ωc,1 = 10 · 10−3 rad/s offers the best re-
sults while there is a worsening in the improvement when
ωc,2 = 5 · 10−3 rad/s is adopted. This is motivated by the
aforementioned attenuation effect of the filter. For that
reason, the configuration adopting ωc,1 has been consid-
ered: stability is still assured at the same time there is a
significant improvement in the IMC control performance.
The controlled (SO,5[n]) and actuation (KLa,5[n]) signals
generated in each case are shown in Fig. 6. Here, it is
observed that both, y[n] and u[n] are exactly equal for all
the considered weathers until rainy and stormy episodes
start (at day 8 approximately (Qiao et al. (2018)). There,
the generated u[n] starts to fluctuate depending on the
weather whereas the tracking process is performed well.

Table 2. Control performance

Default PI vs. IMC control strategies

Weathers

Dry Rainy Stormy

Structure IAE ISE IAE ISE IAE ISE

PI 1.24 0.83 1.20 0.81 1.23 0.84

IMC − ωc,1 0.97 0.38 0.90 0.34 0.92 0.35

IMC − ωc,2 1.15 0.56 1.13 0.54 1.13 0.54

Improvement [%] w.r.t. PI

IMC − ωc,1 21.77 54.22 25.00 58.02 25.20 58.33

IMC − ωc,2 7.26 32.53 5.83 33.34 8.13 35.71
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5. CONCLUSION

The adoption of LSTM cells to implement an IMC ap-
proach has been discussed in this work. Here, the signals
we are dealing with corresponds to WWTP concentrations
which have the form of time-series with a strong time
correlation between measurements. Moreover, the process
to be controlled shows highly complex and non-linear dy-
namics. For that reason, LSTMs have been proposed to
design the IMC strategy. Furthermore, one of the major
contributions of this paper is placed in the data-based sta-
bility test performed to the IMC: The frequency response
of control elements is inferred from input/output data
since neither mathematical models nor transfer functions
of the process under control have been computed.

In such a context, the proposed IMC approach has been
tested in terms of prediction, stability and control perfor-
mance to determine if it can be adopted in the SO,5 control
task. Results have shown that it improves between a 26%
and a 77% the prediction performance offered by a similar
approach adopting MLP networks. Besides, the stability
test shows that this approach is marginally stable if signals
considered in the control task show frequency components
below 1.6 · 10−3 rad/s. In this case, the highest frequency
component corresponds to 1.5 · 10−3 rad/s approximately.
Therefore, the stability of the IMC is assured. Finally, the
control performance shows that the IMC approach is able
to improve the IAE and ISE metrics around a 24% and a
57% w.r.t. the BSM1 default control.
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