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Abstract:
For robust Gaussian process regression problems where the measurements are contaminated
by outliers, a likelihood/measurement noise model with heavy-tailed distributions should be
used to improve the prediction performance. In this paper, we propose to use a G-confluent
distribution as the measurement noise model and a coordinate ascent variational inference
method to infer the overall statistical model. In contrast with the commonly used Student’s
t distribution, the G-confluent distribution can also be written as a Gaussian scale mixture,
but its inverse scale follows a Beta distribution rather than a Gamma distribution, and its
main advantage is that it is more flexible for modeling outliers while being equally suitable for
variational inference. Numerical simulations based on benchmark data show that the G-confluent
distribution performs better than or as well as the Student’s t distribution.
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1. INTRODUCTION

For regression problems, the data could be contaminated
by outliers, that is, intermittent and large deviations from
typical values of the measurements, e.g., [Huber, 2011].
Outliers may occur, for example, because of failures in the
measurements or omission of certain regression variables
in the problem. To improve the prediction performance,
the outliers should be handled carefully when inferring
the model. One way to handle outliers is to use a like-
lihood/measurement noise model with heavy-tailed distri-
butions, such as the Student’s t or Laplace distribution.

Gaussian process regression is a fundamental regression
method and has wide applications in many engineering
fields, e.g., [Rasmussen and Williams, 2006]. One of its
advantages is that when the measurement noise model
is Gaussian, the inference can be computed analytically.
However, in the presence of outliers in the data, a non-
Gaussian measurement noise model has to be used and
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as a result, the inference is not analytically tractable and
approximate inference methods have to be applied. The
standard/most common choice of the measurement noise
model is the Student’s t distribution, e.g., [Jylänki et al.,
2011, Kuss, 2006, Tipping and Lawrence, 2005] and other
choices include the Laplace distribution, e.g., [Kuss, 2006].
Approximate inference methods include Monte Carlo
[Neal, 1997], expectation propagation [Jylänki et al., 2011],
variational inference [Kuss, 2006, Tipping and Lawrence,
2005], and the Laplace approximation [Kuss, 2006, Ras-
mussen and Williams, 2006].

In this paper, we consider Gaussian process regression
in the presence of outliers and we propose to use a G-
confluent distribution as the measurement noise model and
a coordinate ascent variational method to infer the overall
statistical model, which is shown to converge a stationary
point. In contrast with the Student’s t distribution, the
G-confluent distribution can also be written as a Gaussian
scale mixture, but its inverse scale follows a Beta distri-
bution rather than a Gamma distribution, and its main
advantage is that it is more flexible to model outliers, while
being equally suitable for variational inference. The pro-
posed G-confluent distribution is inspired by [Wang et al.,
2017]. Numerical simulations based on benchmark data
show that the G-confluent distribution performs better
than or as well as the Student’s t distribution.

2. PROBLEM STATEMENT AND FORMULATION

We consider the following robust regression problem
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yk = f(xk) + ek, k = 1, . . . , N, (1)
where yk ∈ R is the measurement, xk ∈ Rn is the input,
ek ∈ R is the measurement noise and f(·) is the unknown
function to be inferred. Ideally, the measurement noises ek,
k = 1, . . . , N , are assumed to be i.i.d. Gaussian distributed
with mean 0 and variance R > 0. In this paper, we consider
the case where some of ek, k = 1, . . . , N , are contaminated
by outliers and our goal is to infer f(·) as well as possible
in terms of the prediction performance based on the data
yk, xk, k = 1, . . . , N .

2.1 Gaussian Process Model

The unknown function f(·) in (1) is modeled as a Gaussian
process with mean zero and covariance function k(·, ·) :
Rn × Rn → R that is also called the kernel function. We
define the function value vector F = [f1, . . . , fN ]> with
fk = f(xk) and the regression matrix X = [x1, . . . , xN ].
Then F is distributed according to a multivariate Gaussian
distribution

p(F |ηF ) = N (F |0,K(X|ηF )), (2)
with mean 0 and covariance matrix K(X|ηF ) which has
been parameterized as a function of X and the hyper-
parameter ηF , which is constrained in a set ΩηF . The
structure of K(X|ηF ) depends on the chosen kernel k(·, ·)
and the squared exponential kernel is used here, e.g.,
[Rasmussen and Williams, 2006]. Thus for i, j = 1, . . . , N ,
the (i, j)th element of K(X|ηF ) is

[K(X|ηF )]i,j = c exp

(
−

n∑
m=1

|xi,m − xj,m|2

2λm

)
, (3a)

ηF = [c, λ1, . . . , λn]>, (3b)
where xi,m is the mth element of xi, and ηF ∈ ΩηF = {c >
0, λm > 0,m = 1, . . . , n}.

2.2 Measurement Noise Model with Gaussian Scale Mixture

To handle possible outliers in the measurement noises ek,
k = 1, . . . , N , a measurement noise model with heavy-
tailed distributions should be used instead of the Gaus-
sian distribution N (0, R), such as the Student’s t and
Laplace distributions. Interestingly, both the Student’s t
and Laplace distributions can be written as Gaussian scale
mixtures. More specifically, the measurement noises ek,
k = 1, . . . , N , are modeled as Gaussians with pdf

p(ek|R, zk) = N (ek|0, R/zk), k = 1, · · · , N, (4)
where z1, . . . , zN are latent variables assumed to be i.i.d.,
their pdf is parameterized by a parameter ηZ , and ηZ is
constrained in a set ΩηZ . When zk is Gamma distributed,
ek is Student’s t distributed and when z−1

k is exponentially
distributed, ek is Laplace distributed.

Here, we also use the Gaussian scale mixture (4) as the
measurement noise model, but we choose to use a Beta dis-
tribution for the latent variables z1, . . . , zN , which makes
the measurement noise ek has a G-confluent distribution.
In contrast with the Student’s t and Laplace distributions,
the Beta distribution has two independent parameters,
giving the G-confluent distribution a more flexible struc-
ture for outlier modeling, which will be discussed and
justified in detail in Section 3.
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Fig. 1. Probability density functions (pdfs) of the Gaus-
sian, Student’s t, and G-confluent distributions. Top:
linear-linear scale. Bottom: log-log scale. The param-
eters are µ = 0, ν = 3, a = 1.5 and b = 0.3, while the
scale parameter R has been chosen to set the variance
equal to 1.

2.3 Overall Statistical Model

We group the measurements, latent variables, and hyper-
parameters as

Y = [y1, · · · , yN ]>, (5)
Z = [z1, · · · , zN ]>, (6)
η = [η>F , R, η

>
Z ]>, (7)

where the hyper-parameter η is constrained in Ωη = ΩηF ×
ΩR × ΩηZ with ΩR = {R > 0}.
The joint statistical model can be written as

p(F,Z, Y |η) = p(F |ηF )

N∏
k=1

p(yk|fk, R, zk)p(zk|ηZ), (8)

where p(F |ηF ) is given in (2),
p(yk|fk, R, zk) = N (yk|fk, R/zk), (9)

and p(zk|ηZ) is the pdf of zk. We skip the conditioning on
X for brevity.

2.4 Model Inference

Our goal is to infer the model (8) for F , Z, and a point
estimate η∗ of the hyper-parameters η, given the data Y
and X. The empirical Bayes method is applied and given
by

p(F,Z|Y, η∗) =
p(F,Z, Y |η∗)
p(Y |η∗)

, (10a)

η∗ = arg max
η∈Ωη

log p(Y |η), (10b)

p(Y |η) =

∫
p(F,Z, Y |η)dFdZ. (10c)

The integral (10c) cannot be analytically computed for
the given problem, implying that (10) is intractable. In
Section 5, we solve the inference problem approximately
by a variational method.
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Fig. 2. Right tail of the pdf of the G-confluent distribution
C(ek|0, 1, a, b) in log-log scale. Top: with b = 0.1 and
different values of a given in the legend. Bottom: with
a = 1 and different values of b given in the legend.

3. MEASUREMENT NOISE MODEL WITH A
G-CONFLUENT DISTRIBUTION

As mentioned in Section 2.2, we use a Gaussian scale
mixture (4) as the noise model. The novelty here is that
the i.i.d. latent variables z1, . . . , zN are assumed to be Beta
distributed, i.e.,

p(zk|ηZ) = B(zk|a, b) =
Γ(a+ b)za−1

k (1− zk)b−1

Γ(a)Γ(b)
, (11)

where the hyper-parameter ηZ = [a, b]> is constrained to a
set ΩηZ = {a > 0, b > 0}, and Γ(·) is the Gamma function.
With (11), it can be shown that ek has a G-confluent
distribution whose pdf is denoted by C(ek|0, R, a, b) and
takes the following form

C(ek|0, R, a, b) =

∫
N (ek|0, R/zk)B(zk|a, b)dzk

=
Γ(a+ b)Γ(a+ 1

2 )

Γ(a)Γ(a+ b+ 1
2 )
√

2πR
·M(a+ 1

2 , a+ b+ 1
2 ,−

1
2Re

2
k),

(12)
where M is the confluent hypergeometric function, see
[Olver et al., 2010, Ch. 13] and Appendix ??. This analytic
expression for the pdf of the G-confluent distribution is
a key feature of the proposed measurement noise model.
The the corresponding derivation can be found in detail in
Appendix ??.

4. MORE FLEXIBLE FOR OUTLIER MODELING

In contrast with the Student’s t distribution, the main
advantage of the G-confluent distribution (12) is that
it is more flexible for outlier modeling because its two
parameters, a and b, can be both used to adjust the tail
behavior, as can be seen in Figure 1. A small b keeps the
G-confluent distribution similar to the Gaussian near the
mode, but a small a allows for heavy tails, which cannot
be realized by the Student’s t distribution. The role of a
and b is further illustrated in Figure 2, which shows that
a and b control the slope and height of the tail of the pdf,
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Fig. 3. Probability P (|ek| > u), where ek ∼ C(0, 1, a, b).
The values of a and b are given in the legend, and
are such that P (|ek| > 2) = 0.1. The corresponding
probability for Gaussian distribution is shown for
comparison.

respectively. Finally, it is worth noting that as a → ∞
with b kept constant, or as b→ 0 with a kept constant, it
holds that C(ek|0, R, a, b)→ N (ek|0, R).

4.1 Able to Adjust Relative Size and Occurrence Probability
of Outliers

In Figure 3, the probability P (|ek| > u) has been illus-
trated as a function of u, where ek ∼ C(0, 1, a, b). The
probability is computed using the cdf of the G-confluent
distribution, see Appendix ??. The parameter a is var-
ied, while b has been chosen as a function of a to let
P (|ek| > 2) = 10−1 (note that the curves intersect at
u = 2). As shown in Figure 3, this allows for a similar
shape of the distribution close to the mode, and a con-
stant P (|ek| > 2) = 10−1 (which can be thought of as
the occurrence probability of outliers). The probability
P (|ek| > 10) (which is related to the relative size of
outliers) varies from 10−3 to 0.5 · 10−1. This illustrates
that by varying a and b, we can adjust the occurrence
probability of outliers and the relative size of outliers in an
uncoupled way, distinguishing the G-confluent distribution
from the Student’s t distribution.

5. MODEL INFERENCE WITH VARIATIONAL EM

A variational Bayes method is used to compute approxima-
tions of (10a) and (10b) using a lower bound of log p(Y |η).
This corresponds to variational expectation maximization
(em), see, e.g., [Beal and Ghahramani, 2003, Neal and
Hinton, 1998].

5.1 Variational EM

The posterior (10a) is approximated as
p(F,Z|Y, η) ≈ q(F,Z) = qF (F )qZ(Z), (13)

where qF (F ) and qZ(Z) are general pdfs. We select qF (F ),
qZ(Z), and η∗ through maximizing the evidence lower
bound,
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max
q(F,Z)∈Ωq, η∈Ωη

L (q(F,Z); p(F,Z, Y |η)), (14)

where the evidence lower bound is given by

L (q(F,Z); p(F,Z, Y |η)) = Eq(F,Z) log
p(F,Z, Y |η)

q(F,Z)
. (15)

Variational EM solves (14) using block coordinate ascent:
by iteratively applying a variational E-step and a varia-
tional M-step until convergence [Neal and Hinton, 1998,
Tzikas et al., 2008].

The variational E-step consists of computing an updated
q(j)(F,Z) = q

(j)
F (F )q

(j)
Z (Z) for a given η(j−1) as follows:

q
(j)
F (F ) = arg max

qF (F )∈ΩqF

L (qF (F )q
(j−1)
Z (Z); p(F,Z, Y |η(j−1))),

(16a)

q
(j)
Z (Z) = arg max

qZ(Z)∈ΩqZ

L (q
(j)
F (F )qZ(Z); p(F,Z, Y |η(j−1))),

(16b)

where ΩqF = {qF (F ) > 0 |
∫
qF (F )dF = 1}, ΩqZ =

{qZ(Z) > 0 |
∫
qZ(Z)dZ = 1}.

The variational M-step consists of computing an updated
value η(j) for a given q(j)(F,Z) as follows:

η(j) = arg max
η∈Ωη

L (q(j)(F,Z); p(F,Z, Y |η)). (17)

5.2 Variational E-step (16): Computing q(j)(F,Z)

In this step, we compute the update (16). It follows
from, e.g., [Bishop, 2006, Ch. 10] that it can be writ-
ten as log q

(j)
F (F ) = E

q
(j−1)

Z

log p(F,Z, Y |η(j−1)) + c1 and

log q
(j)
Z (Z) = E

q
(j)

F

log p(F,Z, Y |η(j−1)) + c2, where the

constants c1 and c2 must be chosen such that q(j)
F (F ) and

q
(j)
Z (Z) integrate to 1.

Equation (16a) can then be written as

q
(j)
F (F ) = N (F |µ(j)

F , P
(j)
F ), (18a)

P
(j)
F =

(
D(j−1) +K(X|η(j−1)

F )−1
)−1

, (18b)

µ
(j)
F = P

(j)
F D(j−1)Y, (18c)

D(j−1) =
1

R(j−1)
diag

[
E
q
(j−1)

Z

z1, · · · ,Eq(j−1)

Z

zN
]
. (18d)

Equation (16b) can be written as

q
(j)
Z (Z) =

N∏
k=1

E(zk|a(j)
z,k, b

(j)
z,k, c

(j)
z,k), (19a)

a
(j)
z,k = a(j−1) +

1

2
(19b)

b
(j)
z,k = b(j−1), (19c)

c
(j)
z,k = − 1

2R(j−1)
E
q
(j)

F

(
yk − fk

)2
. (19d)

Here, E denotes the pdf of the exponentially skewed Beta
distribution

E(x|a, b, c) =
Γ(a+ b)xa−1(1− x)b−1ecx

Γ(a)Γ(b)M (a, a+ b, c)
, (20)

where 0 ≤ x ≤ 1, a > 0, b > 0, c ∈ R. We discuss
the exponentially skewed Beta distribution further in
Appendix ??.

5.3 Variational M-step (17): Computing η(j)

We now solve (17) for η(j). Using (8) and (13), the evidence
lower bound in (17) can be written as

L (q(j)(F,Z); p(F,Z, Y |η))

E
q
(j)

F

log p(F |ηF ) +

N∑
k=1

E
q
(j)

Z

log p(zk|ηZ)

+

N∑
k=1

E
q
(j)

Z

E
q
(j)

F

log p(yk|fk, R, zk)

− E
q
(j)

F

log q
(j)
F (F )− EqZ q

(j)
Z (Z). (21)

This expression is analytically tractable. Only the first
component depends on ηF , only the second on ηZ , and
only the third on R. We can thus maximize these three
components separately. This yields the updates

η
(j)
F = arg max

ηF∈ΩηF

(
− 1

2 Tr(K(X|ηF )−1E
q
(j)

F

FF>)

− 1
2 log detK(X|ηF )

)
, (22)

η
(j)
Z = arg max

ηZ∈ΩηZ

(
(a− 1)

N∑
k=1

E
q
(j)

Z

log zk

+ (b− 1)

N∑
k=1

E
q
(j)

Z

log(1− zk)

+N (log Γ(a+ b)− log Γ(a)− log Γ(b))

)
, (23)

R(j) =
1

N

N∑
k=1

E
q
(j)

Z

zk Eq(j)
F

(yk − fk)2. (24)

The variational M-step consists of computing (22)–(24).
Thus, it contains two low-dimensional optimization steps
and an analytic update.

5.4 Summary of the Proposed Method and Its Convergence
Properties

The proposed method is summarized in Algorithm 1.

6. NUMERICAL EXPERIMENTS

We evaluate the proposed method (Algorithm 1, denoted
as GP, G-Confluent) in comparison with a method im-
plemented in the same way, except that the measurement
noise model is chosen to be the Student’s t distribution
(denoted as GP, Student’s t, following e.g. [Jylänki et al.,
2011, Kuss, 2006, Tipping and Lawrence, 2005]).

6.1 Method Configuration

The squared exponential kernel (3) is used for all evalua-
tions for ease of comparison.
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Algorithm 1 Gaussian process regression with G-
confluent measurement noise model using variational em.

Initialize q(0)
F (F ), q

(0)
Z (Z), η(0). Set j = 0.

repeat
j = j + 1

Variational E-step (16): Compute q
(j)
F (F ) using

(18), and q(j)
Z (Z) using (19).

Variational M-step (17): Compute η(j)
F using (22),

η
(j)
Z using (23), and R(j) using (24).
Evidence lower bound: Compute L (j) =

L (q(j)(F,Z); p(F,Z, Y |η(j))) using (21).
until convergence.
return the achieved limit points q∗F (F ), q∗Z(Z), η∗.

Table 1. Initialization values for η, where ŝ is
the estimated noise standard deviation using
Gaussian process regression with a Gaussian

likelihood.

Parameter Initialization Value(s)
a {1, 2, 3}
b 0.1
ν {2, 4, 6}
R {0.1, 1, 10} · ŝ2
c {e−3, 1, e3}
λm 1

Since the optimization problem (14) is non-convex, we pro-
pose an initialization procedure as follows: Run the algo-
rithm initialized at several values of the hyper-parameter
η, given in Table 1. The density q(0)

F (F ) is initialized using
Gaussian process regression with a Gaussian likelihood
[Rasmussen and Williams, 2006]. The density q

(0)
Z (Z) is

initialized so that E
q
(0)
zk

zk = 0.9 for k = 1, . . . , N . For
each initial value, run the loop in Algorithm 1 for 10 iter-
ations. Then, we select the resulting approximation with
the highest evidence lower bound L as an initialization
for Algorithm 1 and run it until convergence. As for the
stopping criteria, we consider the increase in the evidence
lower bound L (j) and the iterations are deemed to have
converged when L (j)−L (j−1) < 10−6. We assume that
each regressor and output has sample mean 0 and sample
variance 1. The data sets were normalized if this did not
hold.

6.2 Performance Assessment

We evaluate the two methods using cross-validation. The
data is randomly partitioned into training data (X,Y ),
and test data (X̃, Ỹ ), where Ỹ = [ỹ1, · · · , ỹNt ]>, X̃ =
[x̃1, · · · , x̃Nt ], and Nt is the number of test data points.
The model is inferred from the training data. We then
evaluate the root mean square error (rmse) on test data,
given by

rmse(Ỹ ) =

√√√√ Nt∑
k=1

(ỹk − f̂k)2, (25)

where f̂k = Ep(F |Y ) f(x̃k) is the posterior predictive mean
given the training data. Further, we evaluate the point-
wise predictive log likelihood (pll) on test data, given by

pll(Ỹ ) =

Nt∑
k=1

log p(ỹk|Y ) =

Nt∑
k=1

log

∫
p(ỹk|F )p(F |Y )dF.

(26)
The integrals are computed using 50 point Gauss-Hermite
quadrature [Abramowitz and Stegun, 1964, Ch. 25].

6.3 Benchmark Data

The two methods are tested on four benchmark data sets.

Boston Housing Data We study the data set of housing
prices in Boston originally published in [Harrison Jr and
Rubinfeld, 1978]. The data set contains 506 observations.
Each measurement yk is the median price of houses in
different parts of the Boston metropolitan area, associated
with a regressor xk containing 13 input variables per area.
We randomly partition the data into a set of 200 training
points and 306 test points, which is repeated for 20 times,
leading to 20 Monte Carlo simulations.

Concrete Data We study the data set of concrete
strength from [Yeh, 1998]. The data set contains 1030
observations, and each measurement yk is the compressive
strength of a certain batch of high performance concrete.
Each batch is associated with a regressor xk containing
8 input variables related to the components used to make
the concrete. The data is randomly partitioned into a set of
200 training points and 830 test points, which is repeated
for 20 times, leading to 20 Monte Carlo simulations.

Friedman Data We study the synthetic example pro-
posed in [Friedman, 1991]. For each index k, we simulate
regressors xk = [xk,1, . . . , xk,10]> as xk,i ∼ U(0, 1), i =
1, . . . , 10, where U(0, 1) is the uniform distribution on
[0, 1]. We then select the true function as f∗(xk) =
10 sin(πxk,1xk,2) + 20(xk,3 − 0.5)2 + 10xk,4 + 5xk,5 which
does not depend on xk,i, i = 6, . . . , 10 and leads to a
feature selection problem.

To generate outlier-free data, we follow [Kuss, 2006] and
generate y∗k = f∗(xk) + ek, ek ∼ N (0, 1), k = 1, . . . , 200.
Then, 10 of the first 100 measurements and 10 of the
second 100 measurements are replaced with outliers yok ∼
N (15, 3), respectively, which lead to the 100 training
data points and 100 test data points, respectively. The
above data generation procedure is repeated for 100 times,
leading to 100 Monte Carlo simulations.

Fuel Consumption Data We study the data set of car
fuel consumption [Quinlan, 1993]. The data set contains
398 measurements, of which 6 contained missing data and
were removed, and 6 regressors which describe car models
were used to predict fuel consumption. We then randomly
partition the data into 200 training data points and 192
test data points, which is repeated for 20 times, leading to
20 Monte Carlo simulations.

6.4 Simulation Results and Findings

Simulation results are summarized in Table 2, which shows
the mean rmse and pll, and Figures 4 and 5, which
respectively show the dispersion of the rmse and pll. As
shown in Table 2, for all four data sets, the noise model
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Table 2. Mean of rmse and pll values.

rmse Boston H. Concrete Friedman Fuel C.
G-confluent 0.872 3.020 5.154 4.272
Student’s t 1.014 3.087 5.430 4.324
pll Boston H. Concrete Friedman Fuel C.
G-confluent -683.0 -4895.0 -437.2 -849.5
Student’s t -898.4 -9323.2 -439.9 -1198.8
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Fig. 4. Boxplots of rmse on the benchmark data sets.
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Fig. 5. Boxplots of pll on the benchmark data sets.

with the G-confluent distribution achieves lower mean of
rmse and larger mean of pll. In particular, the mean
of rmse is lower for the Boston housing data set and
the mean of pll is larger for all data sets except the
Friedman data set. As shown in boxplots of rmse and
pll in Figures 4 and 5, the noise model with the G-
confluent distribution achieves more compact distribution
of values of rmse for all data sets except the concrete
data set (which is slightly less compact) and more compact
distribution of values of pll for all data sets except the
Friedman data set (which looks similar).

These simulation results show that the proposed noise
model with the G-confluent distribution performs better
than or as well as the Student’s t distribution.

7. CONCLUSION

We have studied robust Gaussian process regression where
a G-confluent distribution was proposed as the measure-
ment noise model, suitable for coordinate ascent vari-
ational inference. Numerical experiments on benchmark
data showed that the G-confluent distribution performs
better than or as well as the commonly used Student’s t
distribution.
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