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Abstract: The classification of vehicles is a matter of great importance for traffic control and
management, helping with traffic surveillance as well as in statistical data collection. Among the
several vehicular classification techniques, the most popular uses inductive loop sensors, because
they achieve high accuracy rate at low cost. This paper proposes 5 different vehicle classification
models by inductive waveform analysis: KNN, SVC, Decision Tree, Random Forest, and Voting
Classifier. A brief introduction to the mathematical basis of these models and the main forms
of vehicle detection are also presented. The obtained results reached an accuracy of 94% and
showed how inductive waveform analysis is still a valid option for vehicle classification.

Keywords: Machine learning, Intelligent transportation systems, Information processing and
decision support

1. INTRODUCTION

Vehicle detection and classification plays an important
role in every intelligent transport management system.
These processes help managing and supervising traffic and
provide data for decision support.

According to the FHWA (2017), the vehicle detection
systems are mainly devided into two categories: Pave-
ment Invasive and Non-pavement Invasive Detectors. In
developing countries, the most popular type of vehicle
detector is the so-called Inductive Loop Detector (ILD).
The main reason for that is its robustness at low cost
(Almeida, 2010; Mohammed Ali et al., 2011). Although
the ILDs are mainly used for speed calculation and traffic
count, there are some systems that also perform the vehicle
classification. In Brazil, companies that produce vehicle
detection systems mostly use the method of calculating
the vehicle’s length to classify it. Normally these systems
perform poorly. (Oliveira, 2011)

Image based classifications methods can reach to really
good accuracy rate (Sundaravalli and Krishnaveni, 2018;
Roecker et al., 2018), often they are not economically
viable. In Brazil, the majority of fixed radars is based
on inductive loops. To perform classification, it is more
profitable to adapt these radars than to change the whole
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system. Vehicle classifiers based on ILD can reach an
accuracy as good as the image based ones at a lower price.
(Vasconcellos, 2019)

This paper shows 5 different machine learning methods for
vehicle classification by ILDs waveform analysis.

2. BACKGROUD

The main goal of this paper is to select the best machine
learning classification method based on IDLs. To do so, it is
important to review the literature about this topic. There
are several papers published approaching this problem,
but most of them are based on artificial neural networks
(ANN) (Hannan et al., 2015; Fazli et al., 2012; Harsha and
Anne, 2016). Despite ANN having obtained good results,
it is possible to achieve a high accuracy rate using a less
powerful algorithm.

2.1 Inductive Loop Detector

An Inductive Loop Detector uses a coil installed under the
pavement. When powered, the coil creates a magnetic field
in the loop area. When a large metallic mass, like a vehicle,
runs over the coil, a magnetic disturbance is caused.

If the initial and final period of this disturbance is timed,
and the distance D between the loops is known, then the
vehicle’s speed can be measured by the equation 1. This
configuration is known as speed trap. (Ki and Baik, 2006)
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Fig. 1. A ILD using a speed trap configuration
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(1)

The vehicle’s length can also be measured in a speed trap
configuration. The equation 2 shows how to calculate the
magnetic length of a vehicle.

Lvehicle = Vvehicle.tdetection − Lloop, (2)

where Vvehicle is the average speed of the vehicle, tdetection
is the time when the vehicle started running over the loop
and Lloop is the length of the inductive loop. ILDs are often
used to collect traffic volume, speed, vehicle classification,
and weight information for pavement design, and much
more. (Liao, 2018; Li et al., 2019)

The magnetic disturbance caused by the vehicle is often
called a inductive loop signature technology (Jeng and
Chu, 2014; Yogesh et al., 2018). This inductive waveform
has a unique format for each type of vehicle, as shown in
Fig 2.

Fig. 2. Inductive waveform of a: (a) car, (b) truck

Acording to Ki and Baik (2006), there are several factors
that define the inductive waveform format, like:

(1) The size, form, and conductivity of the vehicle;
(2) The 3D orientation of the vehicle when it runs over

the loop;
(3) The size and form of the loop;
(4) The resonance frequency of the detection circuit;
(5) The distance between the vehicle and the loop.

2.2 K-Nearest Neighbors (KNN)

The KNN classifier is one of the simplest machine learning
algorithms used as a classification method (James et al.,
2013). It works by identifing the neighbors of a given
observation. Given a positive integer K and a observation
x0, the KNN classifies by looking at the class of the K
points in the training data that are closest to x0, as shown
in Fig. 3.

Fig. 3. (a) Test observation and their neighbors. (b)
Decision region for K = 3

The prediction is made by counting the most frequent class
of the test observation’s neighbors, in the case of Fig. 3,
the prediction would be Blue. All the data must be in the
same scale so the KNN classifier can be applied.

2.3 Support Vector Classifier (SVC)

The SVC classifier is based on Support Vector Machiens
(SVM), where a dimensional space of features is created.
These features are then separated into classes by a hyper-
plane in space. The observations that define the limits of
the hyperplane are called support vectors, and they are the
ones that ”support” the position of the hyperplane in space
(James et al., 2013). The SVMs can have a linear kernel
when the classes are linearly separable and a non-linear
kernel when they are not.

Fig. 4. (a) Linear kernel (b) Radial kernel
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Fig. 4 (a) shows an example of a linear kernel SVM
attempting to divide two classes that are not linearly
separables, and Fig. 4 (b) shows the same observations
with a radial kernel SVM.

An important tunning parameter that must be defined
when using the SVC is the value of C. C is a non-
negative variable that allows individual observations to be
on the wrong side of the hyperplane. The larger the C, the
more tolerant the SVC becomes in therms of observation
violation (Hastie et al., 2009). Just as it is the case for the
KNN classifier, all data must be in scale.

2.4 Decision Trees

Decision Trees are classification and regression methods
that present a structure similar to a flowchart. They are
formed by a root node that is divided into nodes by
branches. All the possible predictions are called leaves.
They usually are not as robust as the other supervised
methods mentioned earlier, but they are really easy to
implement, mainly because the data doesn’t need to be
preprocessed and they are easy to visualize.

A really important parameter when designing a decision
tree is the impurity criterion. This parameter works as a
cost function when spliting the nodes. One commonly used
is the Gini index, given by the equation 3.

G =

K∑
k=1

Pk(1 − Pk), (3)

where K is number of classes and Pk is the probability of
randomly choosing an element of class k. The higher the
Gini index, the better the split. (Hastie et al., 2009)

3. PROPOSED METHOD

The proposed method consists of executing the following
tasks: acquiring a vehicle’s inductive waveform dataset,
labeling the dataset with the vehicle classes, analyzing the
data to choose which features to extract, extracting the
features, testing the classifiers and comparing the results,
as Fig. 5 shows.

Fig. 5. Flow-chart of the process

The vehicles categories were divided into 5 classes, as Table
1 shows.

A dataset of 571 labeled inductive waveforms was used
in this paper, where 107 were from motorcycles, 115 from
cars, 134 from pickups and vans, 109 from trucks and 106
from buses.

Table 1. Vehicle classes

Class Example

Motorcycle motorcycles and scooters
Car passenger cars

Pickup pickup trucks and vans
Truck trucks for urban applications
Bus buses

After analyzing the data and based on the literature
review, as Calixto (2006), Almeida (2010) and Oliveira
(2011), 10 features were chosen that best represent each
class inductive waveform:

(1) Max Amplitude Value: is the max amplitude value of
the waveform and is higher for vehicles closer to the
ground;

(2) Inductive Waveform Mean: is the mean of the wave-
form and is higher in vehicles with a high amplitude;

(3) Inductive Waveform Variance: the waveform variance
helps to differentiate vehicles with a similar waveform
mean;

(4) Inductive Waveform Standard Deviation: same as the
variance, helps to differentiate the classes even more;

(5) Kurtosis: gives information about the shape of the
distribution;

(6) Skewness: gives information about the assimetry of
the distribution;

(7) Number of Peaks: the number of peaks of the wave-
form;

(8) Mean of Peak Value: the mean value of all peaks helps
distinguishing vehicles with a same number of peaks.

(9) Inductive Waveform Area: is the area under the
waveform curve;

(10) Magnetic Length: the length of the vehicle calculated
with the waveform.

All the features were extracted from the first inductive
loop. Fig. 6 shows an example of a violin distribution of
the number of peaks of the inductive waveform for each
class. Because larger vehicles tend to stay longer over
each loop, and due to the fact that their metalic mass
is not uniform throughout the whole body, the inductive
waveform presents various peaks.

Fig. 6. Number of peaks for each class

On the other hand, smaller vehicles like motorcycles and
cars present only 1 or 2 peaks.
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3.1 Training and Testing

All methods were trained splitting the dataset into 70%
train data and 30% test data and all data was stratified to
ensure a balance between the classes.

The first machine learning algorithm tested was the KNN
classifier. Due to the fact that the KNN is a classifier based
on the Euclidean Distance between the points, all the data
must be in the same scale. For that matter, all the data was
standarized using the scikitlearn function StandardScaler.
(Pedregosa et al., 2011).

The best value of K that was found was 14, giving the
following results:

Table 2. KNN score

Class precision recall f1-score

Motorcycle 97% 97% 97%
Car 79% 94% 86%

Pickup 86% 75% 80%
Truck 88% 88% 88%
Bus 100% 94% 97%

Accuracy 89%

The KNN method presented a good precision rate for
buses, reaching 100%, while for cars it only reached 79%.

The second method tested was the SVC. Just as the KNN,
the SVC was also standarized to achieve a better result.
The chosen parameters were C = 100 and radial kernel.
The SVC reached a more balanced result for all the classes
then the KNN method.

Table 3. SVC score

Class precision recall f1-score

Motorcycle 97% 100% 98%
Car 87% 97% 92%

Pickup 86% 80% 83%
Truck 86% 76% 81%
Bus 91% 97% 94%

Accuracy 90%

The Decision Tree was the third method tested. The Gini
index was used as criterion, resulting the following scores:

Table 4. Decision Tree score

Class precision recall f1-score

Motorcycle 100% 100% 100%
Car 72% 83% 77%

Pickup 76% 70% 73%
Truck 93% 76% 83%
Bus 86% 97% 91%

Accuracy 84%

The next classifier tested was a Random Forest classifier.
The Random Forest consited of 200 decision trees using
the Gini index criterion. Fig. 5 shows the results.

Table 5. Random Forest score

Class precision recall f1-score

Motorcycle 100% 100% 100%
Car 78% 91% 84%

Pickup 89% 78% 83%
Truck 97% 85% 90%
Bus 89% 97% 93%

Accuracy 90%

The fifth and last classifier tested was a Voting Classifier
composed of a KNN, SVC and Random Forest. The Voting
Classifier combines different methods and uses the aver-
age predicted probabilities to predict the Target. When
weights are provided, the Voting Classifier multiplies each
classifier probability with their respective weight. The
weights given for each classifier were 4 for the Random
Forest, 2 for the SVC and 1 for the KNN. The results can
be seen in Table 6.

Table 6. Voting Classifier score

Class precision recall f1-score

Motorcycle 100% 100% 100%
Car 94% 91% 93%

Pickup 86% 93% 89%
Truck 94% 88% 91%
Bus 97% 97% 97%

Accuracy 94%

4. RESULTS AND DISCUSSION

When analyzing each classifier score, it becomes clear that
some methods had achieved better results when predicting
a certain class than others, e.g. the KNN classifier had a
lower precision when predicting cars than the SVC. On
the other hand, it had a 100% precision rate classifing
buses, while the Decision Tree only had 86%. Uniting these
advantages that one classifier has over the other is what
makes the Voting Classifier so powerful.

To measure the feature extraction and prediction latency,
the Voting Classifier was tested in 571 vehicle inductive
waveforms. It took 15.417 seconds to extract the featuers
and predict all the data, an average of 0.027 seconds per
vehicle with a 94% of accuracy rate.

One advantage that the Random Forest has is the ability
to evaluate the feature importances, as Fig 7 shows.

Fig. 7. Feature Importance

To reduce computacional costs, a new Voting Classifier was
trained using only the better half of the features given in
Fig 7. For the same 571 vehicles dataset, it took 8.907
seconds to extract the features and predict, and average
of 0.0156 seconds per vehicle, 25% faster than with 10
features but with a 2% drop in accuracy.

Table 7. 5 and 10 features comparative

Feat. Motorcycle Car Pickup Truck Bus Latency

10 100% 94% 86% 94% 97% 20.7ms
5 97% 91% 87% 86% 100% 15.6ms

To improve the accuracy even more, another method was
tested analyzing each individual loop. The data used in
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this paper contained information about all three loops of
the ILD. Therefore it was possible to multiply the class
probability for each inductive loop output. Table 8 shows
an example of a observation where the classifier predicted
a Truck for the first and second loop, but a Pickup for the
third loop.

Table 8. Predictions for each loop

Pred. Motorcycle Car Pickup Truck Bus

1 0.0027 0.0083 0.4102 0.5781 0.0006
2 0.0023 0.0052 0.1826 0.8087 0.0010
3 0.0022 0.0064 0.5310 0.4590 0.0010

Final 1, 36.10−7 2, 76.10−6 3, 98.10−1 2.15 6.10−9

Using this method, the final prediction would be the class
with the highest value, in this case, a Truck. Although
this method can increase the accuracy a bit, it makes the
system three times slower, because it needs to extract the
features for all three loops. For the data tested, only 9 out
of 571 predictions weren’t the same for all loops.

5. CONCLUSION

This paper shown 5 different machine learning algorithms
for vehicle classification. The best method tested was a
Voting Classifier composed of a KNN, SVC and, Random
Forest. The overall accuracy achieved 94%. The results
showed how ILDs can still be used as an efficient auto-
matic system for traffic surveillance and anonymous data
collection

The proposed system can be implemented in places where
ILDs are still the primary method of vehicle detection,
without the need to change the current hardware. The
system can be used for statistical data collection, assisting
in roads maintenance planning and expansion. It can also
be used for surveillance, e.g. for monitoring highways
where there are different speed limits for different vehicle
types or monitoring lanes where only a exclusive vehicle
type is allowed, among other applications.
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