
Emergency-induced effects on high-speed
railway networks: A complex network

theory’s perspective
.

Junfeng Ma ∗ Shan Ma ∗ Tao Peng ∗ Weihua Gui ∗

∗ School of Automation, Central South University, Changsha 410083
China

Abstract: In this paper, we analyze the characteristics of high-speed railway networks in the
presence of emergencies from a complex network theory’s perspective. First, we represent the
railway network by a graph where the nodes denote stations and the edges denote train flows. For
a railway network system, the punctuality of trains and the number of trains running through
stations are the two main factors for evaluating emergency-induced effects. We thus assign each
edge of the graph a weight which is determined by these two key quantities. Then we propose a
method to estimate the delay of trains and some metrics are introduced to analyze the properties
of the railway network under disruptive events. These metrics may be also used to quantify the
influences of the emergencies. Finally, examples are provided to illustrate the developed theory.
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1. INTRODUCTION

The study of complex network theory starts from observ-
ing a collective phenomenon in the real world and then
tries to build a suitable model to analyze its behavior.
Networks such as communication and transportation net-
works often suffer from failures or attacks. For an inter-
dependent network, the failure of one node or edge may
lead to the failure of other interrelated nodes or edges.
However, most local failures rarely result in the loss of
global network structural properties due to the robustness
of networks. One of the exciting topics that have attracted
much attention in recent years is to analyze the robustness
of networks under various types of destructions Dobson
et al. (2007); Cai et al. (2015); Albert et al. (2000). In
practice, network components such as nodes and edges
might undergo failures, and the networks consequently lose
their functionality. Thus, the investigation of the robust-
ness of complex networks under failures is of significant
importance for practical applications.

Since the small-world phenomenon was discovered, the
research in complex networks has become a hot topic
in many scientific branches Watts and Strogatz (1998);
Latora and Marchiori (2001); Barabási and Albert (1999).
In particular, transportation networks, such as airport
networks Bagler (2008); Wang et al. (2011); Zhang et al.
(2010), urban public transport networks Derrible and
Kennedy (2010); Cipriani et al. (2012); Derrible (2012)
and railway networks Vromans et al. (2006); Giua and
Seatzu (2008); Zhang et al. (2016), have attracted increas-
ing attention. Among transportation networks, high-speed
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railway networks have experienced rapid development in
recent years due to their enormous impact on the economy.
High-speed railway networks often suffer from random or
systematic component failures. Hence it is important to
study the effects in detail to assist the improvement of
the management efficiency. Failures in high-speed railway
networks usually correspond to disruptive events with a
certain duration time. It is interesting to note that railway
networks exhibit some specific characteristics that do not
appear in other types of networks. For example, when
a disruptive event occurs in a railway network, it often
results in the delay or cancellation of trains, and the
disrupted stations and tracks can resume their services
after some time. However, in other networks, it may result
in the total removal of some edges or nodes. Therefore, it
should be of significant interest to investigate high-speed
railway networks in the presence of emergencies.

In this paper, we restrict our attention to high-speed
railway networks (HSRN). Various aspects of HSRN have
been investigated in recent years. For example, Vromans
et al. (2006) performed a study on reliability and hetero-
geneity of railway networks, and found that homogeneous
timetables can dampen the propagation of train delays.
Giua and Seatzu (2008) provided a modular representation
of railway networks, and used Petri nets to deal with the
supervisory control problems of networks. Zhang et al.
(2016) performed an empirical study on structural vul-
nerability and intervention of HSRN, and took a nearest-
link approach to improve the connectivity and reliability of
HSRN. As mentioned before, high-speed railway networks
often suffer from disturbances, including natural hazards
(strong wind, etc.) and component failures (electricity
power failure, etc.). Such disturbances often result in the
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delay or cancellation of trains, thus could lead to huge
financial losses.

One main contribution of this paper is to develop a frame-
work for the characteristic analysis of Chinese high-speed
railway network (CHRN) in the presence of emergencies
using a complex network theory-based approach. Firstly,
we represent the railway network by a graph where the
nodes denote stations, and the edges denote train flows.
Then we assign each edge of the graph a weight which
is determined by the number of trains running through
stations and the punctuality of the trains. A detailed
analysis will be performed on the graph constructed from
the high-speed train operation records within a typical
weekday. By using some information such as train delays
and the number of delayed trains, we define a new type
of weight for the edges of the railway network. By analyz-
ing the impact of delays in the high-speed rail network,
a new weighted index is proposed for the evaluation of
the vulnerability of networks. In order to illustrate our
theoretical framework, we take the part of CHRN managed
by Shanghai railway bureau as an example to assess the
vulnerability of the network in the presence of failures.
The result developed in this paper could be potentially
useful for the evaluation of robustness of railway networks
and may provide some insight into the improvement of
emergency support capacity.

2. HIGH-SPEED RAILWAY NETWORK MODEL

We consider a high-speed railway network modelled as
a directed graph G = {V,E}, where V = {1, 2, · · · , N}
is the set of nodes representing the railway stations and
E ⊆ V × V is the set of edges. In this graph, (i, j) is
an element of E if and only if there exists a train that
arrives at station i before j and has stations i and j as
its two consecutive stops. Associated with the graph is an
adjacency matrix A = [aij ], i, j = 1, · · · , N , whose element
aij = 1 if (i, j) ∈ E, and aij = 0 otherwise. The out-degree
of a node i is defined as

ki,out =

N∑
j=1

aij , (1)

where N is the total number of nodes in set V . The in-
degree of a node ki,in can be similarly defined. In- and out-
degrees are two main topological metrics evaluating the
connectivity and centrality of nodes in extensive networks.
However, these two metrics have some drawbacks when
applied to railway networks. Firstly, they do not take the
number of trains traveling across a station into account,
which is often considered to be an important indicator
of a station’s connectivity and centrality. Secondly, train
delays in the occurrence of emergencies may also play an
important role in defining a station’s connectivity and
centrality. Thus, a proper metric should also take train
delays into account. Instead of using these two metrics
ki,in and ki,out, we here propose an alternative metric to
describe the emergency-induced effects on station i:

hi(G,G
∗) = f(ni, τi, n

delay
i ), (2)

where G is the graph corresponding to the scheduled
train timetable in the railway network, and G∗ is the
graph corresponding to the actual train timetable after
emergencies; ni is the number of trains scheduled to stop

at station i. The scheduled departure time for train m at
station i is denoted by dmi . In the case of emergencies, train
delays may occur. Suppose that the actual departure time
for train m at station i is ami . Then the departure delay
of train m at station i is τmi = ami − dmi ≥ 0. Note that
in this paper we assume the emergency is not too severe
such that no train will be cancelled. Collecting all of the

ni train delays, we obtain τi =
{
τ1i , τ

2
i , · · · , τ

ni
i

}
. ndelayi

denotes the number of nonzero elements in the set τi. We
see from Eq. (2) that the metric hi(G,G

∗) is a function
of the number of scheduled trains ni, the train delays τi
and the number of delayed trains ndelayi at station i. We
mention that the function f(·) can be freely chosen based
on different preferences. In this paper, we choose a linear

function f(ni, τi, n
delay
i ) = α

∑ni

m=1 τ
m
i + βndelayi + ni,

where α and β are non-negative constants. For simplicity,
we write hi(G,G

∗) as hi in the sequel. Compared to the
in- and out-degrees ki,in and ki,out, our definition hi takes
the number of trains and the punctuality of each train into
account, and might be more appropriate for the evaluation
of the importance of stations in the high-speed railway
network under emergencies.

After analyzing the importance of nodes, we next turn
our attention to edges. It is well known that the edges in
the railway network are not equally important. We assign
each edge between two nodes a weight to characterize
its importance. Similar to Refs. Wang and Chen (2008);
Baharan et al. (2011) where degree and betweenness
centrality are used to estimate weights in networks, we
introduce a weighting method based on the evaluation
metric hi. The weight of an edge (i, j) is defined as

wij =

{
(hihj)

θ if aij 6= 0
0 otherwise

, (3)

where θ > 0 is a constant. The definition of weight is
based on the intuition that an edge between two important
end nodes is important in the graph. We can see that
wij depends largely on the emergency-induced effects. If
there is no deviation from the timetable for each train
at stations i and j, we have f(ni, τi, n

delay
i ) = ni, hence

the weight of the high-speed railway network reduces to
wij = aij(ninj)

θ, which depends only on the number of
trains scheduled to stop at stations i and j in this situation.

In order to give an intuitive explanation of the high-speed
railway network, an example of a railway network with 8
stations and 16 railway lines is given in Fig. 1. The number
in each circle represents the label of the corresponding
station. In CHRN, most of the railway lines between two
stations are double-track, and they do not affect each other
in general. Without loss of generality, we only take the
single-track into account. The scheduled train timetable is
recorded in Tab. 1. According to the information extracted
from Fig. 1 and Tab. 1, we can obtain the topology of the
railway network graph, as shown in Fig. 2. The blockade
of one railway line might influence the weight of several
edges in our railway network. For example, the route of
train B is 1→ 2→ 5→ 7→ 8, as shown in Tab 1. When
the railway line (5, 7) suffers from destructions, train B
might be delayed at station 5, 7 and 8, which influences
the weight of edges (5, 7) and (7, 8) as shown in Fig. 2.
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Table 1. The scheduled train timetable corresponding to the train network in Fig. 1

train
index

route arrival time / departure time

station 1 station 2 station 3 station 4 station 5 station 6 station 7 station 8

train A 1→ 2→ 5→ 7 −/7 : 30 7 : 45/7 : 48 − − 8 : 13/8 : 16 − 8 : 43/− −
train B 1 → 2 → 5 →

7→ 8
−/7 : 40 7 : 55/7 : 58 − − 8 : 23/8 : 26 − 8 : 53/8 : 56 9 : 21/−

train C 1 → 2 → 5 →
7→ 8

−/7 : 45 8 : 00/8 : 05 − − − − 9 : 01/9 : 04 9 : 29/−

train D 3→ 5→ 7→ 8 − − −/7 : 45 − 8 : 04/8 : 07 − 8 : 30/8 : 34 9 : 02/−
train E 3 → 5 → 7 →

6→ 8
− − −/8 : 05 − 8 : 34/8 : 37 9 : 22/9 : 25 9 : 09/9 : 12 9 : 37/−

train F 3 → 5 → 7 →
6→ 8

− − −/8 : 19 − 8 : 48/8 : 51 9 : 37/9 : 41 − 9 : 51/−

train G 4→ 6→ 8 − − − −/8 : 01 − 8 : 21/8 : 24 − 8 : 45/−
train H 4→ 6→ 7→ 8 − − − −/8 : 08 − 8 : 44/8 : 47 9 : 17/9 : 21 9 : 45/−

1

2 3

5

7

4

6

8

Fig. 1. An example of a high-speed railway network

1 2 3 4

5 6 7 8

Fig. 2. Topology of the railway network shown in Fig. 1

3. EMERGENCY-INDUCED EFFECT ANALYSIS
FOR HIGH-SPEED RAILWAY NETWORKS

This section will first introduce a method to estimate the
train delays, and then propose a performance metric to
evaluate the emergency-induced effects.

3.1 Train delay estimation

From Eqs. (2) and (3), in order to calculate the weight
of an edge (i, j), we need to obtain information such as
the train delays τi, τj and the number of delayed trains

ndelayi , ndelayj at the stations i and j. Though the location
and duration of emergencies are not precisely known in
practice, it is possible to make a good prediction of them
based on historical train movements data. Using this idea,
we first introduce a method to estimate the train delays
and the number of delayed trains and then present a
systemic analysis for the emergency-induced effects. The
disturbance we consider in this paper is the blockage of

railway lines. Its definition has been given in Cacchiani
et al. (2014), and the cancelation of trains is not taken
into account. It is assumed that the start time and end
time of the blockage are known, denoted by Dstart

ij and

Dend
ij , respectively. Here the subscript ij means that the

blockage happens at the railway line between the stations i
and j. The trains scheduled to run on the disrupted railway
lines have to stop at a station until the disruption is over.
This is based on the fact that for the high-speed railway
system in China, trains cannot change the operational
route without permission from the railway bureau. In
addition, the number of trains that stop at a station can
not exceed the capacity of the station. We assume the
station capacity of the station i is pi, which means at most
pi trains could stop at the station i at the same time.

Recall that the departure delay for a train m at station
i is τmi = ami − dmi , where dmi denotes the scheduled
departure time, and it can be obtained from the scheduled
timetable. Hence our objective in this section is to estimate
the actual departure time ami . Suppose that there are k
delayed trains, and we record these delayed trains as a set
T = {1, 2, 3, · · · , k}. Suppose the disruption event occurs
in the segment (i∗, i∗+1). When there are sufficient station
tracks for the delayed train m to dwell in station i∗, that
is m ≤ pi∗ , we have

ami∗ = max

{
Dend
i∗,i∗+1 +

m−1∑
s=1

lsi∗ , d
m
i∗

}
, (4)

where m ∈ T , lsi∗ denotes the minimum time interval
between trains s and s+ 1 at station i∗. When pi∗ < m ≤
pi∗−1+pi∗ , it means that the train m has to stop at station
i∗ − 1 until the disruption is over. The actual departure
time of the train m at station i∗ − 1 in this time can be
denoted by

ami∗−1 = max

{
Dend
i∗,i∗+1 +

m−pi∗−1∑
s=1

lsi∗−1, d
m
i∗−1

}
. (5)

Similarly, we can calculate the primary train delays for
other values of m. We next consider the delay of the
trains on their subsequent paths. For a train m, we
record its stations scheduled to stop as a set Sm =
{is, is + 1, is + 2, · · · , ie} in order, where is denotes the
station that the primary delay occurs, and ie denotes the
terminal station of train m. In order to estimate the delay
of the trains on their subsequent paths, it is essential
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to obtain the time supplement and buffer time from the
scheduled timetable Goverde and Hansen (2013); Harrod
et al. (2019). As shown in Fig. 3, the time supplement
refers to the additional time beyond the minimum running
time and dwelling time of trains. It keeps the punctuality of
trains when railway networks suffer from disruptive events.
Here umi denotes the time supplement of train m between
station i−1 and i. The time supplement consists of dwell-
time and running-time supplement. We define them as
follows:

umi = um1i + um2i,
um1i = max {dmi − gmi − emi , 0} ,
um2i = max

{
gmi+1 − dmi − rmi,i+1, 0

}
,

(6)

where um1i and um2i denote the dwell-time supplement and
running-time supplement, respectively; gmi denotes the
scheduled arrival time of train m at station i; emi denotes
the minimum dwell time of train m at station i; rmi,i+1
denotes the minimum running time of train m between
stations i and i + 1. Different from the time supplement,
buffer time is the additional time beyond the minimum
headway time between two trains, as shown in Fig. 3.
When the leading train is delayed, the buffer time reduces
the interference with the following trains. Let vmi denote
the buffer time of station i between trains m − 1 and m.
For two consecutive trains m−1 and m, the headway time
between them has to be larger than the minimum headway
time for security. The definition of buffer time is given as
follows:

vmi = max
{
dmi − dm−1

i − lm−1
i , 0

}
. (7)

Similar to Ref. Harrod et al. (2019), the delay of train m at
station i will propagate to the following stations through
the expression of individual delay given in Eqs. (4) and
(5).

τmi = max
{
τmi−1 − umi , τm−1

i − vmi , 0
}
, (8)

where i − 1, i ∈ Sm. From Eq. (8), we can see that a
train m may recover from its own delay using the time
supplement umi , and the headway time between train m
and the preceding train m+1 can not exceed the minimum
headway time. When either of these limits is exceeded,
the train m at station i ∈ Sm will experience a delay. In
addition, we can find from Eq. (8) the larger one of the
time supplement umi and buffer time vmi determines the
train delays.

Fig. 3. Illustration of time supplement and buffer time

3.2 Emergency-induced effect evaluation

The analysis of emergency-induced effects can lead to
the improvement of risk and crisis management for rail-
way systems. As an essential metric, cumulative delay is
commonly used to analyze the impact of an emergency
in rescheduling problems Törnquist and Persson (2007);
Zhan et al. (2015). Its expression is given as follows:

Γ =

M∑
k=1

N∑
i=1

τki , (9)

where Γ denotes the cumulative delay, and M denotes the
number of trains in the railway network. However, the
metric Γ does not take the number of delayed trains and
the scope of the emergency-induced effects into account.
Hence it is not suitable to be used for the evaluation of
the impact of the emergency. In order to give an appropri-
ate description of emergency-induced effects, we need to
specify another performance metric. The pre- and post-
performance of the railway network under a disruptive
event are both considered. From Eqs. 2 and 3, we con-
struct a weight matrix of the railway network, denoted by
W = [wij ]. The pre-disruption performance of a railway
network is measured by its weight matrix W , which can be
obtained by the scheduled train timetable according to the
definition. When a disruptive event happens, by estimating
the train delays using the method mentioned above, we can
obtain the weight matrix of the post-disruption railway
network, denoted by W

′
. Then we define the emergency-

induced effect metric as the changes of the weight matrix.
Its expression is given as follows:

H(G,G∗) =
∥∥∥W −W ′

∥∥∥
F
, (10)

where H(G,G∗) denotes the emergency-induced effect
metric, and ‖·‖F denotes the Frobenius norm. The defi-
nition of the metric H(G,G∗) is based on the observation
that if the deviation of trains from the scheduled timetable
is small, then the effect of the disruptive event should be
unserious. In addition, for the disruptive events that occur
in the same location, when the events last longer, there
will be more delayed trains and cumulative delays. Hence
H(G,G∗) is a non-decreasing function of the duration of
the event. When there is no deviation from the scheduled
timetable for every train in the railway networks, we have
H(G,G) = 0.

4. EXAMPLES OF HIGH-SPEED RAILWAY
NETWORKS

This section takes two high-speed railway networks as
examples to illustrate the proposed methodology. The
minimum headway time is assumed to be 3 min. The
time supplement and buffer time are assumed to be both
constants u = v = 3 min. In addition, the metric hi in our
examples is chosen as:

hi = 0.1

ni∑
m=1

τmi + ndelayi + ni,

and the weight wij is chosen as:

wij =

{
hihj if aij 6= 0

0 otherwise
.
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4.1 Example 1

Table 2. Train delays when the disruptive event
occurs in segment (2, 5) from 7 : 30

duration of the disruptive event (min) 20 30 60 90

cumulative delay of train A (min) 2 20 80 140
cumulative delay of train B (min) 0 6 93 170
cumulative delay of train C (min) 0 0 58 118
cumulative delay of train D (min) 0 0 0 0
cumulative delay of train E (min) 0 0 0 0
cumulative delay of train F (min) 0 0 0 0
cumulative delay of all trains (min) 2 26 231 428

Table 3. Train delays when the disruptive event
occurs in segment (5, 7) from 7 : 30

duration of the disruptive event (min) 20 30 60 90

cumulative delay of train A (min) 0 0 17 47
cumulative delay of train B (min) 0 0 16 76
cumulative delay of train C (min) 0 0 46 106
cumulative delay of train D (min) 0 0 42 102
cumulative delay of train E (min) 0 0 2 84
cumulative delay of train F (min) 0 0 0 111
cumulative delay of all trains (min) 0 0 123 526
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Fig. 4. The cumulative delay of trains under different
disruption time
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Fig. 5. The performance metric H(G,G∗) under different
disruption time

The first example is shown in Fig. 1, and the scheduled
timetable of trains is given in Tab. 1. We consider two
cases: 1) the segment (2, 5) is disrupted; 2) the segment
(5, 7) is disrupted. The start time Dstart

ij = 7 : 30, and the
station capacity pi = 4 for i = 1, 2, · · · , 8. Then we can
estimate the train delays under different end time Dend

ij , as
shown in Tabs. 2 and 3. It can be found that the cumulative

delay of trains is not only dependent on the duration and
location of the emergency but also dependent on the train
route and the scheduled timetable. When the disruption
time is small, the train delays may be absorbed by the
time supplement and buffer time. We can see from Fig. 4
that the cumulative delay grows with incremental increases
in disruption time, slowly at first but quickly in the final
phase. Fig. 5 shows the variation of the performance metric
H(G,G∗) when the disruption time grows. Comparing the
two broken segments in Figs. 4 and 5, we find that the
disruption event that occurs in different locations results
in different consequences. In addition, when the disruption
time is small, the effects of the blockage in segment (2, 5)
are more serious than that in segment (5, 7). As the
disruption time increases, the blockage in segment (5, 7)
has a more serious impact. This is because there are more
delayed trains when the segment (5, 7) is broken.

4.2 Example 2

Fig. 6. Topological map of a high speed railway network
managed by Shanghai railway bureau. The red lines
denote the selected locations of disruptive events.
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 “Nanjingnan-Zhenjiangnan” disruption

Fig. 7. Total delays of railway network under different
disruption time

The second example is a real high-speed railway net-
work, which consists of 115 stations and 236 railway
lines managed by Shanghai railway bureau, as shown in
Fig. 6. The corresponding scheduled train timetable could
be extracted from “12306” website 12306 China Railway
(2019) and the time supplement and buffer time could
be calculated by Eqs. (6) and (7). For this example, we
select two railway lines “Suzhoudong-Bengbunan” and
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Fig. 8. The performance metric H(G,G∗) under different
disruption time

“Nanjingnan-Zhengjiangnan” as the locations of the dis-
ruptions, and analyze the delayed trains during 6 : 00 −
12 : 00. The start time of the disruptive event in this
example is Dstart

ij = 9 : 00. Figs. 7 and 8 show the
cumulative delay and performance metric H(G,G∗) for
the part of CHRN managed by Shanghai railway bureau,
respectively. It can be seen that the cumulative delay and
performance metric H(G,G∗) grow with the disruption
time. Comparing the two curves in Figs. 7 and 8, we can
find that the disruptive event occurs in the railway line
“Suzhoudong-Bengbunan” has more serious consequences
than “Nanjingnan-Zhenjiangnan” in the period of disrup-
tion time 9 : 00− 10 : 00.

5. CONCLUSION

In this paper, we have proposed a quantified evaluation
for the emergency-induced effects on high-speed railway
networks. A metric has been proposed to analyze the
importance of stations in railway networks. This metric
takes the punctuality of trains and the number of delayed
trains into account. Then we have defined the weight of
edges in the railway networks and introduced a method
to estimate the delay of trains. To qualify the emergency-
induced effects, we have proposed a performance metric for
analysis. Finally, we have provided two examples to illus-
trate the proposed methodology and analyzed the effects
of disruptions with different locations and durations. The
presented approach may provide useful guidance to the
management of train networks under disruptive events.
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