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Abstract: With the sheer size of modern process plants, the Fault Detection and Isolation
(FDI) field continues to gain popularity. FDI is a sophisticated concept which aims to detect
and isolate anomalies that occur within a plant to avoid losses of personnel, damages to the
environment, and financial implications. It does so in a way which is more direct, efficient and
safer than what human operators are capable of. One approach to FDI is to consider the exergy
characterisation of a system. By describing the exergy of the system units and streams, in
this case a gas-to-liquids (GTL) process plant, the various process variables are encapsulated
under a universal energy-domain parameter. The advantage of this being that it can describe
the physical states as well as the chemical characteristics of the process. Previous work which
utilised exergy characterisation along with a fixed-threshold approach showed promise. This
study however, shows that the approach falls short when presented with 3 % faults. These
results motivated the investigation of utilising attributed graphs, which package exergy data
into a framework that preserves structural information of the plant. The usefulness of finding
similarities (called graph matching) between the graphs constructed of operational conditions
and pre-collected fault conditions to detect and isolate faulty conditions, is demonstrated. The
technique performs well when considering fault magnitudes bigger than 8 % but deteriorates
when applied to smaller, 3 % faults. The poor performance could be ascribed to the graph
matching aspect, which is described by a single distance value that discards dimensionality.
Future work will therefore look into the graph matching technique specifically, aiming to retain
more informative dimensions.

Keywords: Fault detection, Fault isolation, Exergy, Gas-to-liquids, Graph matching,
Attributed graphs

1. INTRODUCTION

In most industrial process plants, operators are tasked
with the monitoring and management of operations.
This means overseeing a large number of units and
associated process variables. When anomalies occur
within the plant, the operators are expected to detect,
diagnose and rectify the situation in the shortest possible
time. As technology progresses these industrial processes
are enhanced, resulting in even more complex systems.
Consequently, the operators’ responsibilities could escalate
beyond their capabilities. Sometimes the mishandling of
events by operators result in costly incidents, not only
risking human life and the environment, but also causing
detrimental financial situations. Two well-known incidents
that illustrate this, is the methyl isocyanate (MIC) leak in
Bhopal, India which claimed thousands of lives, according
to Kletz (1998). The second incident, as highlighted
by Venkatasubramanian et al. (2003), was the Kuwait
Petrochemical Mina al Ahmadi oil refinery explosion

which resulted in $100 million in damages. This is where
Fault Detection and Diagnosis (FDD) schemes are of
interest. By employing an appropriate FDD approach, the
efforts required of operators are reduced, the rectification
of anomalies are more efficient and the associated
cost and health risks are limited. The advancement of
FDD approaches would therefore specifically benefit
volatile and expensive processes such as seen in the
petrochemical industries (PCIs). FDD approaches are
generally categorised as being either model-based or data-
driven; the main difference being whether an analytical
model is present. Model-based methods utilises analytical
or structural models of a process and its behaviours,
encapsulating both normal and faulty aspects. Data-
driven techniques do not make use of explicit models; but
rather derive mathematical relations, based on provided
historical process data, between faults and the effects
thereof. When surveying literature pertaining to chemical
processes, the approaches seem to lean towards being
data-driven. The most prominent approaches being either
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statistical, as applied by Choi et al. (2005), Xie et al.
(2013), Ghosh et al. (2014), Fezai et al. (2018), and Dong
and Qin (2018); or machine learning as demonstrated by
Watanabe and Hirota (1991), and Sorsa et al. (1991), to
name but a few. Venkatasubramanian et al. (2003) states
that it would not be impossible to develop analytical
models of petrochemical (PC) processes but that it would
be exceptionally challenging. Recent research, such as
done by Chiang and Braatz (2003), Maki et al. (2004)
and Chiang et al. (2015), show hybrid approaches taking
the forefront. The hybridisation, which is usually a
combination of model-based and data-driven techniques,
endeavours to leverage the advantages afforded by the
different approaches whilst minimising the drawbacks. Of
noticeable interest is the approach proposed by Chiang
and Braatz (2003) which aimed at combining causal maps
and Partial Least Square (PLS) methods in order to
include process connectivity information. Much in the
same direction of thinking, Marais et al. (2019), proposed
a hybrid approach which makes use of energy properties
of the system. Not only is the energy description a
unifying parameter across different domains, but it is also
a way of abstracting data. The energy properties are then
packaged in such a manner that the physical structural
information of the system is retained. In the work of
Greyling et al. (2019) the same approach was applied
to a gas-to-liquids (GTL) process, incorporating exergy
rather than energy. By monitoring the exergy, additional
information is encapsulated, specifically regarding the
chemical characteristics of the system. The results
recorded in the work done by Greyling et al. (2019)
showed promise, however the question that arose was
whether a fixed-threshold approach would still work if the
system faults’ magnitudes were smaller.

This paper is divided into two parts. The first part focusses
on evaluating the threshold approach performance when
presented with 3 % faults. The results proved to be less
than stellar, which meant some alterations were required.
It must however be emphasised that the exergy and
structural information concepts still hold promise; the
issue seemed to be the fixed-threshold applied. Therefore,
keeping with the exergy characterisation and wanting
to preserve the structural information, Ould-Bouamama
et al. (2014) suggest that a graphical method would allow
for both. Such graphical approaches would also provide
different mathematical schemes of detecting and isolating
considered faults. Most of the graphical approaches
reviewed by Ould-Bouamama et al. (2014) make use of
graphs to describe system properties and relevant causal
relations. For this study the most suitable graphical
approach was chosen to be attributed graphs along with
graph matching, a popular technique that quantifies the
dissimilarities of compared graphs. The second part of the
paper therefore demonstrates the usefulness of comparing
operational graphs to faulty graphs (stored in a database)
in order to detect and isolate faulty conditions.

The paper starts off with briefly detailing the GTL model
and exergy characterisation thereof. Section 3 goes on to
describe the considered faults’ detail and their locations.
The threshold approach as applied to 3 % faults and the
results obtained is summarised in Section 4. Section 5 gives
a quick overview of attributed graphs and graph matching

and goes on to detail the methodology as these are applied
to the GTL process. The fault detection and isolation
results obtained are given in Section 6 with the paper being
concluded in Section 7.

2. THE GAS-TO-LIQUIDS PROCESS

A gas-to-liquids (GTL) process is used to transform
gaseous feedstock, such as natural gas, into hydrocarbon
liquids. A GTL process usually comprises of three
principal sections as shown in Fig. 1. In the first section
the natural gas is reformed to obtain synthesis gas, also
referred to as syngas. The syngas is made up of a certain
ratio of hydrogen (H2) and carbon monoxide (CO),
depending on the intended end-products. The produced
syngas is then introduced to a Fischer-Tropsch reactor
which converts the syngas into an array of hydrocarbons
(syncrude). The upgrading section is used to rework the
syncrude to hydrocarbon products of particular chain
lengths. Since the upgrading section is quite complex only
the first two sections of the GTL process, shown boxed
in Fig. 1, are considered in this study. Interested readers
are referred to the works of Rafiee and Hillestad (2010),
Panahi et al. (2011), De Klerk (2011), and Knutsen (2013)
for comprehensive information on the GTL process and
the modelling thereof.

Synthesis gas
production

Fischer-Tropsch
synthesis

Upgrading
section

Feed Syngas Syncrude Products

Fig. 1. A process diagram of a gas-to-liquids (GTL) process

2.1 Simulation model

In order to have a representative system to work with,
a steady-state simulation model was constructed in
the commercial process simulator, Aspen HYSYS®. No
process variations were intentionally included in this
study. The exact particulars on how the model was
developed, the operating points and validation of the
model are comprehensively documented in Greyling et al.
(2019). However, some of the most important modelling
aspects are highlighted as:

(1) Autothermal reformer (ATR)
(a) No pre-reformer was included as there was no

recycling to the ATR.
(b) The feedstocks used were pure methane (CH4),

steam (H2O(g)), oxygen (O2) and carbon dioxide
(CO2).

(2) Fischer-Tropsch reactor (FTR)
(a) A plug flow reactor in conjunction with a

separator was used to represent a multi-tubular
fixed bed (MTFB) reactor.

(b) The syngas that was fed into the FTR was at a
temperature of 210 °C.

(3) Recycle
(a) 76.8 % of the unreacted syngas in stream 16 was

recycled back to the FTR.
(b) The remaining 23.2 % was purged (stream 22).

Fig. 2 shows the Aspen HYSYS® process flow diagram
of the developed GTL process. Note that the validation of
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the simulation model comprised of comparing the attained
product distribution to the theoretical distributions seen
in literature.

2.2 Exergy characterisation

According to Dincer and Rosen (2013), exergy is defined
as being a quantitative measure of an energy quantity’s
usefulness to perform work. Unlike energy which is based
only on the first law of thermodynamics, exergy also takes
into account the second law of thermodynamics. The
second law states that entropy cannot decrease in any real
process, therefore the ability to deliver valuable work is
eventually lost. In other words exergy is not conserved and
some exergy losses would occur which could be quantified
by using the process’ exergy balance (Magnanelli et al.
(2018)). Therefore the most prominent advantage of using
exergy is that it enables a manner of quantifying the
quality of an energy stream or (more importantly) the
efficiency of various elements. Consequently, any deviation
of the known efficiencies could be indicative of an anomaly
within the system. To characterise the GTL system the
intrinsic exergy of each stream was calculated. It is
important to note that exergy is always evaluated relative
to a reference environment (RE). This means that the
RE’s intensive properties will determine the exergy. For
physical exergy, these include temperature and pressure
and are typically T0 = 25 °C and P0 = 101.325 kPa.
However, the chemical exergy is based on an environment
consisting of certain reference elements. Various methods
exist for selecting and calculating the standard chemical
exergy (b0ch) of these reference elements with the RE
proposed by Szargut (2007) being the most distinguished
one. In order to automatically calculate the physical and
chemical exergy within Aspen HYSYS®, user variables
were developed. A user variables is a section of program
code that the user creates, which can access various
elements of the Aspen HYSYS® model. To calculate the
physical exergy per mole

bph = (h− h0)− T0(s− s0), (1)

is used where h and s are the current enthalpy and entropy,
respectively, and h0 and s0 the enthalpy and entropy at
RE state. The total physical exergy (Bph) is obtained
by multiplying the stream’s molar flow rate with the
computed intrinsic physical exergy. The chemical exergy
is calculated by making use of

bch =
∑

x(i)b
0
ch(i), (2)

with x(i) being the mole fraction and b0ch(i) the standard

molar chemical exergy of substance i. The utilised b0ch(i)
values were defined by Szargut’s (2007). In order to
utilise (2), the standard molar chemical exergies of all
the relevant substances were firstly made available to the
simulation basis by creating a user property tabulating
the corresponding values. Not all substances’ standard
chemical exergies were readily available but were pre-
calculated (Greyling et al. (2019)). Seeing as the GTL
process would inevitably have multi-phase streams and
since some substances have different standard chemical
exergies based on their phase, Equation (2) was modified
to account for this. Thus the total chemical exergy
is the sum of the vapour, liquid and aqueous phases
mathematically expresses as

bch =
∑

x(i)vb
0
ch(i)v +

∑
x(i)`b

0
ch(i)`

+
∑

x(i)ab
0
ch(i)a.

(3)

Whenever a certain phase was not present, the phase
exergy was assumed to be zero. The complete details on
how the physical and chemical exergy user variables were
developed is also discussed in Greyling et al. (2019). The
assumption was made that the physical exergy (Bph) and
chemical exergy (Bch) of all the streams and units were
available to utilise. The next iteration of the research
will look into using fewer data points that carry more
importance.

3. SYSTEM FAULT SPECIFICATIONS

Before the considered faults are introduced, a recap of the
terminology is crucial. According to Shah (2011), a failure
is a permanent disruption of the system’s operations. A
disturbance is an unknown input that negatively affects the
system’s performance where a fault is any unintentional
deviation of a parameter from its normal behaviour. A
fault can be further classified based on its physical location
or the effects on the system operation. Faults classified
based on their location are system faults, actuator faults,
and sensor faults. The different fault effects can be seen
as additive, multiplicative, abrupt, incipient, intermittent,
permanent, or transient. In order to evaluate the fault
detection capabilities of the proposed approaches, eleven
relevant fault conditions were identified. These eleven
faults include system faults and actuator faults. For this
study however, the proposed system need not distinguish
between the two fault-categories. The reasoning behind
how the faults were chosen, was established in Greyling
et al. (2019). The details of faults and their location are
summarised in Table 1. The locations of the faults are
also visually depicted using danger triangles, as shown in
Fig. 2. In order to keep track of the magnitude variation
of the faults, fault IDs were assigned to each. The general
form of the fault ID is given as Fpqr where p denotes the
relevant GTL section, q the type of fault within the section
and r the magnitude deviation considered; the magnitude
variations being 3 %, 8 %, 9 %, 10 %, 11 %, 12 %, and 25
%. The most important datasets to take note of are:

• Fpq1 are the eleven faults that deviated with a
magnitude of 3 %.

• Fpq4 are the eleven faults that deviated with a
magnitude of 10 %.

• FpqR is a random selection of various magnitude
deviations, excluding 3 and 10 % magnitudes, of each
one of the eleven faults.

The specified datasets are shown highlighted in Table 1
for easy identification. The GTL model was modified
individually and simulated for every fault tabulated, each
time recording all the streams’ physical exergy (Bph) and
chemical exergy (Bch) to use as the exergy characterisation
information.

4. A THRESHOLD APPROACH

It is important to note that the threshold approach
developed, evaluated and the results documented in
Greyling et al. (2019) were considering the 10 %
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1 ATR - F1qr

F11r -F13r

F14r

2 FTR - F2qr F21r -F22r

F23r -F24r

3 Recycle - F3qr F31r

F32r

F33r

1Fig. 2. The GTL process as developed in Aspen HYSYS® with fault locations indicated

Table 1. The faults’ details and denotation

Fault ID† Description

r

Location1 2 3 4 5 6 7

F1qr
ATR section

F11r Molar flow + 3 % 8 % 9 % 10 % 11 % 12 % 25 % Methane stream

F12r Molar flow − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Methane stream

F13r Pressure − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Methane stream

F14r Pressure − 3 % 8 % 9 % 10 % 11 % 12 % 25 % ATR

F2qr
FTR section

F21r Temperature − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Reactor feed stream

F22r Leakage − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Reactor feed stream

F23r Pressure − 3 % 8 % 9 % 10 % 11 % 12 % 25 % FTR

F24r Temperature − 3 % 8 % 9 % 10 % 11 % 12 % 25 % FTR

F3qr
Recycle section

F31r Pressure − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Compressor

F32r Lower split ratio − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Splitter 1

F33r Leakage − 3 % 8 % 9 % 10 % 11 % 12 % 25 % Recycle to FTR

Datasets Fpq1 , Fpq4 and FpqR

† Fpqr - p represents the section, q the fault number and r the magnitude deviation

(Fpq4) deviations only. The approach performed very
well, successfully detecting all eleven faults and the
resultant isolability being 100 %. Detection being able to
correctly indicate that a fault was present and isolability
specifically referring to whether the faults were uniquely
distinguishable from one another. Subsequently the
question arose as to how well the approach would perform
when small fault magnitudes are evaluated. To determine
this, the following methodology was applied to the 3 %
dataset (Fpq1):

(1) Firstly the collected exergy data, per stream, was
normalised with respect to the normal condition.

(2) Next a simple threshold function was applied to the
normalised values in order to obtain a qualitative
value for each entry. The threshold function used is
described by:

y =


−1 if z <

(
1− κ

)
1 if z >

(
1 + κ

)
0 otherwise.

(4)

In (4), z represents the normalised exergy value being
considered and y the magnitude of the resultant
fault element. In order to assign an appropriate
value to κ, the solver deviations seen within the
Aspen HYSYS® environment were utilised. As

the simulation model was rerun - under identical
conditions - small solver variations were noticed.
To ensure that these simulation variations were
distinguishable from the faults, the variances were
quantified. This was achieved by calculating the
statistical experimental error between 10 simulation
runs. The threshold κ-value was found to be 0.00635;
the precise calculation hereof shown in Greyling et al.
(2019).

(3) After applying the threshold function to the
normalised data, a 20 × 2 qualitative matrix is
obtained with the form

Fpqr =

 yBph(stream1)
yBch(stream1)

...
...

yBph(stream24)
yBch(stream24)

 . (5)

(4) When evaluating the detection and isolation
performance
(a) any non-zero matrix would indicate a fault

condition
(b) any identical matrices, for different fault

conditions, would signify unisolability

Table 2 shows the qualitative matrices obtained for
dataset Fpq1 after applying the threshold function. When
evaluating the matrices, a shortcoming in terms of
detection is evident. Seeing that the qualitative matrix of
fault F231 is zero, the fault condition was not successfully
detected. To calculate the detection rates of a proposed
approach, a confusion matrix is drawn up. The idea
behind a confusion matrix is to determine the number of
instances where the decision of the approach:

• resulted in a true negative (TN) - the approach
detected a fault-free condition and the true condition
was indeed fault-free (value assigned to a)

• resulted in a false negative (FN) - the approach
detected a fault-free condition and the true condition
was faulty (value assigned to b)

• resulted in a false positive (FP) - the approach
detected a fault condition and the true condition was
actually fault-free (value assigned to c)
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Table 2. Threshold results for dataset Fpq1

F1q1
F2q1

F3q1

Stream

F111 F121 F131 F141 F211 F221 F231 F241 F311 F321 F331

Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch Bph Bch

1 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 -1 -1 1 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 -1 -1 -1 -1

11 1 1 -1 -1 1 0 0 0 -1 0 -1 -1 0 0 0 0 0 0 -1 -1 -1 -1

12 1 1 -1 -1 1 0 0 0 -1 0 -1 -1 0 0 1 0 0 0 -1 -1 -1 -1

13 1 1 -1 -1 1 0 0 0 -1 0 -1 -1 0 0 1 1 0 0 -1 -1 -1 -1

14 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 0 0 1 -1 0 0 1 1 1 1

15 1 1 -1 -1 0 0 0 0 0 0 -1 -1 0 0 0 1 0 0 -1 -1 -1 -1

16 1 1 -1 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 -1 -1 -1

17 -1 -1 0 0 1 1 0 0 -1 0 1 -1 0 0 0 0 0 0 0 0 1 1

18 1 1 -1 -1 1 1 0 0 -1 0 1 1 0 0 1 0 0 0 1 0 1 0

19 1 1 -1 -1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 -1 -1

20 1 1 -1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1 -1 -1 -1

21 1 1 -1 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 -1 -1 -1 -1

24 1 1 -1 -1 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 -1 -1 -1 -1

• resulted in a true positive (TP) - the approach
detected a fault condition and the true condition was
faulty (value assigned to d)

Subsequently, the detection rates rFP , rFN , rTP , and
accuracy are calculated by making use of these assigned
values. Ideally, the false positive rate (rFP ) and false
negative rate (rFN ) should be 0 % and the true positive
rate (rTP ) and accuracy 100 %. A confusion matrix is
completed for the threshold approach and is shown in
Fig. 3. Evaluating these obtained rates, it is clear that the
threshold approach did not perform flawlessly, therefore
motivating the development of a different approach.

CONFUSION MATRIX DETECTION RATES

True condition

Rate Formula %
Fault-free Fault

D
e
t
e
c
t
io
n

c
o
n
d
it
io
n Fault-free

True negative False negative rFP = c
(a+c) × 100 0

a 0 b 1 rFN = b
(b+d) × 100 9.09

Fault
False positive True positive rTP = d

(b+d) × 100 90.91

c 0 d 10 Accuracy = (a+d)
(a+b+c+d) × 100 90.91

Fig. 3. Confusion matrix and detection rates of threshold
approach applied to dataset Fpq1

5. GRAPH THEORETICAL APPROACH

5.1 Background

Graph theory has been in use since the 1730’s and became
very popular in the 1930’s. It is mathematical in nature
and the concepts thereof have diverse capabilities. A broad
spectrum of applications are seen throughout literature,
including pattern recognition, transportation and even
economics. A graph essentially consists of an ordered
pair G = (V,E), where V is the set of vertices (also
called nodes) and E the set of edges (sometimes referred
to as links or arcs). Usually vertices represent certain
properties of a system, whereas the edges are used to
describe the incidence relation of the vertices to themselves
or other vertices within the graph, as stated by Bondy

and Murty (1976). Furthermore, the graph vertices and
edges can contain information. If the information is simply
a name or number, the graph is called a labelled graph.
Should additional information in the form of attributes be
available, the graph is called an attributed graph. The edges
can also be either directional or have no direction related
to it. From the definition it is evident then why graph
theory can be utilised in so many fields, notwithstanding
FDD.

To show how one would go about constructing an
attributed graph of the GTL process, the ATR unit
will be used as an illustrative example. Fig. 4 (a) shows
the ATR unit with its feed streams and syngas product
stream. Firstly, each feed stream is represented by a
node (nodes 1–4). These nodes are then connected to the
ATR unit node (node 5) via directed edges, just as the
process flow diagram depicts. The attributes of the nodes
and edges are described by the energy characteristics
calculated of the process. The completed attributed graph
of the ATR unit is shown in Fig. 4 (b). An invaluable
aspect of graph theory, called graph matching, is the
determination of how similar one graph is to another.
As summarised in Wilson and Martinez (1997), many
different matching methods exist and the technique
applied greatly depends on the type of graphs, their
sizes, and the relevant information (symbolic, numeric,

(a) (b)

· · · 1

2

3

4

5 · · ·

CH4

∆B1

H2O

∆B2

O2

∆B3

CO2

∆B4

ATR

∆B5

q̇15

q̇25

q̇35

q̇45

q̇56

1Fig. 4. (a) The ATR process unit (b) The constructed
graph showing the nodes, edges and energy attributes
of the ATR
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etc.) being considered. For this study the Heterogeneous
Euclidean Overlapping Metric (HEOM) proposed by
Wilson and Martinez (1997), and reiterated by Jouili
et al. (2009), was used. The technique works for both
numerical and symbolic attributes, although the attributes
in this case are numerical only. By utilising the HEOM
instead of just calculating the Euclidean distance the
following aspects are addressed:

• Should symbolic attributes be included in the future,
the HEOM approach will be able to adequately
handle the additional information.
• The Euclidean distance function does not include

any normalisation, therefore, according to Wilson and
Martinez (1997), attributes with large ranges would
diminish smaller attributes’ inputs.

5.2 Methodology

This section details the methodology of applying graph
matching as a means to fault detection and isolation. To
ensure a repeatable procedure, the following steps were
determined and applied:

(1) An attributed graph, as depicted in Fig. 5, was
constructed based on the GTL process flow diagram,
where the:
(a) nodes represent the process units
(b) edges convey the flow direction and connection of

the units
(2) The attributes of the:

(a) nodes are the changes in physical and chemical
exergy (∆B) over each process unit

(b) edges are the energy flows (q̇ιγ) between
connected process units ι and γ

(3) Utilising the graph, a node signature matrix G is
constructed in the form given in (6); describing the
change in physical exergy (∆Bph), chemical exergy
(∆Bch) and the energy flow (q̇ιγ) of each node. Should
there be no energy flowing between two nodes, a 0 is
added to that entry. Matrices were developed for each
fault in datasets Fpq4 , FpqR , and Fpq1 .

G =

∆Bph1 ∆Bch1 q̇11 . . . q̇118
...

...
...

. . .
...

∆Bph18 ∆Bch18 q̇181 . . . q̇1818

 (6)

(4) Next a database was developed containing the
graphs (Gd) of every fault of dataset Fpq4 . No graph
information (Go) pertaining to the operational faults

to be evaluated (FpqR and Fpq1) are included in the
database.

(5) A cost matrix Cod is used to determine how dissimilar
two graphs, Go and Gd, are when compared to one
another. To calculate this

Cod =

√√√√ A∑
α=1

|Goiα −Gdjα |2
rangeα

, (7)

is used, giving an (i × j) matrix. A is the number
of columns of the graphs, j the number of rows in
graph Gd and i the number of rows in graph Go.
To normalise the data, the rangeα of each column of
graph Go is obtained and calculated by:

rangeα = maxα −minα, (8)

where maxα is the largest numerical value and minα
the smallest in column α.

(6) In order to determine a single distance (DC)
parameter between the two considered graphs,

DC =

∑i
k=1 Ckk

i
, (9)

is utilised. The calculation basically comes down
to summing the cost matrix’s diagonal entries and
dividing it by the number of rows, i, in the cost
matrix.

(7) The smaller the DC-value the smaller the
dissimilarities are between the compared graphs.

The detection and isolation will therefore work on the
premise that given a known fault type of unknown
magnitude, the above described method should match the
operational condition to the corresponding fault - or more
specifically - the graph within the database, by means of
the smallest DC-value.

6. RESULTS

The above-mentioned methodology was firstly applied to
fault dataset FpqR . The DC-values of each one of the eleven
faults as compared to the database stored graphs were
recorded and summarised in Table 3 (a). The smallest
value, shown in bold, indicates the likeliest match. When
evaluating the DC-values it is seen that the proposed
graph matching approach correctly matched all considered
operational faults in dataset FpqR to their corresponding
database faults. A confusion matrix was completed and is
shown in Fig. 6 (a). The approach performed quite well
as there were no false negatives (FN) or false positives
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Fig. 5. The graph of the GTL process showing all of the nodes, edges and energy attributes
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(FP), with both the true positives (TP) and accuracy
being 100 %. However, when the approach was applied
to dataset Fpq1 the performance drastically deteriorated.
TheDC-values, shown in Table 3 (b), show poor matchings
of the smaller magnitude faults. The confusion matrix
for dataset Fpq1 is depicted in Fig. 6 (b). The fact that
some faults graphs (F141 , F211 , F231 , F241 , and F311) were
matched to the normal graph seems to emphasise an issue

regarding the sensitivity of the proposed approach. The
false negative rate (rFN) of 45.5 % and accuracy of 54.5
%, clearly indicate the poor performance.

7. CONCLUSION

As the fixed-threshold approach, proposed in the work of
Greyling et al. (2019), failed to detect all the considered
3 % faults, a different detection and isolation method

Table 3. Detectability and isolability of fault dataset (a) FpqR and (b) Fpq1

(a)

(b)

Fault ID

Database stored faults

Normal F114 F124 F134 F144 F214 F224 F234 F244 F314 F324 F334

F
p
q
R

Normal1

D
e
te
c
te
d

X

Is
o
la
b
le

[m
e
tr
ic

=
D

C
]

X 0.00126 0.05044 0.06362 0.00362 0.00355 0.00260 0.09191 0.00169 0.01641 0.00142 0.05366 0.05086

F116 X X 0.05018 0.00556 0.10589 0.04919 0.04929 0.04998 0.12818 0.05010 0.04997 0.05070 0.09310 0.08899

F123 X X 0.05929 0.10922 0.01049 0.06119 0.06117 0.05901 0.07902 0.05885 0.06326 0.05881 0.05638 0.05315

F137 X X 0.00726 0.04812 0.07038 0.00458 0.00458 0.00890 0.09882 0.00822 0.02095 0.00834 0.06064 0.05793

F142 X X 0.00206 0.04839 0.06624 0.00059 0.00055 0.00405 0.09447 0.00310 0.01725 0.00332 0.05631 0.05355

F213 X X 0.00211 0.04906 0.06420 0.00434 0.00436 0.00017 0.09232 0.00175 0.01659 0.00309 0.05434 0.05148

F225 X X 0.11739 0.16831 0.08116 0.11989 0.11980 0.11688 0.01518 0.11671 0.11340 0.11684 0.06004 0.06787

F236 X X 0.00146 0.04898 0.06414 0.00382 0.00384 0.00206 0.09228 0.00037 0.01571 0.00259 0.05416 0.05132

F242 X X 0.00567 0.05032 0.06647 0.00668 0.00674 0.00767 0.09370 0.00667 0.00456 0.00661 0.05512 0.05257

F317 X X 0.00311 0.04901 0.06532 0.00547 0.00551 0.00511 0.09350 0.00407 0.01204 0.00238 0.05524 0.05250

F322 X X 0.04880 0.09490 0.05312 0.05110 0.05103 0.04844 0.05979 0.04810 0.04990 0.04827 0.01427 0.02527

F333 X X 0.04776 0.09958 0.05292 0.04955 0.04939 0.04811 0.06359 0.04774 0.04595 0.04715 0.02314 0.02178

Yes = X No = ×

Fault ID

Database stored faults

Normal F114 F124 F134 F144 F214 F224 F234 F244 F314 F324 F334

F
p
q
1

F111

D
e
te
c
te
d

X

Is
o
la
b
le

[m
e
tr
ic

=
D

C
]

× 0.01370 0.03447 0.07613 0.01284 0.01296 0.01385 0.10273 0.01386 0.02045 0.01438 0.06511 0.06207

F121 X × 0.01406 0.06389 0.05221 0.01589 0.01589 0.01434 0.09127 0.01397 0.01833 0.01375 0.05321 0.05049

F131 X X 0.00778 0.04812 0.07087 0.00508 0.00510 0.00939 0.09930 0.00872 0.01341 0.00886 0.06109 0.05837

F141 × × 0.00074 0.04884 0.06515 0.00188 0.00186 0.00287 0.09338 0.00182 0.00977 0.00209 0.05523 0.05245

F211 × × 0.00079 0.04932 0.06427 0.00316 0.00315 0.00150 0.09248 0.00107 0.00976 0.00185 0.05437 0.05156

F221 X × 0.16198 0.18545 0.17694 0.16355 0.16353 0.16160 0.17489 0.16209 0.16144 0.16190 0.16488 0.16488

F231 × × 0.00012 0.04928 0.06446 0.00268 0.00265 0.00223 0.09270 0.00111 0.00941 0.00143 0.05454 0.05177

F241 × × 0.00206 0.04886 0.06506 0.00368 0.00378 0.00373 0.09293 0.00270 0.00842 0.00307 0.05450 0.05179

F311 × × 0.00071 0.04961 0.06416 0.00316 0.00313 0.00234 0.09241 0.00131 0.00938 0.00096 0.05419 0.05139

F321 X × 0.01701 0.06643 0.05301 0.01891 0.01877 0.01752 0.08161 0.01703 0.01907 0.01653 0.04127 0.04062

F331 X × 0.01620 0.06601 0.05405 0.01802 0.01787 0.01673 0.08251 0.01629 0.01728 0.01570 0.04341 0.03985

Yes = X No = ×

1

(a) (b)
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True condition
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Fault-free Fault

D
e
t
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Fig. 6. Confusion matrix and detection rates of the graph approach applied to dataset (a) FpqR and (b) Fpq1
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was required. By developing an attributed graph of the
GTL process, information regarding the physical structure
as well as stream composition and physical properties
(described by exergy), are encapsulated. Graph theory
then provides an array of methods in which to detect and
isolate faults. The proposed approach presumed that the
graphs of the 10 % faults were available as a database. The
graphs of unknown operational faults are then compared
to the database faults and their dissimilarities quantified
by means of a distance parameter (DC). The most likely
fault being identified by the smallest DC-value obtained.
When evaluating the detection and isolation performance,
all faults in dataset FpqR were successfully detected and
isolated. Unfortunately, the performance declines when
presented with the smaller faults as in dataset Fpq1 . This
would suggest a similar issue with sensitivity such as the
threshold approach displayed. One reason for this could
be that the chosen DC metric discards useful information
contained within the cost matrix, seeing as the 18 × 18
matrix is reduced to a single distance parameter. Hence,
the positive performance of the FpqR dataset warrants
further investigation into the benefits more degrees of
freedom would bring about. Additionally, a next phase
of the research would assess the proposed approach’s
performance when completely unanticipated faults are
considered.

ACKNOWLEDGEMENTS

This work is based on the research supported wholly/in
part by the National Research Foundation of South
Africa (Grant Number 127483). This work is based on
the research supported by Sasol (Pty) Ltd. Opinions
expressed and conclusions arrived at are those of the
authors and are not necessarily to be attributed to Sasol.

REFERENCES

Bondy, J. and Murty, U. (1976). Graph Theory with
Applications. Elsevier Science Publishing Co., Inc.

Chiang, L.H. and Braatz, R.D. (2003). Process
monitoring using causal map and multivariate statistics:
fault detection and identification. Chemometrics and
intelligent laboratory systems, 65(2), 159–178.

Chiang, L.H., Jiang, B., Zhu, X., Huang, D., and Braatz,
R.D. (2015). Diagnosis of multiple and unknown faults
using the causal map and multivariate statistics. Journal
of Process Control, 28, 27–39.

Choi, S.W., Lee, C., Lee, J.M., Park, J.H., and Lee, I.B.
(2005). Fault detection and identification of nonlinear
processes based on kernel PCA. Chemometrics and
intelligent laboratory systems, 75(1), 55–67.

De Klerk, A. (2011). Fischer-Tropsch Refining. John
Wiley & Sons, first edition.

Dong, Y. and Qin, S.J. (2018). A novel dynamic
PCA algorithm for dynamic data modeling and process
monitoring. Journal of Process Control, 67, 1–11.

Fezai, R., Mansouri, M., Taouali, O., Harkat, M.F., and
Bouguila, N. (2018). Online reduced kernel principal
component analysis for process monitoring. Journal of
Process Control, 61, 1–11.

Ghosh, K., Ramteke, M., and Srinivasan, R. (2014).
Optimal variable selection for effective statistical
process monitoring. Computers & Chemical
Engineering, 60, 260–276.

Greyling, S., Marais, H., van Schoor, G., and Uren, K.R.
(2019). Application of exergy-based fault detection in a
gas-to-liquids process plant. Entropy, 21(6), 565.

Jouili, S., Mili, I., and Tabbone, S. (2009). Attributed
graph matching using local descriptions. In
International Conference on Advanced Concepts
for Intelligent Vision Systems, 89–99. Springer.

Kletz, T. (1998). What Went Wrong? Case Histories of
Process Plant Disasters. Elsevier Science, 4th edition.

Knutsen, K.T. (2013). Modelling and optimization of
a Gas-to-Liquid plant. Master’s thesis, Institutt for
kjemisk prosessteknologi.

Magnanelli, E., Berglihn, O.T., and Kjelstrup, S. (2018).
Exergy-based performance indicators for industrial
practice. International Journal of Energy Research,
42(13), 3989–4007.

Maki, M., Jiang, J., and Hagino, K. (2004). A stability
guaranteed active fault-tolerant control system against
actuator failures. International Journal of Robust
and Nonlinear Control: IFAC-Affiliated Journal, 14(12),
1061–1077.

Marais, H., van Schoor, G., and Uren, K.R. (2019). The
merits of exergy-based fault detection in petrochemical
processes. Journal of Process Control, 74, 110–119.

Ould-Bouamama, B., Biswas, G., Loureiro, R., and
Merzouki, R. (2014). Graphical methods for diagnosis of
dynamic systems: Review. Annual Reviews in Control,
38(2), 199–219.

Panahi, M., Rafiee, A., Skogestad, S., and Hillestad, M.
(2011). A natural gas to liquids process model for
optimal operation. Industrial & Engineering Chemistry
Research, 51(1), 425–433.

Rafiee, A. and Hillestad, M. (2010). Optimal design
and operation of a gas-to-liquid process. Chemical
Engineering Transactions, 21, 1393–1398.

Shah, M.D. (2011). Fault detection and diagnosis
in nuclear power plant—a brief introduction. In
2011 Nirma University International Conference on
Engineering, 1–5. IEEE.

Sorsa, T., Koivo, H.N., and Koivisto, H. (1991). Neural
networks in process fault diagnosis. IEEE Transactions
on systems, man, and cybernetics, 21(4), 815–825.

Szargut, J. (2007). Egzergia. poradnik obliczania i
stosowania. Widawnictwo Politechniki Shlaskej.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and
Kavuri, S.N. (2003). A review of process fault
detection and diagnosis: Part I: Quantitative model-
based methods. Computers & chemical engineering,
27(3), 293–311.

Watanabe, K. and Hirota, S. (1991). Incipient
diagnosis of multiple faults in chemical processes via
hierarchical artificial neural network. In Proceedings
IECON’91: 1991 International Conference on Industrial
Electronics, Control and Instrumentation, 1500–1505.
IEEE.

Wilson, D.R. and Martinez, T.R. (1997). Improved
heterogeneous distance functions. Journal of Artificial
Intelligence Research, 6, 1–34.

Xie, L., Lin, X., and Zeng, J. (2013). Shrinking principal
component analysis for enhanced process monitoring
and fault isolation. Industrial & Engineering Chemistry
Research, 52(49), 17475–17486.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13871


