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Abstract: In this paper, we deal with the charging scheduling optimization problem of electric
vehicle in highway via Stackelberg game and matching theory. At first, we propose an algorithm
for electric vehicle allocation to charging station which aims to uniformize waiting time of each
charging station. In addition, we present energy demand and price decision problem and solve
it using Stackelberg game. We compare Stackelberg equilibrium point and Nash equilibrium
point and confirm Stackelberg game provide bigger benefit to charging station. Finally, we show
validation of proposed algorithm via numerical simulations.
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1. INTRODUCTION

Recently, the spread of EVs(Electric Vehicles) has been
actively progressed. EV can work with a distance of 120
km to 400 km with once charging, which is different
from conventional gasoline and diesel cars. Therefore, it
is imperative to plan a place of charging station, time
and charge amount to be charged. In the United States
and China, it is general for commercial organizations to
set up CS (Charging Station). Electric vehicle drivers
pay not only electricity fee but also additional service fee
when they charge their EV. Since this service fee can be
freely set by business operators, its strategy varies between
operators. Therefore, businesses need to set fees so that
their profits become maximum. In addition, operators need
to find ways to make more effective use of their own
charging station. EV concentrate on only one charging
station, and if other stations are not used, businesses may
lose profits. Hence, the charging station operator aims to
maximize profits by controlling prices and to make all
charging stations equally used.

EV determines the location of the charging station and
the charge amount according to its own purpose. Dis-
tributed cooperative scheduling algorithms on highway
have already been proposed Gusrialdi (2017). With this
algorithm, all EVs cooperate to select their charging sta-
tion. However, this assumption is unrealistic. We need to
think about the situation where EV acts to maximize only
its own profit. Also, some researches have not dealt with
the charge of electric vehicle, and all electric vehicles must
always be fully charged at the charging station. Actually,
the style of charging depends on the electric vehicle, so
we need to think about the framework of determining the
charge amount. Thus, after choosing a charging station,
the EV determines the charge amount taking into account
the price and other factors.

The main contribution of this paper is the proposal of non-
cooperative optimal charge scheduling algorithm using
Stackelberg game Yang (2016) Tan (2017) and matching
theory. First of all, we propose a matching algorithm
by expressing the electric car allocation problem aiming
at the charging station to equalize the utilization ratio
and the electric vehicle to select the charging station by
matching theory. Furthermore, we describe energy demand
and energy price dicision problem using Stackelberg game
and state its solution. It shows that the Stackelberg
equilibrium, which is generally considered to be difficult to
analyze Bayram (2015), has better results than the Nash
equilibrium.

In this paper, we model the traffic flow, the dynamics of
the number of vehicles in CS, EV energy consumption,
EV drivers utility and CS benefit. By queuing model, we
solve uniformize utilization problem and propose matching
algorithm for EV optimal allocation problem. After that,
we formulate Stackelberg game with EVs as followers and
CS as a leader. Finally, by numerical simulation, we show
a validation of the proposed algorithm.

2. PROBLEM STATEMENT

An overview of the network used in this research is shown
in Fig. 1. Each CS belongs to the same business oper-
ator and exchanges information with each other. When
CS scheduling interval is assumed to be T , each station
presents the charging price to each vehicle at the schedul-
ing time k = nT (n = 1, 2, . . .). This exchange is done
through V2I and I2V. In addition, each EV communicates
with other surrounding EVs to determine their desired
charging demand while maintaining a non-cooperative at-
titude towards other EVs. Setting up such a network is
reasonable considering that most CSs are connected to
the network for paying credit cards, and car navigation
systems are installed in EVs.
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Fig. 1. Network condition

Fig. 2. Traffic flow model

2.1 EV flow

The first component of the model describes the flow of EVs
on the highway. Entrances/exits or CS to each of which we
associate one node of the network. Let the total number of
nodes be N . We consider a chain topology in which node i
is connected only with the nodes of i−1, i+1. Thus edges
represente visual links between two successive entrances,
exits or CS. A generic portion of the chain involving node
i and its predecessor and successor is depicted in Fig. 2.

Let α(k) be the average EV flow arriving at a node i, which
is given by

αi(k) =

{
γi(k), if i = 1
γi(k) + yi−1(k − di−1,i), if i ̸= 1

(1)

where γi(k) is the exogenous flow entering the chain
network at node i at time k, yi−1(k) is average EV flow
coming from node(i − 1) to node i, di−1,i is the time
required for an EV to traverse the edge from node i− 1 to
node i. The number of EVs departing from node i, yi(k),
can be written as follows.

yi(k) = αi(k) + gi(k)− fi(k), (2)

where gi(k) represents EV flow coming out from service
station i, and fi(k) represents EV flow entering to service
station i.

2.2 Queuing model

Let xi(k) ≥ 0 be the number of EVs existing in CS i. Then
the xi(k) can be represented dynamically as the followings,

xi(k + 1) = xi(k) + fi(k)− gi(k), (3)

where, fi(k) is the number of vehicles flowing into the
CS and is decided by EV allocation algorithm. However,
even if scheduling is done, the time distribution at which

the vehicle arrives can not be determined systematically.
Therefore, the distribution itself of the event ”vehicle
arrives” follows the Poisson distribution. Also, it is not
possible to schedule exactly how much EV actually stays at
CS. From the above conditions, we use the M/M/ci queu-
ing model Gusrialdi (2017) Ratliff (2016). In this problem
formulation, M means the exponential distribution, where
the number of chargers for CS i is ci. The average arrival
rate of costumers is λi and the average service rate is µi.
Here, the following condition is assumed.

Assumption 1. The customer’s average arrival rate is
smaller than the average service rate. Hence, λi < µi.

In order to obtain the number of vehicles xi(k) existing
in each CS i, it is necessary to calcurate the number
of outflow vehicles gi(k). From the steady solution of
M/M/ci, we can get

xi =
ρci+1
i

cici!

1(
1− ρi

ci

)2φi,0 + ρi (4)

φi,0 =

ci−1∑
n=0

ρni
n!

+
ρcii

ci!

(
1− ρi

ci

)

−1

(5)

where, ρi = λi/µi. From equation (3), when steady state
is achieved, gi = fi = λi. Substitute this condition into
the equations (4) and (5).

xi =
gci+1
i

µci+1
i cici!

1(
1− gi

µici

)2φi,0 +
gi
µi

(6)

φi,0 =

ci−1∑
n=0

gni
µn
i n!

+
gcii

µci
i ci!

(
1− ρi

ci

)

−1

(7)

We could derive the relationship between gi(k) and xi,
however it is impossible to obtain gi(k) from (6) (7). If
ci = 1, the steady solution can be written by the following
equation.

xi =
gi

µi − gi
=⇒ gi = µi

xi

1 + xi
(8)

gi can be apploximated by M/M/ci model as,

ĝi(xi) = ciµi
xi

1 + xi
(9)

2.3 EV energy model

The power consumption of the EVs is given as

e−v,i+1 = e+v,i − di,i+1r
−
v , (10)

e+v,i = e−v,i +
Ev,i

µv
, (11)

where e−v,i+1 is the SOC (State of Charge) when the generic

EV v arrives at node i+1, e+v,i indicates the SOC when EV
v leaves the node i. Ev,i is the amount of energy that EV
v charges at node i, and µv is the battery capacity. Each
EV bids the desired amount of charge to the CS, Since the
time required to move from the node i to node i + 1 is
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di,i+1, r
−
v is the SOC required for unit time running. The

charging strategy of each EV satisfies the following two
constraints;

Emin
v,i ≤ Ev,i ≤ Emax

v,i , (12)

e−v,i +
Ev,i

µv
≤ 1. (13)

Inequalities (12) are constraints that the upper and lower
bounds of the amount of energy that an EV can charge at
CS, and inequality (13) describes the fact that the SOC
cannot exceed 100%.

2.4 Utility functions of EVs and CSs

Uk
v,i represents the utility function of EV v, is written as

follows.

Uk
v =µvEv,i(k)−

1

2
θv,i(k) (Ev,i(k))

2

− pv,i(k)Ev,i(k)−pv,i(k)
(
Ev,i(k)− Ēi(k)

)
, (14)

where, Ēi(k) is the average energy demand of all EVs and
pv,i(k) is a price of electricity. In addition, θv,i(k) is

θv,i(k) =

1(
µv − e−v (k)

)
∑

k

(
1(

µv − e−v (k)
)) . (15)

The equation (14) shows a satisfaction parameter indi-
cating the measure of satisfaction of EV v obtained by
charging an unit of energy with CS i. For example, if EV v
has a higher need for energy demand than EV v+1 (eg, it is
going to travel farther, has a larger battery, etc.) then EV v
is the same to achieve satisfaction, more energy is required
than EV v + 1. Therefore, it becomes θv(k) ≤ θv+1(k).

The utility function of the CSs can be represented as,

Qk
i =

∑
v

pv,i(k)Ev,i(k)−
a

2

(∑
v

Ev,i(k)

)2

. (16)

whereas the CS individually sets a price that maximizes
its own profit.

2.5 Control objective

The charging station aims to gain profits by selling energy
to the driver while operating the station efficiently. If
the EV concentrates on a specific charging station, it
causes not only congestion and equipment trouble but
also a charging station that is not used is wasteful of
resources. Therefore, the primary goal is to appropriately
distribute EV by changing the charging price at each
charging station, and the usage rate of each charging
station becomes uniform. The second goal is to further
maximize profits by selling energy. Meanwhile, the EV
driver aims to charge the desired energy while competing
with other drivers. The goal of this research is to propose
a scheduling algorithm using Stackelberg game for this
system. In the Stackelberg game, drivers and charging
stations are treated as players, and mutual exchanges are
expressed as games.

3. NON-COOPERATIVE CHARGING SCHEDULING

We consider the charge scheduling problem into two cat-
egories: “which car determines which charging station to
enter” and “problem determining how much each vehicle
charges at charging station”. Here the following procedure
is considered.

(1) The charging station determines the number of vehi-
cles to be scheduled to the charging station in order to
make the waiting time uniform (∼= uniform utilization
rate)

(2) EV determines the preference for charging station by
waiting time and its own SOC.

(3) The charging station determines the preference for
the driver according to its own situation.

(4) Perform matching.
(5) Once the charging station and EV pair are decided,

energy demand and price are determined by Stackel-
berg game.

3.1 EV allocation problem

In a steady state of M/M/ci, the probability of n cus-
tomers existing in the system, as traffic intensity ρi =

λi

µi

is as,

Pn =


P0ρ

n
i

1

n!
, (0 ≤ n ≤ ci)

P0ρ
n
i

1

ci!c
n−ci
i

, (n ≥ ci)
(17)

P0 =

Ci−1∑
n=0

ρni
1

n!
+ ρcii

1

ci

1

1− ρi
ci


−1

. (18)

When a customer arrives in the system, the probability
that the customer will into wait queue is equal to the
probability that all ci contacts are occupied. That is,

E2,ci(ρi) =

∞∑
n=ci

Pn =
ci

ci − ρi
Pci (19)

This equation is called as Erlang C formula. Using the
equation, the average waiting time of this system Wi can
be written by

Wi = E2,ci

1

µi (ci − ρi)
. (20)

In order to equalize the waiting time at each station,
we can control λi so that equation (20) is equal at
each station. For getting optimal λi, it is obvious that∑

k fi(k) =
∑

λi when infinite intervals are considered.

Let the time horizon be Hp. At this time, the charging
station solves the following problem and determines the
optimum charging permitted number f∗

i (k) at the k step.

f∗
i (k) = arg min

fi(k),i∈N

[
max

i
Wi −min

j
Wj

]
(21)

s.t. λi =
1

Hp

Hp−1∑
l=0

fi(k − l) (22)∑
i

fi(k) =
∑
i

γi(k) (23)
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We deal with how to distribute scheduled multiple EVs
to each station. We consider the optimum allocation of
drivers to the charging station using matching theory.
Preferences are generally defined as follows.

Definition 1. On set X, preference of player i, ⪰i is a
binary relation on X that satisfies the following condition.

(1) x ⪰i x, ∀x ∈ X
(2) [x ⪰i y and y ⪰i z] ⇒ x ⪰i z, ∀x, y, z ∈ X
(3) x ⪰i y or y ⪰i x, ∀x, y ∈ X

x ≺i y indicates that player i prefers y more than x under
the preference of individual i.

Each driver consider CSs under the following conditions.

• SOC at the arrival of the charging station (lower is
preferable, but it is not an option if it becomes 0 or
less).

• Estimated waiting time (smaller is preferable).
• Other factor.

Let’s set the current location of EV v at scheduling step as
node i0 and SOC as e0v,i0 . At this time, in determining the
preference, the evaluation function of EV v to CS i can be
written as follows.

J i
v =

{
ω1ê

−
v,i + ω2Wi + ω3,

(
if ê−v,i > 0

)
ω4, (otherwise)

(24)

ê−v,i = e0v,i0 −
i−1∑
j=i0

dj,j+1r
−
v . (25)

The first term of equation (24) indicates the estimated
SOC when arriving at CS i, the second term relates to
waiting time, and the third term is other factors. ω1, ω2, ω3

are appropriate weights. ω4 ≫ 0 is a penalty to CS i which
can not be reached without charging. By setting ωv to
be preference for itself of EV v, we set 0 ≪ ωv < ω4 to
avoid matching with CS that can not be reached without
charging.

Since EV v is the preferred CS i in descending order of
the evaluation function (26), we calculate it for each i and
decide the preference vector P i

v by obtaining the index i
in ascending order. Here, we set assumption 2.

Assumption 2. Each EV has an initial SOC that can
reach at least the nearest CS, when it enters the highway.

Hence, all EV has one charging station that is more
favorable than it at least.

Charging stations have no requirement for EVs in par-
ticular, but for EVs that can not reach the next station
unless charging , charging must be permitted. The evalu-
ation function for EV v can be written with the following
equations, a next station of station i as i′.

Jv
i =


χ1

(
if ê−v,i′ < 0

)
χ2

(
if ê−v,i < 0

)
χ3 (otherwise)

(26)

where χ1 ≪ 0, χ2 ≫ 0, χ1 < χ3 < χ2. The condition
of the first row indicates that the EV can not reach the
next station without charging and the second row means
the EV can not be reached to the station. For CS i, that
EV v is not subject to scheduling is equivalent to not

matching with that EV. We set the evaluation function
value of CS i to itself as χi. By setting the condition of χi

to χ3 < χi < χ2, it is possible to exclude matching with
the EV that is not subject to scheduling.

Since the smaller the evaluation function Jv
i is better for

EV, so we calculate the function in order and obtain the
index v to decide the CS preference vector P v

i . Here, we
set the assumptions to discuss the stability of matching.

Assumption 3. At scheduling step k, the number of EVs
that ê−v,i′ < 0 in CS i is always equal or smaller than f∗

i (k).

Consider allocating charging station i for each EV using
matching theory based on the determined preference.
After preferences are decided, there are several algorithms
to decide actual matching. In general, matching theory
has a problem that the number of iterations increases
exponentially as the scale of the problem gets bigger, there
is a possibility that the stability of matching does not be
guaranteed if the number of iterations is decreased.

3.2 Stackelberg game and its solution

At the time k, EV that toward the CS i which has ci
charger express Fi(k) := {1, . . . fi(k)}. The CS, as EV
can achieve the energy demand Ev,i(k), reasonable price
pi(k).The charging energy demand of sets of the target
EV E(k) = [E1,i(k), . . . , EK(k),i(k)]. The CS presents
the charging price so as to maximize its own profits,
EV is based on the asking price. Therefore, this problem
is a repetitive non-cooperative game with a hierarchical
structure, CS has the decision privilege to EV. At this
time, the utility function of the EV is known at the
charging station and acts in anticipation of EV reaction
in advance. Such a problem is formulated as one leader /
multiple follower game of Stackelberg game.

From the follower model, the behavior of EV v that
responds to the presented price pi(k) can be written as
follows.

max
Ev,i(k)

Uk
v,i (27)

s.t. Emin
v,i ≤ Ev,i ≤ Emax

v,i (28)

From the charge station model, the optimization problem
solving the charging station can be written below.

max
pi(k)

Qk
i (29)

We deal with the Stackelberg game of one leader / multi-
followers, but by considering the multi-follower as one
follower returning the vector Ei(k), Analysis of the Stack-
elberg game as a human non-zero-sum game can be done.

Definition 2. In a two-person finite game strategy of
player i is γi, the set of strategy is presented as Γi, cost
funcition of each player is J i. The set R2(γ1) ⊂ Γ2 defined
for each γ1 ∈ Γ1 by

R2(γ1) =
{
ξ ∈ Γ2 : J2(γ1, ξ) ≤ J2(γ1, γ2),∀γ2 ∈ Γ2

}
(30)

is the optimal response (rational reaction) set of player 2
to the strategy γ1 ∈ Γ1 of player 1.
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Let consider the optimal reaction set of the EV group in
this paper. The utility functions at time k, EV v were as
follows.

Lk
v =νvE

z
v,i(k)−

1

2
b1θv(k)(E

z
v,i)

2(k)− b2pv,i(k)E
z
v,i(k)

− b3E
z
v,i(k)

(
1

ν̄fi(k)
− 1

νv

)
(31)

where,

∂Lk
v

∂Ev,i(k)
= 0 (32)

then,

E∗
v,i(k) =

1

b1θv

(
νv − b2pi − b3

(
1

ν̄fi(k)
− 1

νv

))
(33)

therefore, we can get the optimal response set is

Rev
v (pi(k)) =

1

b1θv

(
νv−b2pi−b3

(
1

ν̄fi(k)
− 1

νv

))
(34)

In the iterative game we had dealt with before, we were
able to deal with the constraints by generating the La-
grangian function by combining the upper and lower limit
constraints of the energy demand amount with the utility
and updating the Lagrangian function by the gradient
method for each iteration. In Stackelberg games, however,
we cannot deal with constraints directly, so if solutions
beyond constraints are led it is necessary to constrain with
lower and upper bound.

Definition 3. In a two-person finite game with player
1 as a leader, a strategy γ1 ∈ Γ1 is called Stakelberg
equilibrium strategy for the leader, if

max
γ2∈R2(γ1∗)

J1(γ1∗, γ2) = min
γ1∈Γ1

max
γ2∈R2(γ1)

J1(γ1, γ2) := J1∗

(35)

The quantity J1∗ is the Stackelberg cost of the leader. Re-
garding Stackelberg equilibrium strategy, it is well-known
that every two-person finite game admits a Stackelberg
strategy for the leader Basar (1999). Since Γ1,Γ2 are finite
set and R2(γ1) ⊂ Γ2 for each γ1 ∈ Γ1, the result readily
follows from equation (35). The Stackelberg equilibrium
strategy of the charging station can be written below.

p∗i (k) = argmax
pi(k)

min
Ei(k)∈Rev(pi(k))

Qk
i (36)

That is, the pricing that the charging station should take
is pricing that gives maximum utility against the optimal
reaction strategy that minimizes the utility of the charging
station.

Here Gael-Sharpley matching algorithm is employed and
Xk is the final matching set in step k, X ′

k is a set of
temporary matching in the algorithm. The integrted and
proposed algorithm is shown as Algorithm 1

4. EVALUATION VIA SIMULATION

Numerical simulation was performed to confirm the ef-
fectiveness of the proposed algorithm. A simulation area
was created between Japanese New Tomei Expressway
Ohi Matsuda Interchange and Suruga Bay Numazu Inter-
change, and a simulation map was created as Fig. 3. The
circle indicates the interchange, and the square indicates
the service area. Black numbers between nodes mean trav-
eling time, and red numbers show the number of charging

Algorithm 1 Charging station allocation algorithm

Require: f∗
i (k), P

i
v, P

v
i ,and a strongly connected com-

munication topology between EVs and CSs.
Initialization: Set initial X ′

k = {}
for v = 1, 2, . . . ,

∑
i γi(k) do

EV v applies for charging to CS i with the most
preference from P i

v.
if |X ′

k(i)| < f∗
i (k) then

CS i accepts EV v and forms a temporary pair
X ′

k(i).
Update X ′

k(i).
end if
if |X ′

k(i)| = f∗
i (k) and v ≻i X

′
k(i) then

CS i resolves pair with v′ such that v′ = X ′
k(i) and

accepts the application of EV v.
Update X ′

k(i).
Exclude CS i from v′ preference and update P i

v′ .
Set v → v′ and restart from step 3.

end if
if |X ′

k(v)| = f∗
i (k) and v ≺i X

′
k(i) then

Exclude CS i from v preference and update P i
v .

Restart from step 3.
end if

end for
X(k) = X ′(k)

stations in each service area. The number of vehicles inflow
from outside of model is shown in Fig. 4, and the battery
capacity of all vehicles and the initial SOC when inflowings
are shown in Fig. 5. The simulation parameters are given
in Table 1.

Table 1. Simulation parameter

Parameter Symbol setting

Number of step K 120 [min]

Sampling time k 1 [min]

Scheduling interval T 15 [min]

Battery usage r−v 0.05 [%/min]

average service rate µi 1.1 [veh. / samp. time]

Utility function a 0.03
weight b1, b2, b3 10,10,0.1

Preference weight ω1, ω2, ω3, ω4 10,1,1,100
χ1, χ2, χ3 1,100,10

Initial Lagrangian κ(0) 1
multipliers λ(0) 1

Updating step size x 0.2
y 0.2

Fig. 3. Simulation map

Simulation results are shown in figures. From Fig. 6 and
Fig. 7, it can be confirmed that the inflowing EVs are
allocated to each charging station without leakage. Also, as
a result of the allocation of EV, the time responses in Fig.
8 and Fig. 9, which indicate the estimated wait time, are
almost in agreement, so the wait time equalization problem
is correctly explained.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17274



0 20 40 60 80 100 120 140
step

0

0.5

1

1.5

2

2.5

3

3.5

in
flo

w
 v

eh
ic

le

Fig. 4. Inflow

0 2 4 6 8 10 12 14
vehicle number

0

10

20

30

40

50

60

70

80

90

100

ba
tte

ry
 c

ap
as

ity
 a

nd
 in

iti
al

 S
O

C
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Fig. 11. Energy demand

Energy prices for each sampling time and energy demand
for each EV by the Stackelberg game are shown in Fig. 10
and Fig. 11. The benefit of the charging station is given
by the following equation.

Qz
i =

∑
v

pi(k)Ev,i(k)−
a

2

(∑
v

Ev,i(k)

)2

To confirm the superiority of the Stackelberg equilibrium,
the sum of the values of the above equations of charging
station 2 and charging station 6 is shown in Table 2. Nash
equilibrium point is also obtained by a repeating game for
comparison. Based on the valuesin the table, the validity
of the proposed algorithm was confirmed.

Table 2. Stackelberg game and Repeated game

Stackelberg game Repeated game

193.6 21.8

5. CONCLUSION

In this paper, we propose non-cooperative optimal charge
scheduling algorithm using Stackelberg game and match-
ing theory. First of all, we propose a matching algorithm
by expressing the electric car allocation problem aiming
at the charging station to equalize the utilization ratio
and the electric vehicle to select the charging station by
matching theory. Furthermore, we describe energy demand
and energy price decision problem using Stackelberg game
and state its solution. It shows that the Stackelberg equi-
librium, which is generally considered to be difficult to
analyze, has better results than the Nash equilibrium.

Future works include dealing with issues that consider
prices as factors of the EV allocation problem. In this
case, the Stackelberg game and the matching problem are
solved alternately, and it is expected that it is difficult to
analyze convergence. In addition, it is necessary to propose
a problem generalizing the Stackelberg game that requires
a strong assumption.
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