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Abstract: This paper investigates the leader-following synchronization problem of uncertain
Euler-Lagrange multi-agent systems subject to communication delays, disturbances and uni-
formly connected switching networks. The current settings cause great challenges to the solv-
ability of the problem. To tackle these technical challenges, we make an extension to Barbalat’s
lemma. Based on the certainty equivalence principle, we propose a novel adaptive distributed
control law and apply the generalized Barbalat’s lemma to the synchronization problem. The
effectiveness of the main result is demonstrated by an application to synchronization control of
practical multiple mechanical systems.
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1. INTRODUCTION

Inspired by more and more complex practical engineering
tasks, cooperative control of multi-agent systems becomes
a hot research topic in the field of systems and control.
The synchronization control problem is one of the most
fundamental cooperative control problems and all kinds
of dynamics have been considered in the synchronization
problem (cf.,Olfati-Saber and Murray (2004); Jadababaie
et al. (2003)). Among them, the synchronization problem
of uncertain Euler-Lagrange multi-agent systems has at-
tracted many researchers’ interest (cf., Ren (2009); Cai
and Huang (2014); Chen and Kai (2018); Chung and
Slotine (2009); Chen et al. (2015); Sun et al. (2007); Lu and
Liu (2018b); Yang et al. (2017); Chen and Lewis (2011);
Cai and Huang (2016); Lu and Liu (2019)).

The static networks are first considered in the synchroniza-
tion problem of Euler-Lagrange systems, see Ren (2009);
Chung and Slotine (2009); Chen et al. (2015); Sun et al.
(2007); Chen and Lewis (2011) However, communication
between agents is often disrupted by environment dis-
turbances and/or internal instability of communication
devices. Thus, the switching networks have attracted con-
siderable attention in the synchronization problem of un-
certain Euler-Lagrange multi-agent systems. In particular,
the leader-following synchronization problem of multiple
uncertain Euler-Lagrange systems is studied in Cai and
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Huang (2014) under uniformly connected switching net-
works by a distributed observer approach. Later, the sim-
ilar problem is further studied in Cai and Huang (2016)
by proposing an adaptive distributed observer. Recently,
the synchronization problem of uncertain Euler-Lagrange
multi-agent systems is investigated in Lu and Liu (2018a),
where both the time-varying communication delays and
switching networks are considered.

The leader-following synchronization problem of uncer-
tain Euler-Lagrange multi-agent systems can be viewed
a generalized version of the adaptive tracking control
problem of a single uncertain Euler-Lagrange system.
It is known that Barbalat’s lemma has been shown to
be an effective tool in dealing with the adaptive track-
ing problem of a single uncertain Euler-Lagrange system
(cf.,Slotine and Li (1991, 1988)). However, the switching
network invalidates the application of Barbalat’s lemma to
the leader-following synchronization problem of uncertain
Euler-Lagrange system. To tackle this technical challenge,
the generalized Barbalat’s lemma developed in Su and
Huang (2012) is adopted in these existing results Cai and
Huang (2014), Cai and Huang (2016) and Lu and Liu
(2018a) on leader-following synchronization of multiple
uncertain Euler-Lagrange systems subject to switching
networks. The generalized Barbalat’s lemma in Su and
Huang (2012) is effective in that it relaxes some conditions
on the function in barbalat’s lemma from continuous to
piecewise continuous.

In this paper, we further study the leader-following syn-
chronization problem of uncertain Euler-Lagrange multi-
agent systems. In particular, the communication delays,
disturbances and switching networks are all taken into con-
sideration. It is noted that the effect of the disturbance in
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the dynamics of Euler-Lagrange systems has seldom been
considered in these existing works (Cai and Huang, 2014),
(Cai and Huang, 2016) and (Lu and Liu, 2018a). In fact,
due to the existence of the disturbance, the generalized
Barbalat’s lemma in Su and Huang (2012) cannot be used
to solve the current problem. To be precise, an adaptive
distributed control law is first constructed based on the
certainty equivalence principle. Then, as in existing works
(cf., Cai and Huang (2014, 2016); Lu and Liu (2018a)),
a Lyapunov-like function is introduced and it needs to
show that the time derivative of this function tends to
zero asymptotically. However, the disturbance compen-
sation brings an additional function in the derivative of
the Lyapunov-like function. It cannot be obtained that
the time derivative of this Lyapunov-like function is non-
positive in each time interval as in Cai and Huang (2014),
Cai and Huang (2016) and Lu and Liu (2018a). As a
consequence, the condition in the generalized Barbalat’s
lemma in Su and Huang (2012) is not satisfied. It precludes
the application of the generalized Barbalat’s lemma to the
current problem. To overcome this challenge, we develop
a new technical lemma, which further extends the gener-
alized Barbalat’s lemma in Su and Huang (2012). As its
application, it is shown that the leader-following synchro-
nization problem of uncertain Euler-Lagrange multi-agent
systems subject to communication delays, disturbances
and uniformly connected switching networks can be solved
by the proposed distributed control law.

The remainder of this note is organized as follows. Section
2 presents an extension of Barbalat’s lemma. Section
3 formulates the synchronization problem of switched
networked uncertain Euler-Lagrange systems and provides
its solution. One application to synchronization control
of multiple mechanical systems is given in Section 4 to
illustrate our design. Finally, some conclusions are made
to end this note in Section 5.

Notation. For xi ∈ R
ni×m, i = 1, . . . , n, col(x1, . . . , xn) =

[xT

1 , . . . , x
T

n ]
T. For Ai ∈ R

p×m, i = 1, . . . , n, block diag{A1,
. . . , An} denotes a block matrix with its i-th diagonal entry
being Ai and all other entries being zero. Denote a piece-
wise constant switching signal by a map σ : [0,+∞) →
P = {1, 2, ..., ρ}, where the switching instants ti, i =
0, 1, 2, . . . , satisfy ti+1 − ti ≥ τD for some positive real
number τD, P is called the switching index set and τD is
called the dwell time. For some positive scalar h, denote
by C([−h, 0],Rn) the Banach space of continuous functions
mapping the interval [−h, 0] into R

n endowed with the
supremum norm. ||A|| denotes the induced norm of the
matrix A by the Euclidean norm. Throughout this paper,
the derivative of a function always refers to its upper right-
hand derivative.

2. AN EXTENSION OF BARBALAT’S LEMMA

It is known that Barbalat’s lemma is an effective tool in
stability analysis of non-autonomous systems. For non-
autonomous system with piecewise continuous dynamics,
a generalized version of Barbalat’s Lemma has been devel-
oped in Su and Huang (2012). In this section, we further
relax the condition in the Su and Huang (2012) and estab-
lish the following lemma.

Lemma 2.1. Given the sequence {tk} with t0 = 0, tk+1−
tk ≥ τD > 0, k = 0, 1, 2, . . . , suppose that V (t) :
[0,+∞)→ R satisfies

1) V (t) is lower bounded;

2) V (t) is twice differentiable on each time interval
[tk, tk+1), and

V̇ (t) = −U(t) +NT(t)D(t) (1)

where U(t) = NT(t)N(t), and D(t) ∈ L2 ∩ L∞;

3) U̇(t) is bounded over [0,+∞) in the sense that there
exists a positive constant K0 such that

sup
tk≤t<tk+1,k=0,1,2,...

|U̇(t)| ≤ K0. (2)

Then, limt→∞ V̇ (t) = 0.

The proof of this Lemma is omitted due to space limit.

Remark 2.1. It is worth mentioning that Barbalat’s
Lemma (Slotine and Li, 1991) is extended in Su and

Huang (2012) where V̇ (t) can be piecewise continuous

and V̈ (t) is required to be bounded over [0,+∞). Lemma
2.1 can be viewed a slight extension of the result in Su
and Huang (2012). In particular, the condition V̇ is non-
positive in Su and Huang (2012) is relaxed to condition

V̇ (t) = −U(t) + NT(t)D(t) for a non-negative function

U(t) and D(t) ∈ L2 ∩L∞. In addition, the condition V̈ (t)
is bounded over [0,+∞) in Su and Huang (2012) is relaxed

to U̇(t) is bounded over [0,+∞).

3. SYNCHRONIZATION PROBLEM OF SWITCHED
NETWORKED EULER-LAGRANGE SYSTEMS

3.1 Problem Formulation

Consider a group of uncertain Euler-Lagrange systems
with their dynamics being described as follows:

Mi(qi(t))q̈i(t) + Ci(qi(t), q̇i(t))q̇i(t) +Gi(qi(t))

= ui(t) + di(t)

qi(θ) = q0i (θ), q̇i(θ) = q̇0i (θ), θ ∈ [−τ, 0], i = 1, . . . , N
(3)

where qi(t) ∈ R
n is the generalized position vector, q̇i(t) ∈

R
n is the generalized velocity vector, Mi(qi(t)) ∈ R

n×n

is the inertia matrix and is symmetric positive definite,
Ci(qi(t), q̇i(t))q̇i(t) ∈ R

n is the Coriolis and centripetal
force vector, Gi(qi(t)) ∈ R

n is the gravity vector, ui(t) ∈
R

n is the generalized force vector, di(t) ∈ R
n is the

disturbance, τ denotes the upper bound of the time-delay
involved, q0i (θ) ∈ C([−τ, 0],R

n) and q̇0i (θ) ∈ C([−τ, 0],R
n).

The desired generalized position vector q0(t) ∈ R
n and the

disturbance di(t) ∈ R
n are assumed to be generated by a

linear autonomous system as follows:

v̇(t) = Sv(t)

q0(t) = Dv(t), di(t) = Eiv(t)

v(θ) = v0(θ), θ ∈ [−τ, 0]

(4)

where v(t) ∈ R
q, v0(θ) ∈ C([−τ, 0],Rq), S ∈ R

q×q,
D ∈ R

n×q and Ei ∈ R
n×q are some constant matrices.

It is known that the dynamics of the Euler-Lagrange
system has the following properties (Slotine and Li, 1991).
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Property 1. The matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew sym-
metric.

Property 2. For all x, y ∈ R
n, Mi(qi)x + Ci(qi, q̇i)y +

Gi(qi) = Yi(qi, q̇i, x, y)θi, where Yi(qi, q̇i, x, y) ∈ R
n×p is a

known regression matrix, and θi ∈ R
p is a constant vector

consisting of the uncertain parameters of (3).

As in Cai and Huang (2014), the system composed of
(3) and (4) can be viewed as a multi-agent system with
(4) as the leader and the N subsystems (3) as followers.
Given a piecewise constant switching signal σ(t), the
communication network for this multi-agent system is
described by a switching digraph Gσ(t) = (V , Eσ(t)). In
particular, the node set V = {0, 1, . . . , N} with node 0
denoting system (4) and node i, i = 1, . . . , N, denoting
i-th subsystem of (3). The edge (j, i) ∈ Eσ(t) if and only
if the information of agent j is accessible to the control
law ui at the instant of time t. Let Aσ(t) be the weighted
adjacency matrix of the digraph Gσ(t) (Godsil and Royle,

2001). In particular, Aσ(t) = [aij(t)] ∈ R
(N+1)×(N+1),

i, j = 0, 1, . . . , N , where aii(t) = 0, i = 0, 1, . . . , N and
aij(t) = 1, i = 1, . . . , N, j = 0, 1, . . . , N , if and only if
(j, i) ∈ Eσ(t). The neighbor set of agent i at the instant of
time t is defined as Ni(t) = {j|(j, i) ∈ Eσ(t)}.

We introduce the distributed control law as follows:

ui(t) =φi(qi(t), q̇i(t), ζi(t), ζj(t− τij(t)), j ∈ Ni(t))

ζ̇i(t) =ψi(qi(t), q̇i(t), ζi(t), ζj(t− τij(t)), j ∈ Ni(t))

ζi(θ) =ζ
0
i (θ), θ ∈ [−τ, 0], i = 1, . . . , N

(5)

where ζi(t) ∈ R
nζi for some positive integer nζi , τij(t) are

the communication delays and are piecewise continuous
satisfying 0 ≤ τij(t) ≤ τ for some positive real number τ ,
ζ0i (θ) ∈ C([−τ, 0],R

nζi ), φi and ψi are some functions to
be determined.

Now, the leader-following synchronization problem for
the uncertain Euler-Lagrange multi-agent system can be
described as follows.

Problem 3.1. Given multiple uncertain Euler-Lagrange
systems (3), the leader system (4), and a switching di-
graph Gσ(t), design a distributed control law of the form
(5) such that, for all piecewise continuous and bounded
communication delays 0 ≤ τij(t) ≤ τ , all initial conditions
v0(θ), and q0i (θ), q̇

0
i (θ), ζ

0
i (θ), θ ∈ [−τ, 0], i = 1, . . . , N ,

qi(t) and q̇i(t) exist for all t ≥ 0 and satisfy

lim
t→∞

(qi(t)− q0(t))=0, and lim
t→∞

(q̇i(t)−q̇0(t))=0, i=1, . . . , N.

(6)

To solve the problem, two assumptions are first given.

Assumption 3.1. The matrix S is marginally stable.

Assumption 3.2. There exists a subsequence {lk} of {l :
l = 0, 1, . . .} with tlk+1

− tlk < ν for some positive ν such
that every node i = 1, . . . , N is reachable from the node 0

in the union graph
⋃lk+1−1

j=lk
Gσ(tj).

Remark 3.1. It is noted that the leader system (4) can
generate a large class of reference signals such as multi-
tone sinusoidal signals (Cai and Huang, 2016). Assump-
tion 3.2 is also called uniformly connected condition (cf.,
Jadababaie et al. (2003), Su and Huang (2012)). It may
be the mildest condition on network connectivity.

3.2 Solvability of the Synchronization Problem

Let us first introduce a dynamic compensator as follows:

ξ̇i(t) =Sξi(t) + µ
∑

j∈Ni(t)

aij(t)(e
Sτij(t)ξj(t− τij(t))

− ξi(t))

ξi(θ) =ξ
0
i (θ), θ ∈ [−τ, 0], i = 1, . . . , N

(7)

where ξi(t) ∈ R
q, ξ0(t) = v(t), ξ0i (θ) ∈ C([−τ, 0],R

q), and
µ is an arbitrary positive real number.

Let

q̇ri(t) =DSξi(t)− α(qi(t)−Dξi(t)) (8)

where α is an arbitrary positive real number.

Then, by (8),

q̈ri(t) =DSξ̇i(t)− α(q̇i(t)−Dξ̇i(t)). (9)

By Property 2, there exists a known matrix Yi(t) =
Yi(qi(t), q̇i(t), q̈ri(t), q̇ri(t)) ∈ R

n×p and an unknown con-
stant vector θi ∈ R

p such that for i = 1, . . . , N ,

Yi(t)θi=Mi(qi(t))q̈ri(t) + Ci(qi(t), q̇i(t))q̇ri(t)+Gi(qi(t)).
(10)

Define

si(t) = q̇i(t)− q̇ri(t). (11)

Then, the adaptive distributed control law of the form (5)

with ζi(t) = col(θ̂i(t), ξi(t)) is defined as follows:

ui(t) =−Kisi(t)− Eiξi(t) + Yi(t)θ̂i(t)

˙̂
θi(t) =− ΓiY

T

i (t)si(t)

ξ̇i(t) =Sξi(t) + µ
∑

j∈Ni(t)

aij(t)(e
Sτij(t)ξj(t− τij(t))

− ξi(t)), i = 1, . . . , N

(12)

where θ̂i(t) ∈ R
p, Γi ∈ R

p×p and Ki ∈ R
n×n are some

positive definite matrices.

Now, under the distributed control law (12), the syn-
chronization problem of the Euler-Lagrange multi-agent
system can be solved. The main result is summarized by
the following theorem.

Theorem 3.1. Consider the multi-agent system com-
posed of (3) and (4), and a switching digraph Gσ(t).
Then, under Assumptions 3.1 and 3.2, the leader-following
synchronization problem can be solved by the adaptive
distributed control law (12).

Proof: Let ξ̂i(t) = ξi(t) − ξ0(t) and ξ̃i(t) = e−Stξ̂i(t),
i = 0, 1, . . . , N . Then,

˙̃
ξi(t) =µ

∑

j∈Ni(t)

aij(t)(ξ̃j(t− τij(t)) − ξ̃i(t))

ξ̃i(θ) =ξ̃
0
i (θ), θ ∈ [−τ, 0], i = 1, . . . , N

(13)

where ξ̃0(t) ≡ 0, and ξ̃0i (θ) ∈ C([−τ, 0],R
q).

Note the communication delays τij(t) are piecewise con-
tinuous and satisfy 0 ≤ τij(t) ≤ τ for some positive real
number τ . Thus, under Assumption 3.2, by Lemma .1, we
have that the origin of the switched time-delay system (13)
is exponentially stable. That is,
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lim
t→∞

ξ̃i(t) = 0 (14)

exponentially.

Furthermore, under Assumption 3.1, ||eSt|| ≤ Q0 for some
constant Q0 > 0, which together with (14) implies that,
for i = 1, . . . , N,

lim
t→∞

ξ̂i(t) = 0 (15)

exponentially.

Furthermore, it can also be verified that, for i = 1, . . . , N,

lim
t→∞

∑

j∈Ni(t)

aij(t)(e
Sτij(t)ξj(t− τij(t)) − ξi(t)) = 0 (16)

exponentially. It implies that

lim
t→∞

˙̂
ξi(t) = 0 (17)

exponentially.

By (15) and (17),

lim
t→∞

(Dξi(t)−q0(t)) = 0, and lim
t→∞

(Dξ̇i(t)−q̇0(t)) = 0 (18)

exponentially.

By (11),

q̇i(t) = si(t) + q̇ri(t), q̈i(t) = ṡi(t) + q̈ri(t). (19)

For i = 1, . . . , N , substituting (19) into (3) yields

Mi(qi(t))(ṡi(t) + q̈ri(t)) + Ci(qi(t), q̇i(t))(si(t) + q̇ri(t))

+Gi(qi(t)) = −Kisi(t)− Eiξ̂i(t) + Yi(t)θ̂i(t).
(20)

Under the distributed control law (12), by (10) and (20),
it can be obtained that

Mi(qi(t))ṡi(t) + Ci(qi(t), q̇i(t))si(t)=−Kisi(t)−Eiξ̂i(t)

+Yi(t)θ̃i(t) (21a)

˙̂
θi(t) =− ΓiY

T

i (t)si(t)
(21b)

where θ̃i = θ̂i − θi, i = 1, . . . , N .

Let q = col(q1, . . . , qN ), q̇ = col(q̇1, . . . , q̇N ), ξ̂ =

col(ξ̂1, . . . , ξ̂N ), s = col(s1, . . . , sN ), θ̃ = col(θ̃1, . . . , θ̃N),

θ̂ = col(θ̂1, . . . , θ̂N ), K = block diag{K1, . . . ,KN}, E =
block diag{E1, . . . , EN}, Γ = block diag{Γ1, . . . ,ΓN},
Y = block diag{Y1, . . . , YN}, M(q) = block diag{M1(q1),
. . . ,MN(qN )}, and C(q, q̇) = block diag{C1(q1, q̇1), . . . ,
CN (qN , q̇N )}, Then, (21a) and (21b) can be put as follows:

M(q(t))ṡ(t) + C(q(t), q̇(t))s(t) =−Ks(t)− Eξ̂(t)

+ Y (t)θ̃(t)

˙̂
θ(t) =− ΓY T(t)s(t).

(22)

Let

V (t) =
1

2
(sT(t)M(q(t))s(t) + θ̃T(t)Γ−1θ̃(t)) (23)

which is a continuous function. Then, by Property 1 and
(22), the time derivative of V (t) satisfies

V̇ (t) =sT(t)M(q(t))ṡ(t) +
1

2
sT(t)Ṁ(q(t))s(t)

+ θ̃T(t)Γ−1 ˙̃θ(t)

=sT(t)
(

− C(q(t), q̇(t))s(t) −Ks(t)− Eξ̂(t)

+ Y (t)θ̃(t)
)

+
1

2
sT(t)Ṁ(q(t))s(t) + θ̃T(t)Γ−1 ˙̃θ(t)

=− sT(t)Ks(t)− sT(t)Eξ̂(t).
(24)

Denote U(t) = sT(t)Ks(t). Note that V (t) ≥ 0, U(t) ≥ 0

and limt→∞ ξ̂(t) = 0 exponentially. Conditions 1) and 2)
in Lemma 2.1 are satisfied. It can be verified that V (t) is

bounded for all t ≥ 0, which implies that s(t) and θ̃ are
bounded for all t ≥ 0.

By the definition of switching signal σ(t), tk+1 − tk ≥ τD,
k = 0, 1, . . . , for some τD > 0. Then, by (7), (9) and (11),
s(t) is differentiable on each time interval [tk, tk+1) for all

k ≥ 0. Thus, U̇(t) is differentiable on each time interval
[tk, tk+1) for all k ≥ 0.

Under Assumption 3.1, v(t) is bounded for all t ≥ 0. Thus,
by (15), ξi(t), i = 1, . . . , N , is bounded for all t ≥ 0. It

follows from (7) that ξ̇i(t), i = 1, . . . , N , is bounded for all
t ≥ 0.

By (8) and (11),

q̇i(t) = −αqi(t) + (DSξi(t) + αDξi(t) + si(t)). (25)

Since α is a positive real number, by (25), qi(t) and q̇i(t)
are bounded. Then, by (8) and (9), both q̇ri(t) and q̈ri(t)
and thus, by (10), Yi(qi(t), q̇i(t), q̈ri(t), q̇ri(t)) is bounded
on each time interval [tk, tk+1), k = 0, 1, 2, . . . .

Note that si(t) is differentiable on each time interval
[tk, tk+1), k = 0, 1, 2, . . . . By (21a), we can conclude
that ṡi(t) is bounded on each time interval [tk, tk+1),
k = 0, 1, 2, . . . .

Note U̇(t) = 2sT(t)Kṡ(t). Since both s(t) and ṡ(t) are
bounded on each time interval [tk, tk+1), k = 0, 1, 2, . . . ,

U̇(t) is bounded over [0,+∞) in the sense that there exists
a positive constant K0 such that

sup
tk≤t<tk+1,k=0,1,2,...

|U̇(t)| ≤ K0. (26)

That is, condition 3) in Lemma 2.1 holds. Therefore, by

Lemma 2.1, limt→∞ V̇ (t) = 0. In view of (24), it follows
that limt→∞ s(t) = 0.

By (7), (8) and (11),

q̇i(t)−Dξ̇i(t)

=− α(qi(t)−Dξi(t))

− µD
∑

j∈Ni(t)

aij(t)(e
Sτij(t)ξj(t− τij(t)) − ξi(t)) + si(t)

which is input-to-state stable viewing (qi(t) − Dξi(t)) as
the state and (−µD

∑

j∈Ni(t)
aij(t)(e

Sτij(t)ξj(t− τij(t))−

ξi(t)) + si(t)) as the input. Since α > 0, limt→∞ s(t) = 0
and limt→∞

∑

j∈Ni(t)
aij(t)(e

Sτij(t)ξj(t−τij(t))−ξi(t)) = 0

by (16), it can be obtained that limt→∞(qi(t)−Dξi(t)) = 0

and limt→∞(q̇i(t) − Dξ̇i(t)) = 0. Therefore, the proof is
completed by invoking (18). ✷
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Remark 3.2. The classical Barbalat’s lemma is not ap-
plicable to the convergence analysis of V̇ (t). It is obviously
that due to the existence of switching networks, by (7),
(9), and (11), the function si(t) is not continuously differ-

entiable for t ∈ [0,∞). Thus, by (24), V̇ (t) is not continu-

ously differentiable for t ∈ [0,∞), which implies that V̇ (t)
cannot be uniformly continuous in t. As a consequence,
one of the conditions required in the classical Barbalat’s
lemma does not hold.

Remark 3.3. As stated in Remark 3.2, the function si(t)
is not continuously differentiable for t ∈ [0,∞). Thus,
si(t) cannot be uniformly continuous in t. As a result,
the classical Barbalat’s lemma cannot be applied to the
convergence analysis of si(t).

Remark 3.4. It is worth mentioning that the leader-
following synchronization problem of multiple uncertain
Euler-Lagrange systems under uniformly connected con-
dition has been considered in Cai and Huang (2014, 2016)
and Lu and Liu (2018a). In fact, the switching network
results in a switched closed-loop system. As a result,
Barbalat’s lemma cannot be used to solve the problem in
these existing works. Instead, the generalized Barbalat’s
lemma proposed in Su and Huang (2012) is employed to
solve the problem. However, the effect of the disturbance in
the dynamics of Euler-Lagrange systems is not considered
in Cai and Huang (2014, 2016) and Lu and Liu (2018a).
To deal with the disturbance, the adaptive control law is
designed based on the certainty equivalence principle. As
in Cai and Huang (2014, 2016) and Lu and Liu (2018a),
the Lyapunov-like function V (t) is constructed. Due to
the effect of the disturbance, an additional item appears

in the time derivative of V (t), that is, (−sT(t)Eξ̂(t)) in

(24). As a consequence, we cannot obtain that V̇ (t) is
non-positive and the condition required in generalized
Barbalat’s lemma in Su and Huang (2012) does not hold.
This motivates our result in Section 2.

4. EXAMPLE

Consider a group of three-link cylindrical arms whose
dynamics are described by Euler-Lagrange systems of form
(3) (Lewis et al., 1993), where

qi(t)=

[

qi1(t)
qi2(t)
qi3(t)

]

,Mi=





mi1 +mi2q
2
i3(t) 0 0

0 mi2 +mi3 0
0 0 mi3





Ci =

[

mi3qi3(t)q̇i3(t) 0 mi3qi3(t)q̇i1(t)
0 0 0

−mi3qi3(t)q̇i1(t) 0 0

]

, di = Eiv

Gi =

[

0
(mi2 +mi3)gqi2(t)

0

]

, θi =

[

mi1

mi2

mi3

]

, i = 1, 2, 3, 4.

(27)

The leader system is in the form of (4) with

S =

[

03×3 I3
−I3 03×3

]

, D = [I3 03×3]

Ei =

[

i 0 0 1 0 −1
0 0 i/2 0 3 0
0 1 0 0 −2 0

]

, i = 1, 2, 3, 4.

(28)

It is easy to verify that Assumption 3.1 holds.

The communication network of the five agents Gσ(t) is
dictated by the switching signal σ(t) as follows:

σ(t) =















1, if sT ≤ t < (s+ 1
4 )T

2, if (s+ 1
4 )T ≤ t < (s+ 1

2 )T
3, if (s+ 1

2 )T ≤ t < (s+ 3
4 )T

4, if (s+ 3
4 )T ≤ t < (s+ 1)T

(29)

where s = 0, 1, 2, . . . . The four digraphs Gi, i = 1, 2, 3, 4
are illustrated in Fig. 1(Lu and Liu, 2018a). It can be ver-
ified that Assumption 3.2 is satisfied. The communication
delays are τij(t) =

1
2 (sin(

1
i
t))2 sec, i = 1, 2, 3, 4 (Lu and

Liu, 2018a).

The adaptive distributed control law of the form (12) is de-
signed, where µ = 1, Ki = 40I3, and Γi = I3, i = 1, . . . , 4.
The simulation is conducted with θ1 = col(1.1, 2.1, 0.1),
θ2 = col(1.2, 2.2, 0.2), θ3 = col(1.3, 2.3, 0.2), θ4 =
col(1.4, 2.4, 0.3) (Lu and Liu, 2018a), g = 9.8 m/s2,
T = 1 sec, and all initial conditions being randomly
chosen from the interval [−1 1]. The position tracking
error and the velocity tracking error of all followers are
shown in Fig. 2 and Fig. 3, respectively. It can be found
that leader-following synchronization of the four Euler-
Lagrange systems is achieved.

0

1 2

4 3

G1

→

0

1 2

4 3

G2
↓

0

1 2

4 3

G3

←

0

1 2

4 3

G4

↑

Fig. 1. Communication network Gσ(t) with P = {1, 2, 3, 4}.
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Fig. 2. The position tracking error of all followers.
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Fig. 3. The velocity tracking error of all followers.

5. CONCLUSION

In this paper, we have investigated the leader-following
synchronization problem of uncertain Euler-Lagrangemulti-
agent systems subject to nonuniform time-varying com-
munication delays, disturbances and uniformly connected
switching networks. In particular, we have sightly ex-
tended the generalized Barbalat’s lemma in Su and Huang
(2012) to a more general version. Then, we have applied
the newly generalized Barbalat’s lemma to the synchro-
nization problem of uncertain Euler-Lagrange multi-agent
systems. By proposing a novel adaptive distributed con-
trol law, it has been demonstrated that leader-following
synchronization of uncertain Euler-Lagrange multi-agent
systems can be achieved.
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A TECHNICAL LEMMA

Lemma .1. (Corollary 3.1 in Lu and Liu (2017)) Con-
sider the switched time-delay system

χ̇i(t) = µ
∑

j∈Ni(t)

aij(t)(χj(t− τij(t))− χi(t))

χi(θ) = χ0
i (θ), θ ∈ [−τ, 0], i = 1, . . . , N

(.1)

where χ0(t) ≡ 0, χi(t) ∈ R
m, i = 1, . . . , N , χ0

i (θ) ∈
C([−τ, 0],Rm), and µ is an arbitrary positive real number.
τij(t) are piecewise continuous and satisfy 0 ≤ τij(t) ≤ τ
for an arbitrary positive real number τ . Then, under
Assumption 3.2, the origin of (.1) is exponentially stable.
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