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Abstract: Planning and control of autonomous vehicles are becoming increasingly important
for many applications. However, autonomous vehicles are often subject to disturbances and
uncertainties, which become critical especially in cluttered and dynamic environments. To
provide guaranteed constraints satisfaction, e.g. for collision avoidance, we propose a hierarchical
model predictive control and planning approach. The moving horizon planning layer and the
low-level model predictive controller agree on a “contract” (precision conditions). The high-
level moving horizon planner is based on a mixed-integer programming formulation using a
simplified model on a slow time scale, and constraint tightening. The autonomous vehicle itself
is controlled by a lower-level tube-based model predictive controller. The decomposition of the
control problem reduces the computational cost, enables real-time implementation while it allows
to provide guarantees. To ensure compatibility between the levels and guarantee safety, we do
explicitly consider the problem of recursive feasibility of the hierarchical controller ensuring
constraint satisfaction and obstacle avoidance, despite the action of (unknown) disturbances.
Simulation results illustrate the efficiency and applicability of the proposed hierarchical strategy.

Keywords: Moving Horizon Planning, Model Predictive Control, Contracts, Robustness.

1. INTRODUCTION

Autonomous vehicles are increasingly used in many appli-
cations, e.g. geological surveillance, agriculture, household
cleaning and search and rescue missions e.g. (Bormann
et al., 2018). Often, autonomous vehicles, e.g. unmanned
aerial vehicles, are exposed to many disturbances (wind
gusts), uncertainties (sensor noise, modeling error), and
operating in dynamically changing environments.

Neglecting the uncertainties and changing environment
is critical and can result in performance degradation or
complete failure. To overcome these challenges, robust
planning approaches and control systems are needed to
obtain safe and plausible references and control inputs to
satisfy constraints and improve performance, e.g. (Mayne
et al., 2005; Schouwenaars, 2006; Singh et al., 2017, 2018).
While a combined planning and control approach is desir-
able, it can often not be implemented for complexity and
computational feasibility reasons.

To address these challenges and reduce the complexity,
we propose a hierarchical model predictive control (MPC)
framework for planning and control in an uncertain and
clutter environment, see Fig. 1. The proposed hierarchical
structure effectively allows to decompose the complex task
into separate subproblems that can be solved in real-time
using the often limited on-board computational resources
(Ibrahim et al., 2019; Koeln and Alleyne, 2018; Cowlagi
and Tsiotras, 2012). The planner generates the reference
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for the low-level controller, while the dynamic obstacles
can be taken into account. The low-level controller sta-
bilizes the autonomous system and tracks the reference.
Typically, such hierarchical approaches lack guarantees
of consistency, e.g. constraint satisfaction between the
planning and control layers which are normally time scale
separated. The separation may for example produce an in-
feasible reference leading to unsafe behavior of the vehicle
in the presence of uncertainty in the dynamic environment.

In this work, we propose a framework, see Fig. 2, that
guarantees robustness and recursive feasibility, i.e. it main-
tains a guarantee of “consistency” between the different
layers. The high-level planner operates on a moving hori-
zon fashion to compute online a collision-free reference
taking the constraint tightening into account. During the
mission, encountered obstacles (static and dynamics) are
enlarged by a safety bound to provide safe references to
the low-level controller, see Fig. 1. The safety bounds
are provided and ensured by the low-level controller. The
planning problem using a simplified dynamic model is
formulated as a mixed-integer programming (MILP). To
track the generated reference, we use a robust tube based
MPC (Mayne et al., 2005; Chisci et al., 2001). This MPC
ensures robust constraint satisfaction despite uncertainties
by an adequate level of accuracy bounded in a tube.

The organization of paper is structured as follows: Section
2 presents the problem formulation. The hierarchical mov-
ing horizon and control approach is outlined in Section 3.
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(a) No feasible solution with conservative constraint tighten-
ing/obstacle enlargement, even if there exists a feasible one.
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(b) Reference planner can find a feasible solution with less
conservative constraint tightening, i.e. obstacle enlargement.
As uncertainty bounds can depend on the vehicle states (e.g.
velocity): here O1 ⊂ O2 is smaller due to slower movement.

Fig. 1. Planner generates a feasible reference (dotted blue
line) using a larger sampling time but the low-level
controller is unable to follow this reference exactly
(red line). While the planner cannot find feasible solu-
tion with conservative constraint tightening/obstacle
enlargement e.g. Fig. 1a, even if there exists a feasible
solution by adjusting the vehicle velocity Fig. 1b.

Section 4 presents simulation results. Section 5 summarizes
the findings and the outlooks.

2. PROBLEM FORMULATION

We consider the control and motion planning for an
autonomous vehicle. The overall objective is to navigate
an autonomous vehicle from Start point to Target avoiding
obstacles, see Fig. 1. For simplicity, we focus on a linear
dynamics. The system is furthermore subject to bounded
additive disturbances:

x(k + 1) =Ax(k) +Bu(k) + ω(k), (1a)

y(k) =Cx(k), (1b)

x(k) ∈X, u(k) ∈ U. (1c)

Here x(k) is the vehicle’s state, u(k) the control input and
y(k) ∈ Rp is the output corresponding to the vehicle’s po-
sitions and ω(k) is an unknown, but bounded disturbance.
The sets restricting the state and input, i.e. X ⊂ Rn and
U ⊂ Rm, are convex and compact.

In addition to the state and control constraints (1c) the
autonomous vehicle needs to avoid obstacles: the output
y(k)/the vehicle’s position should not touch obstacles
modeled by a set of convex, compact polytopes (denoted
by O):
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Fig. 2. Illustration of the hierarchical moving horizon
control strategy and the signals transmitted between
reference planning and the tracking controller. In
general the low-levels (black) utilizes a faster sampling
frequency than the high level planner (red).

yk /∈ O, O = {{Eiy(k) < fi}, i = 1, . . . ,H}, (2)

where H is the obstacles number. Note that the set
of constraints are nonconvex and can be equivalently
reformulated as

∀i ∈ {1, . . . ,H}, ∃j ∈ {1, ..., qi} s.t. Ei,jy(k) ≥ fi,j , (3)

which can be efficiently handled utilizing a MILP frame-
work using the so called big M approach, see Appendix A.

We assume that the bounds on the disturbance ω(k)
depend on the state x(k), e.g. velocity. For example, if the
autonomous vehicle moves with a slow speed, the worst
case disturbance might be smaller. This state-dependent
disturbances might be due to increasing uncertainty or due
to the low-level controller. We assume that there are Nω

different operating regions:

Assumption 1. (State-dependent disturbance bounds) If
x(k) ∈ Xi ⊆ X, then ω(k) ∈ Wi, where Xi and Wi are
convex, compact polytopes.

Note that the sets Xi can overlap, i.e. one can have that
Xi ∩ Xj 6= ∅ for i 6= j.

Remark 1. This assumption could be generalised for both
state constraints x(k) ∈ Xi ⊆ X and input constraints
u(k) ∈ Ui ⊆ U.

2.1 Proposed control scheme

For motion planning and control of the autonomous vehicle
we propose a hierarchical control scheme, see Fig. 2. The
upper level planner generates a reference to navigate the
vehicle around the obstacles to a desired point. This path
will be determined such that all constraints (1c) will be
satisfied and all obstacles will be avoided (3) for all possible
disturbance realizations.

To do so, the upper-level planner uses a simplified model
of the form
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xp(k + 1) = Apxp(k) +Bpup(k), (4)

to determines a path for the autonomous vehicle which is
controlled by the lower level controller, see Fig. 2. This
path will be determined such that all constraints (1c) will
be satisfied and all obstacles will be avoided (3) for all
possible disturbance realizations. The lower level reacts to
disturbances and aims to implement the planned reference
with a specific guaranteed accuracy, while considering the
constraints. The lower level controller uses a possibly more
detailed model (1) to track the reference. As the obstacles
are handled by the planner, the lower level controller
does not (directly) need to consider them, which allows
an efficient and fast implementation of the lower level
controller overcoming non-convex constraints.

In this work we assume that the planning model is ob-
tained from the real model (1) using a larger sampling
time:

Ap = AM , Bp =

M−1∑
i=0

AiB. (5)

With respect to the real dynamics (1a) and the planing
dynamics (4) we make the following assumption.

Assumption 2. (Controllability) The pairs (Ap, Bp) and
(A,B) are controllable.

3. ROBUST HIERARCHICAL MOVING HORIZON
PLANNING CONTROL WITH GUARANTEE

To guarantee the consistency and compatibility between
the high-level planner and the vehicle dynamics controlled
by the low-level controller we propose a robust hierarchical
strategy (c.f. Fig. 2). In comparison to other approaches,
our strategy defines the interaction between the planning
and the tracking control as contracts, inspired by (Bäthge
et al., 2018; Lucia et al., 2016, 2015; Blasi et al., 2018).

A contract specifies the capabilities (uncertainty bound),
which the planning can request from the tracking control:
the lower level controller can guarantee that the error
between planned reference and the real movements will
stay within a specific bounds. Basically, the lower level
controller guarantees

x((k + 1)M)− xp(k + 1) ∈ Zi, (6)

if x ∈ Xi, i.e. the state is inside the corresponding opera-
tion region i, see Assumption 1. The contracts are known
by both control levels and they depend on the design of the
low-level controller and the (partly) selectable uncertainty
bound. Thus the planner can consider and exploit the
capability of the low-level controller in the planning op-
timization problem. Therefore, the planner computes and
transmits to the low-level controller not only the reference
but also selects the required maximum discrepancy due to
the choice of Zi. Then the reference planner can improve
the performances by switching between different operation
regions, see e.g. Fig. 1.

In both layers, we exploit the potentialities of moving
horizon MPC (Grüne and Pannek, 2017; Findeisen and
Allgöwer, 2002), which is an efficient control strategy
to handle constraints, such as speed, acceleration limits
and/or obstacle avoidance; for a wide varieties of dynamic
systems, in presence of model uncertainties and noise.

MPC has received significant attention for a wide range of
applications besides stabilization e.g. reference planning
(Howard et al., 2014; Ibrahim et al., 2019), and path
following control (Matschek et al., 2019).

3.1 Moving Horizon based Reference Planning using MILP

To provide guarantee despite the hierarchical separation
between the planner and the control (c.f. Fig. 2) we develop
a robust reference planning and tracking framework that
guarantees feasibility and constraint satisfaction, including
collision avoidance, despite the uncertainty. Thus we can
handle the challenges associated with uncertainty in the
environmental and system dynamics and the geometry of
the environment.

We extend and improve the moving horizon planning
(Ibrahim et al., 2019, 2020), which is inspired by a se-
ries of MILP formulations (Trodden and Richards, 2008;
Pinto and Afonso, 2017; Richards and How, 2006). In
the reference planning, the nonconvex constraints due to
obstacle avoidance are handled using a MILP formulation
introducing several binary decision variables, as:

min
x,u,i

Jp({xp}, {up}), (7a)

s.t. ( ∀j ∈ {0, . . . , N − 1})

xp(kp + j + 1|kp) =Apxp(kp + j|kp) (7b)

+Bpup(kp + j|kp),

x(kpM)− xp(kp|kp) ∈Zi, (7c)

xp(kp + j|kp) ∈Xi 	 Zi, (7d)

up(kp + j|kp) ∈U	KZi, (7e)

Cxp(kp + j|kp) /∈Oi ⊕ CZi, (7f)

(xp(kp + j|kp), up(kp + j|kp)) ∈Ii, (7g)

xp(kp +N |kp) ∈Xf
i . (7h)

Here N is the planning horizon and i the selected
operation region, and (kp + j|kp) denotes the prediction
of a value at time kp + j made at time kp. Note that we
use the time variable kp for the typically slower time scale
operation. We utilize the planning objective function:

Jp = ‖xTarget − x(kp +N)‖∞ +

kp+N−1∑
j=kp

‖u(j)‖∞.

Here, the stage cost minimize the control input ‖u(j)‖∞,
while the terminal cost penalizes the distance to the target
point xTarget at the end of the planning horizon.
The sets Zi are convex, compact polytopes and depend on
the lower level closed loop tracking accuracy achieved for
the operation region i.

The terminal constraint (7h) and the inter-sample con-
straints (7g) are nonconvex, depend also on the operation
region i. With respect to the inter-sample constraints (7g)
we make the following assumption to guarantee that the
lower level controller can satisfy the constraints at all time,
even so it can operate on a slower time scale.

Assumption 3. (Inter-sample constraints) The set Ii defin-
ing the inter-sample constraints are determined such that
(xp, up) ∈ Ii implies for l = 1, . . . ,M − 1:
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Alxp +

l−1∑
m=0

AmBup ∈ Xi 	 Zi, (8a)

C(Alxp +

l−1∑
m=0

AmBup) /∈ Oi ⊕ CZi. (8b)

Clearly, a trivial choice is to choose Ii directly as (8), which
might slightly increases the computational effort. However
this is not always necessary, e.g. one can use alternative
approaches to enlarge the obstacles, see Appendix A.

The terminal set Xf
i is assumed to be a positive invariant

set satisfying all constraints:

Assumption 4. (Terminal sets) There exists a terminal

control law κf (xp) and terminal sets Xf
i such that if

xp ∈ Xf
i , then ∀l = 1, . . . ,M − 1

Apxp +Bpκ
f (xp) ∈ Xf

i , (9a)

xp ∈ X	 Zi, (9b)

κf (xp) ∈ U	KZi, (9c)

(xp, κ
f (xp)) ∈ Ii, (9d)

Cxp /∈ Oi ⊕ CZi. (9e)

Note that the terminal set is nonconvex due to the obstacle
avoidance (9e) and the inter-sample constraints (9d).
A rather straight forward choice is to focus on admissible,
nominal steady states xp = Apxp + Bpκ

f (xp) for the
terminal sets, i.e. points where the autonomous vehicle
can stop. This can for unmanned aerial vehicles possibly
be satisfied.

The upper level planner sends the selected operation
region i? and the following inter-sampled reference to the
lower level controller

xref (kM + j) = Ajx?p(kp|kp) +

j∑
m=0

Am−1Bu?p(kp|kp).

(10)

Proposition 1. (Recursive Feasibility) Let Assumptions 1-
4 hold. If the moving horizon planning problem (7) is
feasible at time kp and the lower level controller guarantees
for (10) x(k)−xref (k) ∈ Zi? , then (7) is feasible at kp + 1.

Proof. Let us denote the optimal solution of (7) as
x?p(kp|kp), . . . , u?p(kp|kp), . . . , i?.

To verify the above result consider for the optimization
problem at kp + 1 the following initial guess based on the
previous solution and the terminal control law κf

i =i?,

xp(kp + j|kp + 1) =x?p(kp + j|kp), j = 1, . . . , N,

xp(kp +N + 1|kp + 1) =Apx
?
p(kp +N |kp)

+Bpκ
f (x?p(kp +N |kp),

up(kp +m|kp + 1) =u?p(kp +m|kp), m = 1, . . . , N − 1,

up(kp +N |kp + 1) =κf (x?p(kp +N |kp).

One can verify straightforwardly that this initial guess is
feasible (but suboptimal), i.e. that all constraints of (7) are
feasible at kp + 1 using the properties of the terminal set
Xf and the guarantee on the low-level control accuracy.�

Remark 2. (Planing without feedback) In principle one
can modify the approach such that the initial constraint
(7c) is only enforced at the begin (k = 0) and use the
equality constraint x?p(kp+1|kp) = xp(kp+1|kp+1) instead
of (7c) for kp > 0. This removes the feedback from the
plant to the planning, which enables a computationally
more efficient planing, but in general leads to a decreased
control performance.

Problem (7) is nonconvex and can be reformulated using
the big-M method (Ibrahim et al., 2019, 2020) to obtain
an efficiently solvable MILP, see Appendix A.

3.2 Robust Model Predictive Tracking Control

To track the generated reference we propose to use a robust
tube based MPC (Mayne et al., 2005; Chisci et al., 2001)
based on the (fast) real system dynamics (1). The proposed
tube based MPC utilizes a nominal prediction dynamics
(state z, input v) starting from the current real state

z(k + j + 1|k) = Az(k + j|k) +Bv(k + j|k), (11a)

z(k|k) = x(k), (11b)

for predicting the effect of future disturbances w(k + j)
which is taken into account using the fictitious, auxiliary
control law

u(k + j|k) = v(k + j|k) +K(x(k + j)− z(k + j|k)),
(12)

where K is a control gain, such that A + BK is Schur
stable. Note that one does not need to use only one control
gain, see (Kögel and Findeisen, 2020a,b). The difference

e(k + j|k) = x(k + j)− z(k + j|k)

between the predictions made using (11) and the real
system can be bounded in form of sets with the above
auxiliary control law.

In detail, if the system is in the i-th operation region, then
e(k + j|k) ∈ Ei(j) where

Ei(j + 1) = (A+BK)Ei(j)⊕Wi, Ei(0) = {0}. (13)

As j → ∞ the sets size Ei increases, but is bounded by
Ei(j) ⊆ Zi, where Zi is the (minimum) robust positive
invariant set:

Zi ⊇ (A+BK)Zi ⊕Wi. (14)

The low-level MPC predicts until the next planning in-
stant, so it uses a cyclic horizon Lk = M − rem(k,M), see
(Kögel and Findeisen, 2013). In detail, if k is a multiple
of M , then Lk = M . Otherwise, Lk is chosen such that
Lk < M and k+Lk is a multiple of M . This means that the
horizon shrinks between planing instants and is increased
at the next planing instant again to length M .

The low-level MPC predicts a (nominal) state trajectory

z(k) = {z(k|k), . . . , z(k + Lk|k)},
and nominal input trajectory

v(k) = {v(k|k), . . . , v(k + Lk − 1|k)},
which are consistent with the nominal dynamics (11) and
subject to the following constraints

z(k + j|k) ∈Xi 	 Ei(j), (15a)

v(k + j|k) ∈U	KEi(j), (15b)

Cz(k + j|k) ∈{Cxref (k + j)⊕ C(Zi 	 Ei(j))}, (15c)

z(k + Lk|k) ∈{xref (k + Lk)⊕ (Zi 	 Ei(Lk))}. (15d)
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Note that the (convex) state and input constraints (1c)
are directly included in these constraints. In contrast the
nonconvex obstacle avoidance constraints are considered
by requiring that the lower level controller enforces the
guaranteed accuracy on the output and at the final step
on the entire state, which results in convex constraints.

The low-level MPC uses the objective function

Jt (z(k),v(k)) =

k+Lk−1∑
j=k

‖xref (j)− z(j|k)‖2Q + ‖v(j|k)‖2R

+ ‖xref (k + Lk)− z(k + Lk|k)‖2P , (16)

where Q ∈ Rn×n, P ∈ Rn×n and R ∈ Rm×m represent the
positive definite weighting matrix for the states and the
inputs respectively, used to penalizes the deviation error
from the reference xref .

In summary, to determine the input u(k) = v?(k|k) the
lower level MPC solves the following optimization problem

min
v(k)

Jt (z(k),v(k)) s.t. (11), (15). (17)

Note that optimization problem is based on the current
state as well as the reference and the operation region
determined by the upper level planner. The optimization
problem is a convex quadratic program and can be solved
efficiently, even on computationally limited hardware.

For the closed loop we have the following properties.

Proposition 3. (Constraint satisfaction) Let Assumptions
1, 3 hold. If the lower level MPC problem (17) is feasible,
then the constraints (1c) are satisfied: x(k) ∈ Xi ⊆ X and
u(k) ∈ U and the obstacles are avoided, i.e. (3) holds.

Proof. From the constraints (11), (12) and (15) we have
that z?(k|k) = x(k), as v?(k|k) = u(k), Cz?(k|k) = y(k).
Together with Ei(0) = {0} and Assumption 1 this implies
that vehicle constraint (1c) is satisfied. Moreover, y(k) ∈
xref (k)⊕Zi, which implies together with (7f) and (8) and
that the avoidance constraint yk /∈ int(Oi), i.e. (3) holds.
�
Proposition 4. (Recursive feasibility of the control scheme)
Let Assumptions 1-4 hold. If the planner (7) is feasible at
k = 0, then for the closed loop system consisting of the
upper level moving horizon planer (7), the lower level con-
troller (17), and the plant dynamics (1) the optimization
problems (7), (17) are feasible for any k > 0.

Proof. The proof has three parts: first we show that
feasibility of the planning problem (7) implies feasibility
of the low-level controller (17), second that feasibility of
(17) implies feasibility of (17) (if k+ 1 is not a multiple of
M) or the planning problem (7) (otherwise).

If the upper-level planning problem (7) is feasible at k,
then using the lower level input trajectory

v(k + j|k) = u?p(k|k) +K((A+BK)jx(k)− xref (j)),

where j = 0, . . . ,M−1 results in a state trajectory satisfy-
ing all constraints due to the constraint tightening utilized
in the upper and lower level optimization problems.

If k + 1 is not a multiple of M , i.e. no planing takes place
and the horizon L(k) shrinks, then due to the design of
the set Ei(j) at k + 1 a feasible nominal state trajectory
z(k+1) and a nominal input trajectory v(k+1), satisfying
(11) and (15), exists:

z(k + j|k + 1) =z?(k + j|k) + (A+BK)j−1w(k),

v(k + j|k + 1) =v?(k + j|k) +K(A+BK)j−1w(k).

If k + 1 is a multiple of M , then the feasibility of (17)
at k implies that x(k) − xref (k) ∈ Zi? , which together
with Proposition 1 implies that the planning problem (7)
is feasible. �

Remark 5. We note assumed that the available constraints
{Xi,Zi} are fixed over time at the initial time. In principle,
they can also be changed/adapted over time, e.g. due
to changing weather conditions for UAV’s. This will be
subject to future conditions.
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(a) No feasible solution with conservative constraint tightening.
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(b) The reference planner can find a feasible solution.

Fig. 3. Contract choice achieves less conservative results
with enlarged feasible region (Fig. 3b) compared to
the case of constant worst-case uncertainty (Fig. 3a).

4. SIMULATION RESULTS

To illustrate the efficiency of the proposed robust hier-
archical MPC, we consider a linear vehicle model with
a different sampling time for the planning Tp = 1s and
tracking control Tt = 0.1s, i.e. M = 10. The prediction
horizon for planing is N = 15.

Fig. 3 provides a comparison between the proposed ap-
proach and the case considers a constant worst-case un-
certainty. As depicted in Fig. 3a, there is no feasible
solution with conservative constraint tightening (obstacle
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enlargement), even if there exists a feasible one, that is
happen due to the short planning horizon. Nevertheless
a large horizon would require a large computational time
which it is often unfeasible for onboard implementation.
On another hand, the reference planner can find a fea-
sible solution with less conservative constraint tightening
switching between possible choices, see Fig. 3b.

The contract choice enables the planner to find a feasible
solution by adjusting the vehicle velocity to operate at
the state region/contract with smaller uncertainty bound.
The reference planner decides which state region is ac-
tivated via the decision variables d1 and d2, see Fig. 4.
Consequently, the controller adjusts the vehicle velocity
Vt according to the decision. As we can see, the vehicle is
moving at fast speed up to the time 11s when it is close to
the obstacle. At this time, the planner activates the state
region with less uncertainty bound via making the decision
variable d1 = 1 and deactivate the state region with
large uncertainty bound via making the decision variable
d2 = 0. Thus, the planner find a feasible solution and
then accelerate again after pass over the obstacles. This
situation is repeated again at time 26s.

Both robust MPC formulation were formulated with
YALMIP (Löfberg, 2004) and solved via Gurobi (Opti-
mization, 2014), while the tube MPC is implemented using
the MPT toolbox (Kvasnica et al., 2004).

5. CONCLUSION AND OUTLOOKS

We have proposed a combined moving horizon planner
and robust model predictive controller. In the hierarchical
strategy, the upper and lower levels exploit “contract”
(guaranteed precision levels). To ensure compatibility be-
tween these levels and to guarantee safety, we do facilitate
recursive feasibility of the hierarchical controller by suit-
able constraint. The reference planning is formulated as a
MILP considering constraints tightening. The constraints
tightening −achievable performance− is calculated at the
lower-level controller, based on the capabilities of the au-
tonomous vehicle.

Utilizing a different controller with different precision pro-
vides signification advantages, e.g. allow for less conser-
vative results with enlarged feasible region compared to
assuming a constant worst-case uncertainty. This decom-
position of the control problem reduces computational
cost, enables real-time implementation for robust control
in autonomous vehicle. The efficiency of the proposed
hierarchical approach is demonstrated via some simulation
results in a clutter environment.

Possible extensions are the consideration of faster sampling
to achieve better performance, for example exploiting
direct hardware implementation of the lower level, e.g.
by (Lucia et al., 2017). Further extension can be to
consider nonlinear dynamics based on ellipsoidal tube
MPC (Villanueva et al., 2017; Hu et al., 2018). In this
case, the lower controller online sends upwards the tube
parameterization, therefore the planner can predict a
possible uncertainty evaluation over the planning horizon.
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Fig. 4. The reference planner selects different contracts in
the planning to achieve the desired performance.
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Grüne, L. and Pannek, J. (2017). Nonlinear model predic-
tive control. Springer.

Howard, T., Pivtoraiko, M., Knepper, R.A., and Kelly,
A. (2014). Model-predictive motion planning: Several
key developments for autonomous mobile robots. IEEE
Robotics & Automation Magazine, 21(1), 64–73.

Hu, H., Feng, X., Quirynen, R., Villanueva, M.E., and
Houska, B. (2018). Real-time tube MPC applied to a
10-state quadrotor model. In 2018 Annual American
Control Conference (ACC), 3135–3140. IEEE.

Ibrahim, M., Kallies, C., and Findeisen, R. (2020).
Learning-supported approximated optimal control for
autonomous vehicles in the presence of state dependent
uncertainties. In Proceedings of the 19th European Con-
trol Conference. Saint Petersburg, Russia.

Ibrahim, M., Matschek, J., Morabito, B., and Findeisen,
R. (2019). Hierarchical model predictive control for au-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15972



tonomous vehicle area coverage. IFAC-PapersOnLine,
52(12), 79–84.

Koeln, J. and Alleyne, A. (2018). Two-level hierarchical
mission-based model predictive control. In American
Control Conference, 2332–2337. IEEE.
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Appendix A. OPERATING REGION SCHEDULER

According to the Assumption 1, the uncertainty set ω ∈
Wi defines the state-dependent disturbance bounds for
every operating region Xi For each, the low-level tube
MPC guarantees the bounds Zi on the tracking error.

Consequently, the planner can exploit as additional degree
of freedom the operating regions for the lower-level con-
troller, which are defined as state constraints sets:

Xi 	 Zi ≡ {x|Fix ≤ Gi}, ∀i ∈ {1, · · · , Nω},
here, Nω is the number of the operating region, i.e.
different velocity range.

The scheduling of the operating regions is formulated as
linear constraints representing M-sided polygons exploit-
ing the so called big M method (Schouwenaars, 2006):

Fix ≤ Gi +Mbig(1− di(k)), ∀i ∈ {1, · · · , Nω}.
Here Mbig is a sufficiently large positive number to relax
the constraints when the i-th region is not activated in the
prediction horizon. di(k) is a binary decision variable used
to decide which region is active.

When this happens, the binary decision variable di(k) can
be set equal to one, which labels the constraint i-th being
activated at time k. To insure that one region is activated
at ever planning sample, we impose the extra constraint:

Nω∑
i=1

di(k) = 1.

As results, the planning constraint Xi is tightened, i.e. the
obstacle boundary Oi are enlarged via the tracking error
set Zi.
Obstacle Avoidance Constraints:
The non-convex constraint (3) can be approximated by
convex polygons introducing extra binary variables bis(k):

∀s ∈ {1, . . . , S},∀k ∈ {1, . . . , N}, i ∈ {1, ..., Nω}(
px(k)− pox(k)

)
cos

2πs

S
+
(
py(k)− poy(k)

)
sin

2πs

S
≥ δisafe −Mbigb

i
s(k),

where an extra constrain
S∑

s=1

bis(k) ≤ S − di(k)

is imposed to ensure that at least one constraint is active
for region i, i.e. di(k) = 1.

δisafe is a minimum separation distance between the au-
tonomous vehicle

(
px(k), py(k)

)
and the obstacle position(

pox(k), poy(k)
)

at time step k for the region i.

Consequently, the planner has additional degree of free-
dom to adjust the obstacle enlargement δisafe by controlling
the vehicle velocity, see Fig. 3.
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