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Abstract: The existence of hysteresis phenomenon in piezoelectric actuators of nanopositioners
adversely affects their performance, e.g. image distortion in Atomic Force Microscopy. A usual
approach to circumnavigate hysteresis nonlinearity is feedforward compensation where the
performance depends extensively on the accuracy of the hysteresis model. To achieve accurate
modeling of hysteresis in nanopositioners driven by piezoelectric stacks, we used a dual-stack
differential driving configuration. Comparing hysteresis in single-stack piezoelectric actuators
with dual-stack piezoelectric actuators in differential driving configuration, we observed a more
symmetric behavior for the hysteresis in dual-stack differential driving actuators. Then, we
modeled the differential driving configuration by utilizing coupled electromechanical equations
with hysteresis models applied to them. In particular, Duhem and Prandtl-Ishlinskii (P–I)
methods were used for hysteresis modeling. Based on the models and experimental data, we
observed that the maximum value of the Duhem modeling error reduced from 9.63% for the
nondifferential configuration to 1.85% for the differential configuration. For the P–I method, the
maximum modeling error decreased from 7.46% to 2.77%. This observation shows that the dual-
actuated differential driving configuration improves hysteresis modeling accuracy. Therefore, this
configuration is a suitable choice for the applications where accuracy is of prime importance.

Keywords: piezoelectric, hysteresis, modeling, dual-stack, differential-drive

1. INTRODUCTION

Thanks to their ability to generate large forces as well
as their high resolution, fast response, high stiffness, and
small size, Piezoelectric Actuators (PAs) are widely uti-
lized in applications that involve micro- and nano-scale
positioning. However, PAs suffer from the highly nonlin-
ear behavior between the inputs and the outputs. Hys-
teresis and creep are two nonlinear phenomena that, if
not compensated for, can severely deteriorate the perfor-
mance (Cao and Chen, 2015). Creep effect is limited to
slow operating speeds at low frequencies, and its effect
diminishes as the applied frequency increases. Hysteresis
effect, on the other hand, is significant in all frequencies,
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and its value becomes notable when the PA displacement
surpasses 10% of the full range displacement (Ru et al.,
2016). Hysteresis is known as the main nonlinear effect
of PAs as it causes tracking errors up to 20% of the full-
range displacement (Cao and Chen, 2015). The positioning
error caused by hysteresis, for example, can cause image
distortion in Atomic Force Microscopes (AFMs) driven by
PAs. Therefore, accurate modeling and precise control of
hysteresis are of prime importance in applications where
long-range displacement with high resolution is required.

Generally, there are four methods to deal with hysteresis
distortion in a PA: 1- small signal actuation, 2- charge
control, 3- feedback control, and 4- feedforward control.
In order to keep the behavior of a PA linear, the low
voltage actuation method restricts the PA’s displacement
to 5 − 10% of the full-range motion (Ru et al., 2016).
Several studies have shown that driving PAs with charge,
or current rather than voltage substantially decrease hys-
teresis distortion (Devasia et al., 2007). Feedback control
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techniques are regarded as the primary method to cancel
positioning errors and reject effect of disturbances when
the actuation input is voltage. Cancellation of nonlinear
effects and precise positioning in feedback control meth-
ods are achievable at the cost of using high feedback
gains, which produces its own problems such as excessive
projected noise (Bazaei et al., 2015). Nonlinear effects
have also been dealt with by feedback control using a
specific internal model design in the framework of output
regulation theory (Chen et al., 2017). Because of lightly
damped resonant modes in piezo-driven nanopositioners,
they have low gain margins and large feedback gains
tend to make the system unstable, which results in a
compromise between stability and performance (Devasia
et al., 2007). Furthermore, as the hysteresis phenomenon
in PAs exhibits nonlocal memory, the displacement of PAs
depends on the history of the inputs as well as the current
input. Hence, several displacement values can be obtained
from the same input voltage, which adds more difficulties
to the feedback control system (Devasia et al., 2007).
Feedforward controllers are employed to help the feedback
control law and improve the system’s performance without
weakening stability. The primary purpose of a feedforward
controller system is to cancel known disturbances and
compensate for hysteresis and creep distortions. Since the
hysteresis is the main source of nonlinear behavior of PAs,
several studies have been carried out to compensate it, see
Cao and Chen (2015); Devasia et al. (2007) and references
therein for more details.

Many feedforward controllers use a model of hysteresis to
compensate for its adverse effect (Eielsen et al., 2012).
Therefore, the performance of these controllers relies thor-
oughly on the accuracy of the model they used. On this
basis, several models have been introduced to describe
hysteresis. To name a few, Preisach, Prandtl-Ishlinskii (P–
I), Duhem, and Bouc-Wen are some popular methods for
hysteresis modeling in control systems for piezo-driven
nanopositioners. A more detailed list is available in survey
papers such as Cao and Chen (2015); Devasia et al. (2007).

Piezoelectric Stack Actuators (PSAs) are designed to tol-
erate large axial compresive loads and are able to gener-
ate large values of pushing force (see Fig. 1). This uni-
directional nature to make displacement in only one direc-
tion can be a shortcoming. Furthermore, as PSAs are sen-
sitive to environmental conditions (Fett and Thun, 1998),
their conventional unidirectional applications, shown in
Fig. 1, make the system susceptible to environmental
changes, e.g., temperature. Therefore, this asymmetric
configuration could deteriorate the system’s performance,
especially in highly accurate positioning devices such as
nanopositioners or AFMs. To address these limitations,
dual-stack differential driving systems ,Fig. 1 (right), were
addressed in a number of publications (Schitter et al.,
2007; Bazaei et al., 2019b).

The main contribution of this paper is to study the
hysteresis effect in dual-stack differentially piezo-driven
nanopositioning systems. First, we introduce differential
equations to describe hysteresis in the differential drive
configuration. Then, we observe from experimental data
that the hysteresis distortion in the differential driv-
ing configuration is more symmetric than the unidirec-
tional configuration. Next, we employ Duhem and Prandtl-

Fig. 1. Unidirectional actuation (left) and dual actuated
differential driving actuation (right) methods.

Ishlinskii (P–I) models to capture hysteresis behavior, and
showed that the differential driving configuration improves
modeling error.

The rest of this paper is organized as follows. In section
2, we introduce differential drive configuration of PSAs
for a nanopositioner and the Duhem and P–I models
for hysteresis in PSAs. Experimental setup, method of
obtaining data, and early observations are represented in
section 3. Section 4 is devoted to studying hysteresis in
nanopositioners driven by dual-stack differential driving
PSAs. Finally, the conclusions are drawn in section 5.

2. MODELING

The constitutive equation of piezoelectric materials (IEEE,
1988) for a multi-layer PSA results in

F = Tv −KIx, (1)

Q = Tx+ Cv, (2)

where KI , T , and C are defined constants, F [N ] is the
force applied by the PSA, Q [Cb] is the total charge of the
stack, x [m] is the longitudinal displacement of the stacks,
and v [V ] is the applied voltage to the PSA.

Using (1)–(2), a schematic drawing of a nanopositioning
system driven by a pair of identical PSA in the differential
driving configuration is shown in Fig. 2. Using mass-
spring-damper system, the figure illustrates the interaction
between electrical and mechanical parts for the x−axis
of motion. By using this approximate model, we consider
the first mode shape of the stage for the case in which
the excitation frequency is well below the fundamental
frequency. A similar situation is valid for the y−axis of
motion.

In Fig. 2, Mp denotes the inertia term (effective mass)
for the PSA in the first eigenmode of the longitudinal
vibration (Stokey, 1988), Ms and Ks denote inertia and
stiffness terms, respectively, for the stage in the x−axis
of motion, and K0 represents the stiffness of the stack-
stage interaction port. The force applied to the point-
mass model of the PSAs is obtained from (1). Following
Goldfarb and Celanovic (1997), the hysteresis nonlinearity
H is serially connected to the electrical part of the PSA;
therefore, the applied voltage at the electromechanical
port is v(·) = u(·)−vh(·), where v

h
(·) is the disturbance voltage

due to the hysteresis effect, u(·) is the total voltage applied
to the PSA, and (·) can be either (l) or (r), representing
left or right actuator, respectively.

The main difference of our model with the conventional
models used for PSA based positioning systems, see e.g.
Adriaens et al. (2000), is the introduction of K0 between
piezo body and the stage in the middle. This stiffness is
necessary to comply with the conservation of energy at the
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Fig. 2. Dual actuated nanopositioning stage and its simplified electro-mechanical model. Solid-line and dashed-line show
the model after and before actuation, respectively

port of interaction when the PSAs are electrically biased.
In this respect, when a DC voltage is applied identically
to the left and right PSAs, ul = ur = u, the flexibility
between Ms and Mps causes the left and right PSAs to

displace T (u−vh)
(KI+K0)

and − T (u−vh)
(KI+K0)

, respectively, while the

displacement of the stage is still zero.

Employing (1), (2), and Fig. 2, the set of governing
electromechanical equations is presented below. In (7), xr

applies a compressive force to the right PSA, therefore, its
effect appears with negative sign.

Mpẍl + (KI +K0)xl −K0xs = T (ul − vhl ), (3)

Msẍs ++bsẋs −K0xl + (Ks + 2K0)xs −K0xr = 0, (4)

Mpẍr + (KI +K0)xr −K0xs = −T (ur − vhr ), (5)

Ql = C(ul − vhl ) + Txl, (6)

Qr = C(ur − vhr )− Txr. (7)

2.1 Hysteresis models

The Duhem model is a first-order differential equation
that is originally developed to explain rate-independent
magnetic hysteresis behavior in ferromagnetic materials
(Adriaens et al., 2000). The equation, then, proves its va-
lidity to model hysteresis behavior in piezoelectric materi-
als through several studies, e.g., Adriaens et al. (2000); Lin
and Lin (2012). The first-order differential form, with three
parameters to be identified, has made Duhem method
attractive to design model-based control systems with hys-
teresis compensation. The model for the hysteresis effect
between input x(t) and output (hysteresis value) y(t) is
given by

ẏ(t) = α|ẋ(t)| [βx(t)− y(t)] + γẋ(t) (8)

where α, β, γ > 0 are model’s parameters that are to be
identified.

The P–I model characterize the hysteresis behavior be-
tween input x(t) and output y(t) by a finite series of play
and stop operators. Assuming the input x(t), ti ≤ t ≤ ti+1,
i = 1, · · · , N belongs to the space of piecewise monotone
continuous functions, the play operator is defined as

Pr[x](0) = pr(x(0), x) = 0 (9)

Pr[x](t) = pr(x(t),Pr[x](ti)), ti ≤ t ≤ ti+1 (10)

pr(x(t),Pr[x](ti)) = max (x(t)− r,min (x(t) + r,Pr[x](ti)))
(11)

where r is the input threshold. The output y(t) of the P–I
model is defined as (Gu et al., 2013)

y(t) = a0x(t) +

∫
∞

0

a(r)Pr[x](t) dr (12)

where a(r) is the density function that controls the size
and shape of the hysteresis curve. This function converges
to zero as r → ∞; therefore, in practice, the upper limit
of the integral is truncated to a limited large number. In
(12), coefficient a0 and function a(r) are the parameters
that must be identified.

In the literature of control systems for hysteresis compen-
sation in PAs, there are two methods to incorporate a hys-
teresis model into the electromechanical equations (3)–(7).
The first method considers voltage across the hysteresis
box (see Fig. 2) and the total charge of the piezoelectric as
the input and output of the hysteresis model, respectively.
The second method, however, considers the driving voltage
and the stage displacement as the input and output, re-
spectively. Because the hysteresis models used for control
design purposes are phenomenological base, both meth-
ods are acceptable provided that they produce accurate
models. Examples of the first method include Adriaens
et al. (2000); Lin and Lin (2012), and examples of the
second method are given in Fleming and Leang (2014);
Rakotondrabe (2010); Habineza et al. (2015). In this study,
we used the second method with the procedure explained
in section 4.

3. EXPERIMENTS AND EARLY OBSERVATION

Shown in Fig. 2, a custom-made symmetrical flexure-based
nanopositioning stage is used in this study (Bazaei et al.,
2019a). The symmetrical structure of the monolithic stage
accommodates for single and dual PSA for unidirectional
and differential driving configurations, respectively, as
shown in Fig. 1. The middle square stage displaces along
x and/or y axes by PSAs (Thorlabs PK4DLP2) either
in unidirectional (1) or differential driving configuration.
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Fig. 3. Hysteresis curves of the stage displacement for
unidirectional and differential driving configurations.

The PSAs are installed and preloaded in their places by
preload screws (not shown in the figure). The displacement
of the stage is measured by a LASER interferometer sensor
(SIOS SM-05), which uses the extruded middle stage as the
reflecting surface. A dSPACE board is used to generate
input signals and collect sensor data.

A dual-channel voltage amplifier (FLC Electronics A400DI)
amplifies the input signal and small bias voltages be-
fore being applied to the actuators at the left and right
sides (L– and R–actuators). The amplifier has an in-built
phase inverter that shifts 180◦ its input phase. In order
to measure the hysteresis curve accurately, the excitation
frequency must be chosen so that neither the creep nor
the dynamic (phase lag) behaviors influence the curve
(Rakotondrabe et al., 2009). The fundamental frequency of
the nanopositioning stage and PSAs are 17 and 250 [kHz],
respectively (Bazaei et al., 2019b); therefore, we selected
ω = 750 [Hz] as the operating frequency in which the
experimental data are collected. Shown schematically in
Fig. 1, the L-actuator in the unidirectional configuration is
driven by ul = 70+70 sin(2πωt) [V ]. For the configuration
of differential driving actuation, the driven voltage for the
L– and R–actuators are ul = 70 + 70 sin(2πωt) [V ] and
ur = 70− 70 sin(2πωt) [V ], respectively.

During the experiment, the input voltage ul(t) and the
stage displacement were collected and imported to Mat-
lab for identification and modeling. Then, we plotted the
hysteresis curves for the unidirectional and differential
driving configuration in Fig. 3. In the figure, the stage
displacement is drawn against the alternative voltage part
ṽ of the L–actuator. It can be seen in the figure that the
hysteresis curve of the differential driving configuration is
more symmetric than that of the unidirectional configu-
ration. To show this symmetric behavior more clear, we
drew the symmetry line of each curve in the figure.

It is shown in Ru et al. (2016) that the hysteresis effect
in PSAs is negligible if they are actuated within their
10% of the full-range displacement. Therefore, in order
to determine the linear part of the systems’ dynamics,
we actuated the PSAs with a small-signal voltage across
a wide frequency range. The result is given in the bode
diagrams of Fig. 4 for unidirectional and differential driv-
ing configurations. Since the interested working bandwidth
of the system is well below its first natural frequency,

-20

-10

0

10

20

30

M
a

g
n

it
u

d
e

 (
d

B
)

100 101 102 103 104
-225

-180

-135

-90

-45

0

45

P
h

a
s
e

 (
d

e
g

)

Frequency  (Hz)

1.5 2 2.5 3 3.5 4 4.5

104

-30

-20

-10

0

10

20

30

 (
d

B
)

  (Hz)

Fig. 4. The frequency response of the nanopositioning
stage under small-signal actuation.

we identified each configuration by fitting a second order
transfer function on it and disregarding the higher fre-
quency contents. The identified transfer function for each
configuration is expressed as

G(s) =
a0

1 + 2ζ( s
ωn

) + ( s
ωn

)2
(13)

where (a0, ζ, ωn) is (0.43, 0.022, 1.08e5) for unidirectional
and (0.534, 0.017, 1.37e5) for differential configurations.
A short comparison between frequency responses of the
unidirectional and differential drive configurations shows
that the latter improves the natural frequency and the dc
gain. The reason is explained in the next section.

4. HYSTERESIS IN DUAL-STACK
DIFFERENTIAL-DRIVE ACTUATORS

In this section, we explain the comparative study per-
formed to highlight the improvement in hysteresis behav-
ior of the dual-stack differential drive actuator. First, we
describe individual integration of Duhem (8) and P–I (12)
models to the electromechanical system (3)–(7) to capture
hysteresis behavior. Next, the identification procedure is
explained. Then, we compare and analyze the hysteresis
models in the nanopositioner actuated with dual-stack
differential drive configuration and the one actuated with
a single-single stack unidirectional configuration.

By assuming K0 → ∞, we simplify (3)–(5) to a single
equation to utilize the Duhem model between input volt-
age and stage displacement. Note that this assumption
is only valid after that the PSAs are electrically biased
and find their new equilibrium points. Assuming K0 → ∞
in the unidirectional configuration results in the following
set of electromechanical equations with Duhem model for
hysteresis (Fleming and Leang, 2014).

(Ms +Mp)ẍs + bsẋs + (KI +Ks)xs = T (ul − vhl ), (14)

ẋs = α|u̇l| [βul − xs] + γu̇l, (15)

ul = 70 + 70 sin(2πωt). (16)

With a similar assumption in the differential driving
configuration, the following equations are obtained
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Fig. 5. Relative error of Duhem modeling in one cycle for
unidirectional and differential driving configurations.

(Ms + 2Mp)ẍx + bsẋs + (2KI +Ks)xs =

T (ul − ur)− T (vhl − vhr ), (17)

ẋs = α|u̇l| [βul − xs] + γu̇l, (18)

ul = 70 + 70 sin(2πωt), (19)

ur = 70− 70 sin(2πωt). (20)

For the P–I modeling of hysteresis, (15) and (18) are
substituted with

xs(t) = a0ul(t) +

N∑
i=1

fiPi[ul](t) (21)

where N denotes the number of adopted play operators,
and fi is the weighted coefficient for the threshold ri. Using
(21), the identification problem casts down to identifying
N+1 parameters a0, f1, · · · , fN . The relation between the
weighted coefficients and density function is (Gu et al.,
2013)

fi = a(ri)(ri − ri−1), (22)

ri =
i− 1

N
‖ul(t)‖∞. (23)

It should be mentioned that in (17)–(21), the hysteresis
models capture the overall hysteresis effect associated with
(vhl − vhr ) rather than the effect of each term individually.

To identify hysteresis parameters in (15) and (18) we use
least square method. Having known xs and ul from the
experiments, we rewrite (18) as

y(τ)− y(τ0) = αβJ1(τ)− αJ2(τ) + γJ3(τ) (24)

in which J1(τ) =
∫ τ

0
u(t)|u̇(t)| dt, J2(τ) =

∫ τ

0
xs(t)|u̇(t)| dt,

and J3(τ) = u(τ) − u(0). Then, the unknown parame-
ters Θ = [αβ, − α, γ]T are obtained from parameter
identification with pseudo-inverse methods. The identified
parameters for the unidirectional and differential driving
configurations are given in Table 1. Based on the identified
values, the Duhem model is constructed and compared to
the experimental data for each configuration. The result
of the comparison is presented in Fig. 5 for one period
of the input ul. According to the figure and the reported
error values in Table 1, the Duhem modeling error for the
differential driving configuration is significantly reduced.

A similar approach is used to identify parameters of the
P–I model (21), i.e. considering ul and xs as input and
output in P–I equation (12). The identified parameters

0 0.2 0.4 0.6 0.8 1 1.2
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0

5

10

Fig. 6. Relative error of P–I modeling in one cycle for
unidirectional and differential driving configurations.

Table 1. Identification summary of the Duhem
model for Hysteresis.

Identified parameters Modeling error
Configuration α β γ Maximum RMS∗

Unidirectional 0.0036 0.0696 0.0256 9.63% 5.09%

Differential 0.0095 0.0394 0.0256 1.85% 0.73%

∗Root Mean Square

Table 2. Identification summary of the P–I
model for Hysteresis.

Identified parameters
[a0, f1, f2, f3, f4] Modeling error

Configuration [f5, f6, f7, f8, f9] Max. RMS∗

Unidirectional [11.5, 13.9,−1.3, 3.2, 0.9]×10−3 7.46% 4.02%
[3.2,−0.3,−1.1, 7.7,−10.6]×10−3

Differential [14.9, 9.8,−1.3, 2.5, 1.2]×10−3 2.77% 1.33%
[1.2, 1.3,−0.1, 4.9,−3.9]×10−3

∗Root Mean Square

and modeling error for the unidirectional and differential
driving configurations are given in Table 2 and Fig. 6.
The results show that the maximum modeling error has
decreased from 7.46% for the unidirectional configuration
to 2.77% for the differential case. Similarly, the RMS error
shows a consistent reduction. The number of identified
parameters are selected in such a way that further increase
in it does not improve the error.

The hysteresis distortion for each configuration is shown
in Fig. 7. To do this, KI + Ks is determined from finite
element analysis. Next, we use (13) and (14) to identify
Ms,Mp and bs. Finally, by substituting (16) in (14) and
(15), we obtain the hysteresis distortion Tvhl . A similar
approach is used to determine hysteresis distortion for
differential drive configuration. According to this figure,
the hysteresis distortion in the differential driving config-
uration is about 50% more than the unidirectional con-
figuration. This increase can be attributed to the num-
ber of piezo stacks used in each configuration. While the
unidirectional configuration employs one piezo stack, the
differential drive configuration employs two piezo stacks;
therefore, as the figure shows, an increase in the hysteresis
distortion is expected in the differential drive configura-
tion. Additionally, as the displacement range in the dif-
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Fig. 7. Hysteresis distortion in stage displacement for the
unidirectional and differential driving configurations.
KI + Ks = 31.17 [N/µm], Mp + Ms = 2.68 [gr],
b = 12.72 [N.s/m], and Duhem model is used to find
the hysteresis distortion.

ferential drive configuration has increased in comparison
with the one of the unidirectional case, a higher hysteresis
distortion is expected. However, since this distortion is
modeled more accurately and can be canceled via a feedfor-
ward controller, the increase in the value is not prohibiting.

5. CONCLUSION

We examine dynamics and hysteresis effect in nanoposi-
tioning systems driven by piezoelectric stack actuators in
the differential driving configuration. An electromechani-
cal model is presented to describe the configuration. Based
on the experimental data and two distinctive models,
the hysteresis effect in differential driving configuration
is compared with the unidirectional configuration. As the
differential driving configuration presents a more symmet-
ric behavior in the hysteresis curve, it follows that the
hysteresis modeling error for this configuration is consid-
erably less than that of the unidirectional configuration.
This reduction in modeling error is advantageous in the
accuracy improvement of nanopositioning systems.

The differential drive configuration used in work requires
a pair of piezoelectric actuators for each axis of movement,
which could increase the overall size of the stage. The
result of this study could be used in design and control
of high-accurate nanopositioning stages.
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