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Abstract: In this paper we consider model predictive control (MPC) design for roll angle control
for a fixed-wing unmanned aerial vehicle (UAV) with multiple segmented control surfaces. The
challenge of roll angle control for a fixed-wing UAV consists of switching between inner and outer
aileron pairs with hard constraints due to safety, energy saving and switching actuators. The
novelty consists of formulating a hybrid control problem as a switched linear constrained MPC-
QP problem and switched state observer design for fixed-wing UAV. A fast novel QP-solver
based on the active-set QP-solver Hildreth is developed to meet the real-time implementation
sampling time of Ts = 10 ms. The designed MPC controllers are simulated using Matlab.
Simulations and the CPU-time from the improved QP-solvers show MPC to be a very good
solution for real-time roll angle control of fixed-wing UAVs.

Keywords: Model Predictive Control, Quadratic Programming, Fixed-Wing Unmanned Aerial
Vehicle, Active Set Methods

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) or drones have become
very popular in the past years (Marris, 2013). UAVs are
becoming more popular for various reasons. First, they
are flexible and suitable for a broad range of applications.
Second, they are of low cost. Finally, less risk for humans is
involved compared to manned aerial vehicles (MAVs). Due
to their versatility, they are used in civil (Shakhatreh et al.,
2019), geomorphic mapping and imaging (Hackney and
Clayton, 2015) and military applications (Carapau et al.,
2017). These applications demand fast and large manou-
vring coming from the pilot commands, which require fast
and optimal control.

There are many types of UAVs and they come in different
shapes, but the two main categories are fixed-wing and
multi-rotor UAVs (Boon et al., 2017), (Thamm et al.,
2015), and each type has its own benefits and disadvan-
tages. For instance, the multi-rotor UAVs do not need run-
ways for take-off and landing and are easier to manoeuvre
and control, while it is a challenge to land fixed-wing UAVs
such that hardware damage is minimized. However, the
fixed-wing configuration has better flight-time endurance
and can map larger coverage and therefore can glide in the
air even when engines are switched off, which is not the
case for the multi-rotor configuration. For these reasons,
control of roll angle for fixed-wing UAVs is considered in
this paper.

In the past, automatic tuning of proportional integral
derivative (PID) controllers for fixed-wing UAVs (Pok-
sawat et al., 2017) and multi-rotor hexacopter UAVs has
been proposed. Furthermore, rate-based MPC for multi-
rotor hexacopter UAVs with fault-tolerance has been pro-
posed (Ligthart et al., 2017).

Model predictive control (MPC) is adopted in this paper,
because it has several advantages. First, it can anticipate
for future reference changes. Second, safety or actuator
constraints can be handled a priori. Finally, non-minimum
phase systems require predictive control. These three as-
pects are what PID is lacking (Aström and Hägglund,
2006). The main challenge of MPC is, however, to solve
a constrained optimization problem in real-time, very fast
(samping time Ts = 10 ms).

In this work, we are dealing with a fixed-wing UAV with
multiple segmented control surfaces (MSCS). This means
that the fixed-wing UAV has inner and outer aileron pairs
that are influencing the roll rate and thus the roll angle.
Each of the aileron pairs have hard actuator constraints
and in order to save energy consumption, MPC is a
suitable control strategy. Since either the inner aileron
pair or the outer aileron pair is allowed to be active every
time instance, we could formulate the roll angle control
problem as a mixed integer quadratic program (MIQP)
(Stellato et al., 2018), where usually requires solving more
than one quadratic programs (QP). However, due to the
challenging Ts = 10 ms sampling time constraint, we
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Fig. 1. 3D depiction of a fixed-wing UAV with MSCS.

propose a simpler solution, which is to switch between
two linear QP MPC algorithms with linear constraints
and between two state observers, each corresponding to
the identified models of the aileron pairs. State observers
estimating the state vector x̂ are necessary because only
the output y can be measured. This switching strategy
has several benefits and is similar to a gain-scheduling
approach. First, the controller can switch between mild
and aggressive control actions as the outer aileron pairs
have a larger gain in comparison with the inner aileron
pair. Second, the difference in gain requires the outer
aileron pair to deflect less than the inner aileron pair
thus saving energy consumption. The reasoning of different
gains is similar to switching between different gears in a
cars gearbox.

The contribution of this paper consists of: (i) formulating
the roll angle control problem for a fixed-wing UAV as a
switched linear MPC problem with switched state observer
design and (ii) developing an improved fast QP-solver
for linear MPC based on the active-set Hildreth QP-
solver. There are many other fast QP-MPC solvers, such as
active-set QP-solver qpOASES (Ferreau, 2011), (Ferreau,
2006) and OSQP (Stellato et al., 2019), (Ferreau et al.,
2014). However, we will focus on Hildreth’s algorithm
because it allows a simple implementation in C-code and it
involves simple operations that can be executed efficiently
on inexpensive microcontrollers. Since currently we are
considering box inequality constraints only, fast gradient
MPC solvers, such as qpdunes (Frasch et al., 2013),
(Frasch et al., 2014) could also be applied. However, we
focus on active set QP-solvers because we would like to
include affine inequality constraints in the future. The
main challenge is to solve the QP-MPC problem for roll
angle control in less than Ts = 10ms.

2. IDENTIFIED MODELS USED AS PLANT

A fixed-wing aircraft has six degrees of freedom (DOF),
which are positions x, y, z and orientations axes pitch θ,
roll φ and yaw ψ angles. Their respective angular velocities
are θ̇, φ̇ and ψ̇. These three orientation axes are controlled
by three actuators, i.e. elevators, ailerons and rudder,
respectively. However, in this paper, we consider a fixed-
wing UAV with MSCS together with a roll rig, where the
three positions are fixed and every orientation axis is fixed
except for the roll axis. The plant 3D model is depicted in
Fig. 1. Only the ailerons are considered as control input.
In fact, the ailerons consist of inner and outer aileron

pairs. We first consider the roll axis only, because the
fixed-wing UAV has only inner and outer aileron pairs.
Also, controlling the roll axis (roll angle) is important for
stability and it plays an important role in manoeuvring
the fixed-wing UAV.

System identification by means of relay experiments (Pok-
sawat, 2018) has been carried out to estimate a math-
ematical model for the UAV, since it is more practical
than using first principles modeling. Suppose the inner and
outer aileron pairs are denoted by control inputs u1 and u2,
respectively. Then let the roll rates as result of deflection
in inner and outer ailerons be denoted by sφ1 and sφ2
respectively, which correspond to derivative for zero ini-
tial conditions. Here, s denotes the Laplace variable. The
continuous-time transfer functions from aileron deflection
uj to roll rate sφj have been identified as

G1(s) =
−74.15s+ 8892

s3 + 59.11s2 + 1599s+ 7936

G2(s) =
4.746s3 − 392.5s2 + 2.443 · 104s+ 2.064 · 105

s4 + 80.26s3 + 3026s2 + 2.829 · 104s+ 1.21 · 105

with j ∈ {1, 2} denoting the inner and outer aileron pairs,
respectively. However, we are interested in controlling the
roll angle φj . Integrating G1 and G2 in s-domain gives the
two SISO plant models as

φ = y =
Gj(s)

s
uj if mode j is active. (1)

This is a hybrid system that switches between two SISO
plant models, i.e. G1 is active when u1 6= 0, u2 = 0 and G2

is active when u1 = 0, u2 6= 0 and u1, u2 can never both
be non-zero.

Next, we convert each of the transfer functions in Eq. (1)
to a continuous-time state-space model suitable for MPC.
Realizing that controller hardware is dealing with discrete-
time digital signals, we then convert the continuous-time
state-space model into a discrete-time one, with sampling
time Ts = 10 ms, using Matlab’s c2d:

Σjdisc :

{
xj(k + 1) = Ajxj(k) +Bjuj(k)

y(k) = φ(k) = Cjxj(k),
(2)

where k is the discrete-time index and we assume no
feedthrough term of input uj in output yj . In Eq. (2),
it should hold that (Aj , Bj) is controllable and (Aj , Cj) is
observable, which is the case. The switching condition is
defined by:

Outer ailerons
active, i.e.
u1 = 0, u2 6= 0,

}
⇐

{
if ρ(k) < lower− ε

or
upper + ε < ρ(k)

Inner ailerons
active, i.e.
u1 6= 0, u2 = 0,

}
⇐

{
if lower + ε < ρ(k)

and
ρ(k) < upper− ε

(3)

Above, inner ailerons are active when the value of roll rate
ρ(k) is between upper and lower bounds and outer ailerons
are active otherwise. A margin ε is implemented, which is
equivalent to dwell time to prevent frequent switching that
may lead to undesired oscillations.

3. MPC DESIGN

The control strategy adopted in this paper is constrained
MPC by means of switching between two linear MPC-
QP based algorithms and two state observers with roll

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5832



rate ρ(k) value as switching condition. To define the MPC
problem, let Yk denote the vector of future outputs yi|k
with i = 1, . . . , N , and let Uk denote the vector of future
inputs ui|k with i = 0, . . . , N − 1. Let x(k) = x0|k denote
the current state. By expressing every element of Yk in
terms of x(k) and Uk, we can predict future outputs as

Yk = Φjxj(k) + ΓjUk (4)

where

Φj =

 CjAj
...

CjA
N
j

 ,Γj =

 CjBj · · · 0
...

. . .
...

CjA
N−1
j Bj · · · CjBj

 ,
Yk =

[
yT1|k · · · y

T
N |k

]T
, Uk =

[
uT0|k · · · u

T
N−1|k

]T
.

Here, N is the prediction horizon which determines how
many samples we look ahead in the future.

3.1 MPC-QP formulation

Let future reference vector Rk consist of ri|k with i =
1, . . . , N . Some weight matrices Qj and Rj penalize the
error between future output and future reference ei|k =
yi|k − ri|k with i = 0, . . . , N and control input ui|k
respectively. These are designed by the user to meet the
design criteria. Terminal cost matrix Pj is chosen by the
user, typically Pj � Qj , to enhance tracking performance.
Then we can specify an MPC cost function quadratic in
the decision variable Uk as follows

Jj (xj(k), Uk)

= eTN |kPjeN |k +

N−1∑
i=0

(
eTi|kQjei|k + uTi|kRjui|k

)
= eT0|kQje0|k + ETk ΩjEk + UTk ΨjUk

with

Ωj = diag {Qj , · · · , Qj , Pj} , Ψj = diag {Rj , · · · , Rj}

Ek =
[
eT1|k · · · e

T
N |k

]T
.

Substitution of Eq. (4) and removing the constant term
gives us

J̃j (xj(k), Uk) =
1

2
UTk GjUk + UTk Fj (Φjxj(k)−Rk) (5)

where

Gj = 2
(
Ψj + ΓTj ΩjΓj

)
� 0, if Ψj � 0,Ωj � 0,

Fj = 2ΓTj Ωj .

Next, we formulate the hard actuator constraints on the
future aileron pair deflections ui|k and hard safety con-
straints on future roll angles yi|k for all i as:

umin ≤ ui|k ≤ umax, ymin ≤ yi|k ≤ ymax.

We can write these constraints into the form

Miyi|k + Ziui|k ≤ bi, MNyN |k ≤ bN
with i = 0, . . . N − 1 and

MN = [−Iq, Iq]T , bN = [−ymin, ymax]
T
,

Mi = [0, 0,−Iq, Iq]T , Zi = [−Im, Im, 0, 0]
T
,

bi = [−umin, umax,−ymin, ymax]
T
,

where m and q are dimensions of u(k) and y(k), respec-
tively. If we recall y(k) = Cjxj(k), then we can rewrite
constraints in compact form as

Djxj(k) +MYk + EUk ≤ c

where

Dj =
[

(M0Cj)
T · · · 0

]T
, c =

[
bT0 · · · bTN

]T
,

M =


0 · · · 0
M1 · · · 0

...
. . .

...
0 · · · MN

 , E =


Z0 · · · 0
...

. . .
...

0 · · · ZN−1
0 · · · 0


Substitution of Eq. (4) gives linear constraints

LjUk ≤ c+Wjxj(k) (6)

with

Lj =MΓj + E , Wj = −Dj −MΦj .

Assuming that Gj � 0, then J̃ is convex, yields a convex
quadratic program that needs to be solved to compute
the MPC control action. Solving the QP would yield a
minimizer U∗k consisting of optimal future control inputs.
Selecting its first element gives the next control input to
the plant as

u(k) = u∗0|k = [ Im 0 · · · 0 ]U∗k .

The receding horizon principle is then applied: for each
discrete-time instant we measure y(k) and estimate x(k)
with an observer, compute U∗k by solving the MPC-QP,
and then extract u(k) as the first element of U∗k .

To estimate state vector xj(k), let x̂j denote the estimated
state and define the observer dynamics as

ŷj(k) = Cj x̂j(k)

x̂j(k + 1) = Aj x̂j(k) +Bjuj(k) + Lj (y(k)− ŷj(k))

where we assume no feedthrough term of input uj in
estimated output ŷj . If we define the estimation error as
ej(k) = xj(k)− x̂j(k) we can write the error dynamics as

ej(k + 1) = (Aj − LjCj) ej(k).

Therefore, we need to design observer gains Lj such that
|λ (Aj − LjCj)| < 1 holds for all eigenvalues. Then it is
guaranteed that ej(k) → 0 and x̂j(k) → xj(k) as k → ∞
(in simulation we observe that x̂ converges to x within 41
samples or 0.41s). This can be done using Matlab’s L j
= place(A j’,C j’,p), where p are the desired observer
poles inside the unit circle.

The switched linear MPC-QP algorithm can be summa-
rized as follows:

1. Meausure roll angle output y(k) = φ(k) from the plant
(with IMU sensor).

2. Measure roll rate ρ(k) from the plant (with IMU sensor)
to decide the switching mode.

3. Based on roll rate ρ(k), use observer j to estimate x̂j(k)
and solve MPC-QP j to obtain U∗k .

4. Extract uj(k) and apply to the plant.

Next, we will present an algorithm for solving MPC-QP
problems.

3.2 Hildreth+

Let a general QP problem be denoted as

min
θ
J(θ) =

1

2
θTEθ + θTF, s.t. Mθ ≤ γ

where θ is the decision variable, M,E are static and
F = Fj (Φjxj(k)−Rk) and γ = c+Wjxj(k) are dynamic.
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The original Hildreth algorithm, see, e.g., (Wang, 2009),
is recalled in Alg. 1.

Algorithm 1. Hildreth algorithm

Input: E, F , M , γ, m̄, δ
Output: θ
Step 1: Unconstrained solution θ = −E−1F
Step 2: Check constraint violation Mθ ≤ γ
if no violation then

stop
else

Step 3: Compute H = ME−1MT , K = γ +ME−1F
end

Set λm = 0
Step 4:
for m = 1 : m̄ do

wmi = − 1

hii

ki +

i−1∑
j=1

hijλ
m
j +

n∑
j=i+1

hijλ
m−1
j

 (7)

λmi = max (0, wmi ) (8)

if
∣∣∣∣λm − λm−1∣∣∣∣ < δ then
stop

else
continue

end
end

Step 5: Return θ = −E−1F − E−1MTλm+1

Above m̄ denotes the maximum number of iterations and
δ denotes a small number. Let the modified version of
Hildreth be denoted by Hildreth+, which consists of the
following changes:
Step 2: check constraint violation in a vectorized fashion
in the form of K = γ−Mθ ≥ 0, instead of using a for loop
and scalar operations.
Step 3: warm-start by initializing λ based on the solu-
tion of the previous sample. Here, we use a persistent
variable for λ in Matlab, so it can be deleted as input
and output arguments of the QPsolver-function. However,
when disturbances come into play, cold-start (i.e. initialize
λ = 0 as in Step 3) would be wiser because the active set
could be different from the previous sample.
Step 4: improving rate of convergence (ROC) and reduc-
ing number of iterations using successive over-relaxation
(SOR) (Mittal, 2014). Inspired by the Jacobi and Gauss-
Seidel (GS) method for an iterative solution (Roberts,
2010) to Hλ = −K,λ ≥ 0, we obtained a parameter
ω = 1.08 > 1 by trial and error for optimal ROC. The ω
appears in the equations as follows and SOR is a weighted
average of previous iterate λm−1i and GS version of original
Hildreth iterate

wmi = (1− ω)λm−1i + ω · 1

Dii

[
−ki − (Li + Ui)λ

m−1]︸ ︷︷ ︸
original

λmi = max (0, wmi )

If ω = 1, then we obtain the original equations from Eq. (7)
and Eq. (8), but in a more compact form, realising struc-
tures of L and U . The reason we cannot use λ = −H−1K
directly is because H may not always be invertible (sin-
gular) if active constraints are linearly dependent. Hence

vectorization is not possible and for-looping through scalar
elements is necessary to avoid ill-conditioned problems.
The matrix H = U + D + L is decomposed into upper-
U , lower-triangular L and diagonal matrices D offline.
Step 4: precompute H,E−1 offline as they are static. K
is dynamic as it depends on R, x̂ and can be reused from
Step 2 in the form of K = γ −Mθ, with θ = −E−1F in
Step 1, which is faster than using theta=E\F.
Step 4: for the termination condition, we check whether(
λm+1 − λm

)T (
λm+1 − λm

)
< δ. This is changed into

e = λm+1−λm, eT e < δ. We set δ = 1·10−13 and maximum
number of iterations to m̄ = 1 ·106 for all Hildreth-solvers.
Step 5: extract non-zero elements (larger than 1 ·10−5) of

λm+1 to be λ̃ as well as corresponding rows of M to be M̃
to compute the correction in a vectorized fashion. Because
of decreasing dimensions in λ̃, M̃ , this should reduce CPU
time.
Step 5: implement correction to unconstrained solution as
θ = θ − E−1M̃T λ̃m+1, where we reuse the unconstrained
solution θ from step 1. Using parenthesis for priority from
right to left (theta=theta-invE*
(M’*lambda)) reduces CPU-time.

Let a further modified version of Hildreth+ be denoted
by Hildreth+’. Here we introduce the concept of reduced
mini-Hildreth, which includes the following changes:
Step 4: we extract the indices of violated constraints from
step 2 in the form of K = γ −Mθ < σ. Here, σ = 0.2 > 0
is a tunable margin because barely unviolated constraints
may be active. If σ = 0 then the bound would be too strict.
Then we take rows and columns of H and K corresponding
to these indices and compute reduced H̃, K̃. Then we solve
a reduced mini-Hildreth algorithm iteratively as in Step 4
using H̃, K̃ instead and repeat until reduced λ̃ converges.
Because of decreasing dimensions in H̃, K̃ and reduction
of ROC and number of iterations, this could save CPU
time. Directly computing λ̃ = −H̃−1K̃ is not possible if
H is not invertible (singular), which could happen if active
constraints are linearly dependent. Hence vectorization
is not possible and for-looping through scalar elements
is necessary to avoid ill-conditioned problems. Logically,
CPU-time should decrease as the number of violated and
active constraints decrease as well.
Step 5: then we extract rows of M to be M̃ corresponding
to the indices of violated constraints. This should reduce
CPU time as M̃, λ̃ are of smaller dimensions and vectorized
operations are employed.

4. SIMULATION EXPERIMENTS

4.1 MPC performance

The simulations in Matlab R2018b were performed on
Microsoft Surface 3 Pro (2013) with Windows 8 64-bit, In-
tel(R) Core(TM) i7-4650U CPU 1.70GHz 2.30GHz (100%
CPU speed), 8 GB RAM. In simulation, plant output roll
angle φ is subject to control and plant input is the inner
or outer aileron pair. For plant simulation, the original
transfer function is discretized and used directly, while for
prediction matrices the corresponding discrete-time state-
space representations are used. Here, j ∈ {1, 2} denotes
the active inner aileron pair and the active outer aileron
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Table 1. MPC parameters

MPC parameter Symbol Value Unit

Input constraints [umin, umax] [−15, 15] ◦

Output constraints [ymin, ymax] [−270, 270] ◦

Prediction horizon N 100 −
Stage tracking error penalty cost Qj 10 −
Input penalty cost Rj 10 −
Terminal tracking error penalty P1 1 · 106 −
cost of system 1 (inner) and 2 (outer) P2 1 · 109 −
Lower, upper bounds in Eq. (3) [lower, upper] [−16, 16] ◦/s
Sampling time Ts 10 ms

pair, respectively. In the SISO plant models, we assume
roll angle to be the output, while in reality the UAV has
an IMU sensor which measures both roll angle φ(k) and
roll rate ρ(k). The constraints on aileron deflection (hard
actuator constraint) and roll angle (soft safety constraint)
and other MPC parameters are summarized in Table 1.

The reference to track is a piecewise constant trajectory
as 0◦, −20◦, 20◦, −40◦, 40◦, 0◦, each constant part lasting
for 10 seconds. In total, the simulation lasts for 60 s. With
sampling time Ts = 10 ms this is equivalent to 6 · 103

samples.

Fig. 2 presents results for Matlab’s quadprog and a lin-
ear quadratic regulator (LQR) controller with saturation,
where the latter is scripted as m-function and converted

(a) Tracking output y(k) = φ(k) to reference r(k) and control
input u(k)

(b) Roll rate ρ(k) and switching mode j(k) ∈ {1, 2}

Fig. 2. MPC controller performance.

into MEX-file with C/C++ code to exclude compiling
time. It can be observed that both control strategies
achieve offset-free tracking with similar tracking perfor-
mance, without overshoot and same switching sequence.
However, MPC anticipates future reference changes, starts
earlier with switching and control input is smoother prior
each jump in reference change, compared to the LQR with
saturation.

4.2 CPU-time performance

The Hildreth-based QP-solvers were scripted as m-function
and converted into MEX-file with C/C++ code to ex-
clude compiling time using Matlab Coder’s codegen.
mpcqpsolver, qpOASES and OSQP are MEX-files too, where
the former solver is Matlab’s fastest default QP-solver.
Although quadprog is the slowest, we regard its solution
as optimal. Its black box code is protected, hence, it was
not converted into MEX-files.

In Fig. 3, CPU-time (excluding observer-time) among the
QP-solvers are compared. ’Warm-start’ is denoted as ’W’.
First, we can observe that computing the unconstrained
solution (Steps 1 and 2 of Hildreth) is faster than comput-
ing the constrained solution, where λ needs to be updated
(Hildreth Step 4). Hildreth+ and Hildreth+’ perform
equally fast when constraints are inactive, but Hildreth+’

(a) CPU-time other QP-solvers

(b) CPU-time Hildreth-based QP-solvers

Fig. 3. CPU performance and QP-solver accuracy.
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Table 2. Average and worst CPU-time of QP-solvers,
ordered from fastest to slowest on average CPU-time.
Accuracy QP-solvers solution u(k) w.r.t. quadprog in final

two columns. 3= yes, 7* = slightly no, 7= no

QP-solver Average Maximum Max Average Accu-
CPU- CPU- CPU absolute val. rate

time [s] time [s] < Ts error w.r.t.
(10 u(k) [◦] w.r.t. quad-

ms)? quadprog prog?

HILDR+’ W 1.7408 · 10−4 5.9128 · 10−4 3 2.6603 · 10−11 3

HILDR+ W 4.0940 · 10−4 1.01 · 10−2 7* 2.5219 · 10−11 3

HILDR 1.1 · 10−3 3.16 · 10−2 7 4.9292 · 10−11 3

QPOASES W 1.9 · 10−3 7.53 · 10−2 7 1.5410 · 10−11 3

MPCQPSLV W 2.9 · 10−3 5.417 · 10−1 7 1.4642 · 10−11 3

OSQP UPD 4.4 · 10−3 1.330 · 10−1 7 2.630 · 10−1 7

QUADPR 5.1 · 10−3 4.92 · 10−2 7 − −

is faster when constraints are active. Second, only the
worst-case CPU-time of Hildreth+’ stays below sampling
period Ts = 10 ms, while other QP-solvers violate this.
Third, CPU-time of original Hildreth seems to have a
bigger variance, i.e. is more spreaded out than Hildreth+
and Hildreth+’, which are faster than the original Hildreth
algorithm.

Table 2 summarizes Fig. 3 concisely and provides an
additional accuracy comparison. ’Warm-start’ is denoted
as ’W’. Here, we consider only samples 33 - 6000 (0.55%
- 100%) to omit transient peaks at the start, which is fair
as real-world experiments has zero reference for starting
up. Overall, CPU-time of Hildreth+ and Hildreth+’ are
reduced compared to original. Hildreth+’ has the best
average, minimum and worst-case CPU-time, where the
latter always stays below the sampling period of Ts = 10
ms. The absolute value of error w.r.t. quadprog is about
10 times the tolerance of termination criterion. From the
table, we can also see that there is a trade-off between
accuracy and CPU-speed. Finally, it can be observed that
OSQP is not very accurate compared to the other QP-
solvers. We followed the manual from OSQP (Stellato et al.,
2019) and checked the syntax is matching and used the
default settings, such as tolerances. It may be possible to
tune some specific solver-parameters for better accuracy,
however this is out the scope of this paper. Despite the
lack of accuracy, the tracking performance was still good,
anticipating for future reference changes and offset-free,
however with some overshoot. Hildreth+ and Hildreth+’
are both more accurate than the original. All Hildreth-
based solvers and most other solvers have similar error
w.r.t. quadprog in the same order of magnitude of 10−11.

It is worth to mention that the developed Hildreth-based
solvers were also tested on the chain of masses bench-
mark example of (Kögel et al., 2012). For that example,
Hildreth+’ was still the fastest solver and qpOASES was
the second fastest solver (and similar accuracy of same
magnitude). For that example, it could be that Hildreth+
and original Hildreth were slower than qpOASES because
of the disturbance present and relative low number of
decision variables of 40 (N = 10 and 4 control inputs).
In this paper, Hildreth+ and the original Hildreth were
faster than qpOASES, possible because the number of
decision variables is much higher, i.e., 100 (corresponding
to N = 100 and one control input). Parameters for the
improved Hildreth-based QP-solvers were m̄ = 1 · 106,
δ = 1 · 10−13, σ = 0.2 and ω = 1.2.

5. CONCLUSIONS

This paper presented a fast Hildreth-based MPC design
for roll angle control of a fixed-wing UAV with inner
and outer aileron-pairs. A switched linear MPC-QP and
switched state observer design for fixed-wing UAVs were
formulated and a fast novel QP-solver based on Hildreth’s
algorithm was designed. Reducing worst-case CPU-time
to be below sampling period of Ts = 10 ms was the
main objective. This was achieved with the developed Hil-
dreth+’ algorithm. Matlab-simulations of the designed
MPC-QP solvers showed MPC to be very suitable for real-
time control of UAVs.
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