
Deep Reinforcement Learning and Randomized
Blending for Control under Novel Disturbances

Yves Sohège ∗ Gregory Provan ∗∗ Marcos Quiñones-Grueiro ∗∗∗

Gautam Biswas ∗∗∗∗

∗ Lero Centre for Software Research, UCC, Ireland (e-mail:
yves.sohege@insight-centre.org).

∗∗ Computer Science Department, UCC, Ireland (e-mail:
g.provan@cs.ucc.ie)

∗∗∗ Universidad Tecnológica de la Habana José Antonio Echeverrı́a (email:
marcosqg88@gmail.com)

∗∗∗∗ Vanderbilt University Nashville, Tennessee, USA (email:
gautam.biswas@vanderbilt.edu)

Abstract: Enabling autonomous vehicles to maneuver in novel scenarios is a key unsolved problem.
A well-known approach, Weighted Multiple Model Adaptive Control (WMMAC), uses a set of pre-
tuned controllers and combines their control actions using a weight vector. Although WMMAC offers
an improvement to traditional switched control in terms of smooth control oscillations, it depends
on accurate fault isolation and cannot deal with unknown disturbances. A recent approach avoids
state estimation by randomly assigning the controller weighting vector; however, this approach uses a
uniform distribution for control-weight sampling, which is sub-optimal compared to state-estimation
methods. In this article, we propose a framework that uses deep reinforcement learning (DRL) to
learn weighted control distributions that optimize the performance of the randomized approach for
both known and unknown disturbances. We show that RL-based randomized blending dominates pure
randomized blending, a switched FDI-based architecture and pre-tuned controllers on a quadcopter
trajectory optimisation task in which we penalise deviations in both position and attitude.

Keywords: Design of fault tolerant/reliable systems; Fault accommodation and Reconfiguration
strategies; Methods based on neural networks and/or fuzzy logic for FDI.

1. INTRODUCTION

Enabling agents to act autonomously is a significant challenge,
with many unsolved tasks. One unsolved task is enabling a sys-
tem to operate safely in novel scenarios, since it is impossible
to pre-compute controllers for all disturbances (e.g., faults or
external disturbances like wind), let alone scenarios that cannot
be predicted during design-time.

We focus on systems for which real-time control (RTC) is
important. In particular, we use a quadcopter (Özbek et al.,
2016) as our running example. A quadcopter is a well-studied
unmanned aerial vehicle that use four propellers to maneuver.
These vehicles have fewer actuators than degrees of freedom,
and hence are called under-actuated. Improper design of RTC
can lead to crashing. Current state of the art quadcopter control
utilizes a cascading PID-architecture (Mo and Farid, 2019).

Two approaches for RTC have been developed. The control-
theoretic approach uses model-based methods to develop con-
trollers, and relies on state estimation to compute a controller
appropriate to a given state. The AI-based approach uses
model-free methods, and relies on machine learning to estimate
control parameters for given operating conditions.

? This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289.

Both approaches have strengths and weaknesses. The control-
theoretic approach can generate controls with precise guar-
antees, but state estimation introduces latency into applying
controls, and typically these model-based solutions require a
priori knowledge of all potential states. The AI-based approach
requires time to learn controls for novel scenarios, so cannot
respond in real-time to such situations.

We propose an approach that is based on Weighted Multiple
Model Adaptive Control (WMMAC), a state-of-the-art pas-
sive adaptive control technique that blends the outputs of a
set of low-level controllers. WMMAC was first introduced in
(Kuipers and Ioannou, 2010) as an improvement of discrete
switching-based multiple model approaches. Blending avoids
the control oscillations that are problematic in other switching
methods, e.g., discrete switching (Hou et al., 1996) and sliding-
mode control (Edwards and Spurgeon, 1998), since all control
assignments consist of a blend of multiple controllers so switch-
ing is inherently less abrupt.

Most blending algorithms rely on (a) a priori controller specifi-
cations and (b) identification mechanisms (e.g., Kalman-filters)
to estimate the probability of a known disturbance and adjust
the blending proportions accordingly. Few blending algorithms
for unknown disturbances (where identification is impossible)
exist; for real-time controllers, delays or miss-identification of
faults can be catastrophic.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8273

One recent WMMAC approach for stabilizing systems subject
to novel disturbances uses a randomized blending (RB) distri-
bution over all controllers without performing state estimation
(Provan and Sohège, 2019). The weakness of this approach is
that it uses a uniform distribution for controller sampling, which
leads to sub-optimal control in comparison to an ideal optimal
controller.

This article proposes a stable, real-time controller for novel
disturbances that does not require on-line fault detection and
diagnosis. We extend randomized blending (RB) control with
reinforcement learning (RL) (Sutton and Barto, 1998) to design
an agent that learns how to adapt the blending distributions
depending on the system state and environmental conditions.
We use deep reinforcement learning to teach an agent how to
parameterize the RB distribution depending on the scenarios
encountered. This approach improves on traditional RL meth-
ods for real-time control (e.g., (Hwangbo et al., 2017; Koch
et al., 2019; Shi et al., 2018)) as the RB guarantees stability
for the exploration phase of novel scenarios, whereas no sta-
bility guarantees exist for any existing RL-based controller in
novel scenarios. Further, the randomization inherent in control
execution provides an excellent basis for RL exploration, as it
provides good coverage of the control space under the novel
situation.

Our contributions are as follows.

• We present a novel real-time control system based on
WMMAC with randomized blending and deep reinforce-
ment learning. The agent is trained to learn the optimal
randomized blending distribution offline for known faults
given a static controller set. We show the trained frame-
work is able to maintain control for unknown disturbances
by shifting the randomized blending distributions accord-
ingly in real time.
• We demonstrate our approach using a trajectory-following

task for a quadcopter, by comparing its path- and attitude-
deviation performance against that of two hand-tuned
controllers, a (non-learning) randomized approach, and a
traditional switching controller. We show that a neural-
network based high-level controller trained for two fault
conditions, abrupt rotor faults and attitude sensor noise,
outperforms the other architectures under unknown dis-
turbance conditions including wind-gusts, position noise
and a combination of all known and unknown faults.
• The proposed fault-tolerant control scheme does not re-

quire an online fault-detection step.

The paper layout is as follows: Section 2 outlines various rel-
evant control architectures and deep reinforcement learning.
We introduce the generic Deep Reinforcement Learning Ran-
domized Blended Control (DRLRBC) architecture in section 3
and the general quadcopter model in section 4. Section 5 gives
the implementation and training of DRLRBC on a quadcopter
followed by experimental evaluation and conclusion in section
6 and 7 respectively.

2. BACKGROUND & RELATED WORK

This section discusses relevant background and control archi-
tectures explored in this article. We introduce manually-tuned
controllers and then some hierarchical control frameworks. We
are interested in comparing different high-level frameworks that
use the same low-level controllers.

(1) Manual-tuning is widely done but balancing the system
behaviour for different operating scenarios during the tuning
process is extremely complex. Sub-optimal system controllers
that exhibit unwanted behaviour during specific operating con-
ditions are common. In this article two manually tuned con-
trollers are designed to exhibit a specific behaviour, referred to
as C1 and C2. The low-level controller set for any high-level
control architecture compared in this article will always consist
of C1 and C2.

(2) Discrete Switching is a hierarchical control architecture
based on a set of low-level system controllers tuned for specific
operating conditions. A large amount of work has been done on
hierarchical control architectures (Blanke et al., 2016; Lunze,
2016). A high-level controller identifies changes in operating
conditions such as faults and discretely switches control be-
tween the system controllers using a switching function. A
drawback of this architecture for novel disturbance scenarios
is that no pre-defined controller exists as controller design
requires a priori knowledge of the operating conditions. By
definition the performance of the pre-defined controllers is in-
herently unknown for novel scenarios, but one controller must
maintain system control which leads to unknown performance.

(3) Weighted Multiple-Model Adaptive Control (WMMAC)
uses a high-level controller to blend the inputs of a set of low-
level system controllers, each of which is defined for a specific
operating condition. Formally:
Definition 1. (WMMAC). Given a collection of controllers
Ω = {ω1, · · · , ωm} and a control distribution vector ϕ =
{ϕ1, · · · , ϕm}, the blended control signal is given by a
weighted combination ω =

∑
i ϕiωi such that: (1) ∀i, ωi ∈

Ω, 0 ≤ ϕi ≤ 1, and (2)
∑
i ϕi = 1

Constraints (1) and (2) ensure that the blended control signal
is bound between the low-level controller outputs. In (Zhang,
2015) the stability of WMMAC is proven for a discrete time
stochastic plant and (Kersting and Buss, 2018) discusses a
systematic distribution of controllers for MMAC. A major
drawback of the WMMAC approach is that computing blend
weights relies on FDI techniques, which are dependent on a
priori knowledge about the disturbances. Further, detection and
isolation may be inaccurate and takes inherently takes time,
which can be problematic for RTC.

(4) Randomized Blended Control (RBC) is a randomized
version of WMMAC. RBC avoids the estimation phase of WM-
MAC, and uses randomization to estimate a blend distribution
by sampling uniformly over the space of all low-level controller
weights. (Provan and Sohège, 2019) show that, given unknown
disturbances, RBC can stabilize a system, and that its perfor-
mance for known scenarios converges to the performance of
the optimal low-level controller.

Control of multiple-model systems using mixing has been
shown to be stable for situations in which the (fixed) unknown
parameter set of the plant is assumed to lie in the convex hull
of the control parameters of the multiple models (Han and
Narendra, 2011). This has recently been extended to the case of
systems with an unknown varying parameter set (Narendra and
Esfandiari, 2019). Using these notions, (Provan and Sohège,
2019) also show stability of the randomized approach, bounded
by the convex hull of the available controllers.

(5) RL-based control. We now introduce our approach, which
extends the Non-Learning (NL) RBC with an architecture based

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8274

Fig. 1. The DRLRBC architecture (with two controllers).

on Deep Reinforcement-Learning (DRL), which we call Deep
Reinforcement-Learning RBC (DRLRBC). DRL (Sutton and
Barto, 2018) has successfully been able to learn accurate con-
trollers for complex systems such as quadcopters and cars
(Sallab et al., 2017; Hwangbo et al., 2017). Further, although
optimal control and RL have been developed in different com-
munties, they are both capable of solving the same optimal
control task (Powell, 2019). One weakness of RL-based control
approaches is the training-time required to learn control of
the system for each of several operating conditions, and the
complexity of defining an accurate reward function. Currently,
no approach exists that can provide stability guarantees under
novel disturbances. This article extends the RBC approach with
deep RL in order to learn a controller weight distribution that
is tailored to the observed environmental/fault conditions. To
simplify the training process, we use for our training data a
restriction of the entire state space of the quadcopter, namely
attitude loss and low-level controller outputs.

3. DEEP REINFORCEMENT LEARNING RANDOMIZED
BLENDED CONTROL

We will give a generic overview of the presented architec-
ture, referred to as Deep Reinforcement Learning Random-
ized Blended Control (DRLRBC). An architecture diagram
showing a two controller example can be seen in Figure 1.
We will discuss the architecture in four parts: (1) Low-Level
Controllers, (2) Performance Estimate, (3) Blending Function
and (4) High-Level Controller.

3.1 Low-Level Controllers

In this article, we will restrict the low-level controllers to PID
controllers, which are an industry-standard way of controlling
automatic systems (Özbek et al., 2016). Fault tolerant control
architectures tune low-level controllers for different operating
conditions to achieve fault tolerance under those conditions
(Lunze, 2016). Although MPC and LQR controllers have been
applied to quadcopters, they are typically designed around a
fixed operating point and require extensive modelling effort
(Mo and Farid, 2019). The investigation into these controllers
is planned future work and beyond the scope of this arti-
cle. The set of low-level controllers outputs is denoted Ω =
{ω1, · · · , ωN}. Figure 1 shows an example architecture with
two controllers.

3.2 Performance Estimate

We define δ = [P, E], where P indicates overall system
performance and E the current control effectiveness. These
measures are system- and task-dependent and give the agent
a real-time measure of how well the task is being achieved.

3.3 Blending Function

In developing DRLRBC we must make additional modifica-
tions to RBC. We adapt the RBC input parameters to allow an
external input Λ, referred to as the Randomization Bounds Vec-
tor (RBV), to control the range from which ϕi is sampled. Λ is
a set of tuples [λ−i , λ

+
i] , one tuple for each low-level controller

ωi ∈ Ω, indicating the range from which the randomized blend
weight ϕi is sampled. More precisely :
Definition 2. (Bounded Randomized Blending). Given a col-
lection of controller outputs Ω = {ω1, · · · , ωm} and Ran-
domization Bounds Vector Λ = {[λ−1 , λ

+
1], · · · , [λ−m, λ+m]}, the

control distribution vector ϕ = {ϕ1, · · · , ϕm} is randomly
sampled such that for the weighted combination ω =

∑
i ϕiωi

the following constraints hold: (1) ∀i, ωi ∈ Ω, λ−i ≤ ϕi ≤ λ+i ,
(2)

∑
i ϕi = 1 ,and (3) 0 ≤ λi ≤ 1

By introducing a bound on the range from which random
blend weights are sampled from, the space of combinations of
controllers can be explored while still relying on the stability
guarantees provided by RBC under novel disturbances.

3.4 High-Level Controller

In the presented architecture the high-level controller is imple-
mented using a deep neural network as they are known to be
excellent function approximators. Neural networks have contin-
uous observation and action spaces which remove the inherent
FDI delay experienced by traditional switched systems.

The observation vector for DRLRBC can generically be defined
as: [δ , Ω]. The agent’s action output is the Randomization
Bounds Vector, Λ. So the goal of the agent is to learn the
mapping: [δ,Ω] → Λ that optimizes the performance of the
system on a given task. A more detailed example of observation
vector and action space will be given in section 5.

3.5 Architecture comparison

We contrast the presented DRLRBC architecture to current
state of the art approaches. The deep learning algorithm is ap-
plied to an abstracted high-level task while relying on existing
low-level system control mechanism to control the vehicle. This
reduces the overall complexity of the learning task as nominal
system control is already established which usually takes a large
number of learning iterations and fine tuning an accurate reward
function to achieve. The direct mapping of state space to motor
commands is a highly complex function. Every additional input
to the deep learning algorithm increases the size of the space
that is explored which is a reason for the long convergence
times experienced by the application of deep learning to control
tasks. DRLRBC uses a measure of task performance to direct
how influential each controller is in the applied signal, which is
a much smaller problem to learn.

WMMAC enables FTC with respect to a pre-defined set of
(partial) faults, but at the expense of (a) tuning a controller for

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8275

each fault and (b) using FDI to isolate the fault magnitudes
prior to controller allocation. In contrast, our approach does
not require a priori knowledge of any faults or FDI for fault
isolation; our randomized controller assignment (as tuned to
actual faults via RL) handles the FTC.

The framework we propose aims to estimate the optimal
blended control signal given a static pre-defined controller set
under situations it was not trained for. Since we are calculating
a convex combination of controller outputs, the overall range of
the blended signal is limited to between the low-level controller
outputs.

4. QUADCOPTERS

Quadcopters are unmanned aerial vehicles that use four pro-
pellers to maneuver and have gained increased attention in the
research community in recent years. These vehicles have only
four actuators used to control six variables, the coordinates x,
y, and z, and the roll, pitch, and yaw angles of the quadcopter,
denoted φ, θ, and ψ, respectively. The dynamic equations of a
quadcopter are complex, due to the highly coupled state-space.
Due to space limitations, we give a brief summary of quadrotor
dynamics and details of how rotor faults and wind disturbances
are represented, and refer the reader to (Özbek et al., 2016) for
details. 1

We define the dynamics of the quadcopter in the non-linear state
space form

ẋ = f(x) + g(x)(1− ς)u(t), (1)

where x = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector,
control input u(t) = [U1 U2 U3 U4]T = %(υ1 υ2 υ3 υ4), % is
a non-linear function in the angular velocity of motor i, and we
denote a multiplicative fault model with parameter 0 ≤ ςi ≤ 1
for i = 1, ..., 4, where ςi = 0 corresponds to nominal function
and ςi = 1 to total failure. The wind is generated as a drag force
that acts on the body frame ε.

Quadcopters have been shown to be able to maintain flight even
after the complete loss of one or more rotors under specific
conditions (Mueller and D’Andrea, 2014). The standard way
to achieve trajectory tracking is by employing a cascading
PID controller structure, which is the approach we consider in
this article. Position controllers generate the required attitude
reference to execute the trajectory. Roll and Pitch attitude
controllers generate the required motor commands to attain
the attitude. Blended control is only applied on the attitude
controllers, not on the position controllers.

Several applications of deep learning for quadcopters exist,
which mostly focus on learning the direct control mapping
of state space to motor commands (Hwangbo et al., 2017;
Greatwood and Richards, 2019; Koch et al., 2019). This usually
requires significant training data and complex fine-tuning of the
reward functions to achieve the desired behaviour.

The application of deep learning for FTC of a quadcopter has
been achieved by learning a complementary controller that
adjusts the nominal controller output during a rotor fault (Fei
et al., 2019). The success of this approach compared to other
adaptive control strategies is attributed to the continuous output
of the neural network and removal of the FDI unit to identify
when a correction to the nominal controller is needed.
1 The MATLAB simulation codebase necessary to run the experiments in this
article is available under github.com/YvesSohege/IFAC20-Simulation.

The task of the Quadcopter in this work is focused on Tra-
jectory Tracking. A trajectory is a temporally-indexed set of
coordinates in 2D or 3D, denoted ζ(k). We denote the reference
(desired) trajectory as ζR(k), and the executed trajectory as
ζ̃(k). The goal of a trajectory tracking task can be defined as
minimizing the Total Trajectory Loss:
Definition 3. (Total Trajectory Loss). We can represent the to-
tal trajectory loss as a difference function between reference
and executed trajectories, i.e., L0:T =

∑T
k=0 ‖ ζR(k)− ζ̃(k) ‖

for a trajectory over time points k = 0, · · · , T .

Given the Total Trajectory Loss over the T time-steps, the
current trajectory loss at time t can be defined as Lt. Simi-
larly, we introduce a second performance metric to measure
the attitude tracking error, A0:T , as a loss function between
reference attitude ∆R(k) and actual attitude ∆̃(k) which is
omitted due to space constraints. For simplicity we will focus
on 2D (x, y) trajectory tracking but the approach extends to 3D
trajectories with minimal changes. We do not apply blending
on the rotational ψ controller of the quadcopter as this does not
effect a 2D trajectory.

5. QUADCOPTER IMPLEMENTATION AND TRAINING

In this section we will describe the implementation of the
DRLRBC architecture on a Quadcopter MATLAB simulation
as well as the training details of the agent. 2

5.1 Low-Level Controllers

In this article, we will use two controllers for the roll and
pitch attitude of the quadcopter. Each axis will have a C1 and
a C2 controller with different tuning which can be seen in
Table 1. Since a quadcopter is symmetric we can use the same
tuning for both axis. By changing the PID gain parameters, we
change how the quadcopter responds to different situations. The
controllers were hand-tuned to nominal operating conditions
under which they perform identically in terms of trajectory loss.
This is highlighted experimentally in Table 3 Exp1, in Section
6. However C2 has a higher proportional gain which allows it
to respond more aggressively to abrupt disturbances than C1.
We also purposely add slight oscillations around the reference
when tuning C2 by slightly lowering the derivative gain.

P I D
C1 (Smooth) 2 1.2 1.3

C2 (Aggressive) 4 1.5 1.2
Table 1. PID parameters for low-level controller tuning used.

5.2 Performance Estimation

We use the current x and y trajectory error, denoted δx and δy
respectively, as a measure of how well the system is performing
overall on its task. Blended control is being applied on two axis
of control and each needs a measure of effectiveness. For this
we select the current roll and pitch attitude error, denoted δφ
and δθ respectively. We can hence define the full performance
estimation output for the Quadcopter as δ = [δx δy δφ δθ].
These metrics allow the agent to judge how good control is for
the current scenario and adapt it to maximize the performance
without explicit knowledge of the operating conditions.
2 Real-world flights are beyond the scope of this article.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8276

5.3 Blending Function

Since this article focuses on blended control of a controller
pair a simplification can be made to Equation 2. By relying
on Constraint (2) of Equation 2 which forces the sum of both
controller weighting to be 1, after randomly generating the
first weight, the second can simply be obtained by subtraction
from 1. This simplification is indicated using χ in Figure 1 and
reduces the size of Λ by half.

5.4 High-Level Controller

An actor-critic DDPG network structure is used to generate
the randomized bounds vector Λ. Both actor and critic take in
the same observation vector which we define in full detail as
[δx δy δφ δθ ωφ1 ωφ2 ωθ1 ωθ2], where ωφ1 indicates C1 for the
roll axis, ωθ2 is C2 for pitch and so forth.

Through the additional simplification introduced to the Blend-
ing Function the agents action output can simply be defined
as [λ−φ λ+φ λ−θ λ+θ], indicating the lower and upper bounds
of the randomized blending ranges for φ and θ controllers
respectively. We give a brief overview of the neural network
architecture. The actor network is defined by three fully con-
nected layers separated by ReLU (Rectified Linear Unit) layers.
Finally a hyperbolic tangent layer with output size 4 is used to
naturally enforce the blended control constraints, bounding the
agent action space between 0 and 1. The critic network has two
paths, one for the observation vector and the other for the actor
output which are joined after two and one fully connected layer
respectively for each path. All fully connected layer contains 32
neurons in this implementation.

Training Conditions We use random rotor loss of effective-
ness (LOE) and noise on the attitude sensors of the quadcopter
as training conditions. All rotor faults in this article are of
magnitude 10%. To vary the training conditions we set the time
a rotor fault can occur randomly, with every time-step having
a probability of spontaneously losing angular rotor velocity of
10% for one time-step. This has an impact on both attitude and
trajectory. The noise is modelled as random white noise applied
to roll and pitch state, φ and θ respectively, and is defined
simply by its magnitude.

Reward function We define the reward function in terms
of Total Trajectory and Attitude Loss. The agents goal is to
maximize its reward function so we define the reward obtained
by the agent as:

R(t) = −(|δx(t)|+ |δy(t)|)− (|δφ(t)|+ |δθ(t)|)

which represents the sum of trajectory and attitude loss at time
t. We negate this to allow the agent to maximize the reward.
This reward function allows the agent to learn how to improve
the trajectory and attitude tracking performance regardless of
operating conditions. For training we use a straight line path
of 30 meters executed over 30 seconds. The quadcopter was
trained over 3000 episodes and average reward is calculated
over 50 episodes. The agent converged after around 1500
episodes. We define other relevant training parameters used in
Table 2 and refer the reader to the github repository provided in
section 4 for further details.

Parameter Value
Discount factor 0.99
Initial learning rate of the critic 0.01
Initial learning rate of the actor 0.025
Batch size 32
Replay buffer size 10000
Training steps of an episode 300
Number of episodes 3000

Table 2. DDPG Training parameters used

6. EXPERIMENTS

We empirically compare the simulated performance of the
presented control systems on a number of scenarios, including
known and novel disturbances. We do not consider faults that
would cause catastrophic failure. Since the agent was trained
on abrupt rotor loss of effectiveness and attitude noise, we
classify these as the known disturbances. In addition wind gusts
and position noise are tested and we classify these as novel
disturbances. We compare the two baseline controllers, C1 and
C2, with three high-level control architectures which utilize C1
and C2 to improve control, namely DRLRBC, Non-Learning
RBC and Switching. We define the switching condition for the
switched architecture as a trajectory deviation of 10% above
nominal tracking error. C1 is selected as the nominal controller
and C2 as the fault controller. We use a diamond shape path
with diagonal length of 10 meter starting and ending in the
centre over 60 seconds with a sample time of 0.1s. Since all
disturbances are modelled with randomness we present average
results taken over ten runs on each experiment.

The full list of experimental conditions can be found in Table
4. We test nominal conditions, three known disturbances (rotor
loss of effectiveness, attitude noise and both) and three un-
known disturbances (position noise, wind gusts and all faults).
Magnitude of disturbances (rotor and wind) is given followed
by disturbance trigger probability at any time step. E.g: 10%
error (30%) indicates every time-step has a 30% chance of
triggering a 10% fault.

6.1 Experimental Results

We evaluate the performance on each experiment using the
average Total Trajectory Loss and Total Attitude Loss of each
control system over 10 independent runs. We present the com-
plete set of results in Table 3. On average across all experiments
the presented architecture is able to outperform all other control
systems in terms of attitude and trajectory tracking accuracy.

Known Disturbances The training conditions included rotor
faults and attitude noise. DRLRBC is able to significantly
outperform all other control systems for trajectory accuracy for
all three experiments showing the agent successfully learned to
improve its performance under known disturbance conditions.
Under heavy attitude noise C1 is able to track the attitude
slightly more accurately than the DRLRBC architecture but at
the expense of trajectory loss.

Unknown Disturbances Positional noise and wind gusts are
used to test the control systems under unknown scenarios.
DRLRBC performs second best across all 3 experimental con-
ditions in terms of trajectory accuracy showing a comparable
performance. In terms of attitude tracking DRLRBC is able to
perform best under wind gusts and perform comparable to C1
and NL-RBC under the other two scenarios.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8277

Total Attitude Loss (rad) Total Trajectory Loss (m)
Exp # DRLRBC C1 C2 NL-RBC Switched DRLRBC C1 C2 NL-RBC Switched
Exp1 0.68 1.23 0.78 0.88 1.23 48.98 48.79 48.79 48.79 48.79
Exp2 30.43 42.08 43.71 35.1 41.08 50.88 98.51 59.31 55.71 56.20
Exp3 19.98 43.74 44.62 25.59 30.96 50.60 127.42 60.77 57.98 65.38
Exp4 33.16 30.62 42.07 34.39 34.90 55.17 57.87 56.36 56.21 63.98
Exp5 10.98 17.5 14.30 12.62 12.35 52.07 64.70 51.67 53.42 53.72
Exp6 16.73 15.03 23.01 16.29 20.89 57.91 57.97 57.15 58.39 57.67
Exp7 29.14 36.07 42.14 27.43 28.17 55.85 79.28 60.49 55.66 56.89

Average 20.16 26.62 30.09 21.76 24.23 53.07 76.36 56.36 55.16 58.66
Table 3. Experiment list showing Total Attitude Loss (in radians) and Total Trajectory Loss (in meters) for the compared control

systems. Best performing in bold text.

Exp # Att. Noise Pos. Noise* Rotor LOE Wind Gusts*
Exp1 - - - -
Exp2 0.02 - 10% error (10%) -
Exp3 - - 10% error (30%) -
Exp4 0.05 - - -
Exp5 - - - 0-10m/s (30%)
Exp6 - 0.05 - -
Exp7 0.02 0.02 10% error (10%) 0-10m/s (10%)

Table 4. Experimental Disturbance Details.

7. CONCLUSION

In this article, we presented a novel hierarchical control ar-
chitecture based on weighted multiple model adaptive control,
deep reinforcement learning and randomized blending. The
presented architecture is tested on a quadcopter trajectory track-
ing simulation, and trained under rotor loss of effectiveness
and attitude noise. We compare the presented architecture to
a non-learning randomized approach, a standard switched ar-
chitecture, and the underlying controllers working individually.
We showed that, averaged across all experiments, the presented
architecture outperforms all other baselines in terms of both
trajectory tracking and attitude tracking under known and un-
known disturbances. This extends the field of fault tolerant
control by providing a novel way to apply deep reinforcement
learning to high-level control tasks. In future work, we plan to
explore additional learning mechanisms, such as unsupervised
learning and a larger set of low level controllers.

REFERENCES

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2016). Diagnosis and Fault-Tolerant Control. Springer.

Edwards, C. and Spurgeon, S. (1998). Sliding mode control:
theory and applications. CRC Press.

Fei, F., Tu, Z., Yang, Y., Zhang, X., Xu, D., and Deng, X.
(2019). Learn to Recover: Reinforcement Learning-Assisted
Fault Tolerant Control for Quadrotor UAVs.

Greatwood, C. and Richards, A.G. (2019). Reinforcement
learning and model predictive control for robust embedded
quadrotor guidance and control. Autonomous Robots, 1–13.

Han, Z. and Narendra, K.S. (2011). New concepts in adaptive
control using multiple models. IEEE Transactions on Auto-
matic Control, 57(1), 78–89.

Hou, L., Michel, A.N., and Ye, H. (1996). Stability analysis of
switched systems. In Decision and Control, 1996., Proceed-
ings of the 35th IEEE Conference on, volume 2, 1208–1212.

Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. (2017).
Control of a quadrotor with reinforcement learning. IEEE
Robotics and Automation Letters, 2(4), 2096–2103.

Kersting, S. and Buss, M. (2018). How to systematically dis-
tribute candidate models and robust controllers in multiple-
model adaptive control: A coverage control approach. 63(4),
1075–1089.

Koch, W., Mancuso, R., West, R., and Bestavros, A. (2019).
Reinforcement learning for UAV attitude control. ACM
Transactions on Cyber-Physical Systems, 3(2), 22.

Kuipers, M. and Ioannou, P. (2010). Multiple model adaptive
control with mixing. IEEE Transactions on Automatic Con-
trol, 55(8), 1822–1836.

Lunze, J. (2016). From fault diagnosis to reconfigurable con-
trol: A unified concept. In 2016 3rd Conference on Control
and Fault-Tolerant Systems (SysTol), 413–421. IEEE.

Mo, H. and Farid, G. (2019). Nonlinear and adaptive intelligent
control techniques for quadrotor UAV a survey. 21(2), 989–
1008.

Mueller, M.W. and D’Andrea, R. (2014). Stability and control
of a quadrocopter despite the complete loss of one, two, or
three propellers. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), 45–52. IEEE.

Narendra, K.S. and Esfandiari, K. (2019). Adaptive identifica-
tion and control of linear periodic systems using second-level
adaptation. International Journal of Adaptive Control and
Signal Processing, 33(6), 956–971.

Özbek, N.S., Önkol, M., and Efe, M.Ö. (2016). Feedback
control strategies for quadrotor-type aerial robots: a survey.
Transactions of the Institute of Measurement and Control,
38(5), 529–554.

Powell, W.B. (2019). From reinforcement learning to optimal
control: A unified framework for sequential decisions.

Provan, G. and Sohège, Y. (2019). Fault-tolerant control for
unseen faults using randomized methods. In IEEE SysToL.

Sallab, A.E., Abdou, M., Perot, E., and Yogamani, S. (2017).
Deep reinforcement learning framework for autonomous
driving. Electronic Imaging, 2017(19), 70–76.

Shi, Q., Lam, H.K., Xiao, B., and Tsai, S.H. (2018). Adaptive
PID controller based on Q-learning algorithm. CAAI Trans-
actions on Intelligence Technology, 3(4), 235–244.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement learning:
an introduction. The MIT Press.

Zhang, W. (2015). Further results on stable weighted multi-
ple model adaptive control: Discrete-time stochastic plant.
29(12), 1497–1514.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8278

