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Abstract: The invention of quick transportation modes that allow trans-meridian travel has caused circadian 

misalignment to be a common problem amongst people today. This leads to lower cognitive alertness in 

the short term and increases the risks of other maladies in the long term. Light, when applied at correct 

levels and times, can shift and re-entrain the circadian clock to the local time zone, and minimize the 

negative impact of any circadian misalignment. In this paper, we developed a new method (algorithm) to 

calculate common optimal light schedules of light exposure and avoidance, to quickly re-entrain the 

circadian systems of a group of individuals who have different internal circadian parameters. We used an 

experimentally validated mathematical model to define a target circadian phase, from which, our 

optimization algorithm iteratively adjusts the switching times of a bang-bang light input (restricted to two 

light levels) to minimize the difference between the current phase of all individuals and the target phase, 

within a set time period. The proposed algorithm generated light schedules that successfully minimizes the 

re-entrainment time of all the individuals with phase shifts up to 12 hours of delay or advancement.         

Keywords: Optimal Control, Bang-bang control, Human Circadian System, Circadian Re-entrainment. 



1. INTRODUCTION 

The industrial revolution and subsequent rapid development 

that followed has drastically changed the way humans live. 

Particularly, with the invention of artificial lighting, more 

people are active at night. Travel is also more widespread, with 

people crossing continents and experiencing different time 

zones within a short timespan of a day. These lifestyle changes 

subject them to shifts in daily light exposure, in turn causing 

circadian mistiming and disruptions in the sleep schedule 

(Nakagawa et al., 1992; Orth et al., 1979). Chronic circadian 

misalignments have been linked to many health problems 

(Sephton and Spiegel, 2003; Stevens, 2005), and therefore it is 

important for the circadian clock to be properly re-entrained to 

the shifted schedule at the local time zone, as quickly as 

possible with minimal time between the entrained states. 

Light is the strongest zeitgeber of the human circadian system 

(Czeisler et al., 1995). Light exposure has been known to shift 

the phase of the circadian clock (Jewett et al., 1991); these can 

either be phase advances or delays, depending on the timing of 

the light exposure (Hébert et al., 2002). Furthermore, the 

timing and duration of the light can affect the sensitivity of the 

circadian clock, making it more malleable to further shifts. 

There exists a large body of work, with suggestions on when 

and how to administer the light to achieve quick re-

entrainment of the circadian clock using intermittent light 

(Burgess et al., 2002; Gronfier et al., 2004), avoiding morning 

light (Daan and Lewy, 1984), and bright light exposure at the 

morning with restricted light exposure at night (Rosenthal et 

al., 1990). These techniques and experimental results have 

been shown to significantly quicken or slow the re-

entrainment. However, owing to the fact that a huge number 

of possible variations of timing and intensity of the light may 

exist, it is impractical to find the best light schedule that re-

entrains the circadian clock in the shortest time via trial and 

error. This problem is further complicated if individuals with 

biological differences are considered, and hence it becomes 

even more challenging to find an optimal light schedule for a 

group of individuals that re-entrains their circadian clocks as 

quickly as possible through experimental means alone. 

As such, mathematical models that describe of the effects of 

light on the human circadian system are very useful. The 

literature for such models is rich and well-established, ranging 

from complex biochemical models to much simpler abstract 

models. Most biochemical models do not yet fit well to human 

Phase Response Curve (PRC) data and hence are far less 

widely used. On the other hand, abstract models (Forger et al., 

1999; Jewett et al., 1999) have been widely used, and their 

practicality and accuracy have been widely demonstrated 

(Czeisler et al., 1999; Dean et al., 2007; Van Dongen, 2004). 

These models consist of two components (or “processes”), 

namely “Process L” which simulates phototransduction in the 

retina (Kronauer et al., 1999) and “Process P” which has two 

variables representing the amplitude and phase of the circadian 

pacemaker (Winfree, 2001). Previous studies have used these 
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models to derive optimal light schedules, for example Dean et 

al (2009) who proposed a method that produces counter-

measures to correct circadian misalignments based on 

endogenous circadian period length, desired sleep–wake 

schedule, length of intervention, background light level, and 

countermeasure strength; however, the counter-measure 

(light) is of fixed duration and intensity.  More recently, Serkh 

and Forger (2014) proposed a method to derive light schedules 

to rapidly re-entrain the circadian clock in the shortest time, 

while allowing the amplitude of the circadian pacemaker to be 

dynamic. However, all afore-mentioned works derived the 

optimal light schedules only for a single individual. In practice, 

people rarely live alone, and typical working environments 

house many individuals, and hence, in most cases, the afore-

mentioned works are not practical.  

In this paper, we present an optimization algorithm to derive 

locally optimal light schedules that minimize the difference 

between the current and target phase, for any number of 

individuals with various circadian parameters, within a certain 

time period. We define a cost function, describing the 

difference between the current phase (for the individuals) and 

a target phase. A “bang-bang” light schedule is used, where the 

illumination levels are either darkness or maximum brightness. 

The switching times are initialized randomly, and the 

algorithm modifies them iteratively to achieve a local minima 

for the cost function. Simulation results show that our 

algorithm entrains the circadian phase of the group at a speed 

and accuracy that is comparable to the methods in (Serkh and 

Forger, 2014).  However, our algorithm is being applicable to 

a group of people, as opposed to a single individual. 

 

2. METHODS 

There are two main contributions to our developed method for 

computing the optimal light schedules. Firstly, we formulated 

the re-entrainment problem in terms of optimal control theory, 

for a group of individuals, using the same input light schedule. 

Secondly, we propose a discrete optimization method where 

each time interval (which corresponds to when the light input 

is shifted) is progressively optimized.   

The model of the human circadian system used in this paper is 

a 3rd order limit cycle oscillator model (Forger et al., 1999) that 

can be described in the form: 

                               �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)    (1) 

 
where 𝒙 ∈ 𝑅3, 𝒙 = [𝑥1, 𝑥𝑐 , 𝑛]𝑇 are the states and 𝑢(𝑡) is the 

external light input.  State 𝑥 models the component of the 

circadian pacemaker that reflects the endogenous core body 

temperature cycle, whilst 𝑥𝑐   and 𝑛 are simply complementary 

variables. The state equations can be described as follows:  

                                �̇�1 =  
𝜋

12
(𝑥𝑐 + 𝐵)         (2) 

�̇�𝒄 =  −
𝝅

𝟏𝟐
(µ (𝒙𝒄 −

𝟒

𝟑
𝒙𝒄

𝟑) − 𝒙 (
𝟐𝟒

𝟎.𝟗𝟗𝟔𝟔𝟗𝝉𝒙
)

𝟐

+ 𝒌𝑩)         (3) 

 

                          �̇� =  𝟔𝟎(𝜶(𝑰)(𝟏 − 𝒏) − 𝜷𝒏)         (4) 

 

where, 𝐼 is the light input, 𝐵 is the strength of the light 

drive, µ is a stiffness constant and 𝑘, 𝛼 and 𝛽 are constants. 

For the problem considered in this paper, we define the cost 

function (to be minimized) as: 

          𝑱(𝒙(𝒕), 𝒕) = ∑ [(𝒙𝒕𝒊 − 𝒙𝒕𝒇𝒊
)𝟐 +  (𝒙𝒄𝒕𝒊

− 𝒙𝒄𝒕𝒇𝒊
)𝟐]𝑵

𝒊=𝟏   (5) 

where N is the number of individuals, and 𝑡𝑓 is the final time, 

which is user-defined. The cost function is formulated such 

that any number of individuals can be easily added. In short, 

we define a target state to be achieved at time 𝑡𝑓, namely 𝑥𝑡𝑓𝑖
 

and 𝑥𝑐𝑡𝑓𝑖
, and the optimization algorithm varies the switching 

times of the input to drive the system states 𝑥𝑡𝑖 , 𝑥𝑐𝑡𝑖
 to the 

target states 𝑥𝑡𝑓𝑖
 , 𝑥𝑐 𝑡𝑓𝑖

 at final time 𝑡𝑓; however this does not 

guarantee that at time 𝑡𝑓 the system states will reach the target 

states, but will be as close as possible.  

We employ a numerical method to solve this optimization 

problem, which is a modification of the Switch Time 

Optimization method (Meier and Ryson, 1990) where the 

control input is “bang-bang”, meaning that it is binary and 

switches between a lower limit 𝑢0 and upper limit 𝑢1. 

The control 𝑢(𝑡) determines the trajectory of the states  𝑥1, 𝑥𝑐  

and thus determines the cost 𝐽 .  Therefore, to find the optimal 

increment 𝛿𝑢, we determine how small perturbations in the 

states 𝛿𝑥(𝑡) will affect 𝐽 , which we call the “co-state” 𝜆(𝑡). 

                               𝝀𝑻(𝒕) =  
𝜹𝑱

𝜹𝒙(𝒕)
           (6) 

Since the cost 𝐽 is defined at final time 𝑡𝑓 , it follows that: 

                       𝝀𝑻(𝒕𝒇) =  
𝜹𝑱

𝜹𝒙(𝒕𝒇)
=  [

𝝏𝑱

𝝏𝒙
]

𝒕𝒇

           (7) 

However, since we need to know the sensitivity of the change 

in state at all times from[ 0, 𝑡𝑓], we need to scale this co-state 

backwards from 𝑡𝑓. Expanding 𝛿𝑥 using Taylor’s expansion, 

yields the following: 

                            
𝒅𝝀𝑻

𝒅𝒕
=  −𝝀𝑻(𝒕)

𝝏𝒇

𝝏𝒙
(𝒕)          (8) 

Solving 
𝒅𝝀𝑻

𝒅𝒕
=  −𝝀𝑻(𝒕)

𝝏𝒇

𝝏𝒙
(𝒕)          (8) 

backwards from 𝑡𝑓 will give the sensitivity of the cost to a 

change in the states at any time 𝑡. 

Now suppose we perturb the states at only specific times 𝑡𝑛 

where 𝑘 = 1,2,3 … . 𝐾 in [0, 𝑡𝑓], we can superimpose the effect 

of the perturbations 𝛿𝑥(𝑡𝑘) on the cost J to find the 

perturbation in 𝐽 as follows: 

                  𝜹𝑱 =  ∑ 𝝀𝑻𝑵
𝒏=𝟏 (𝒕𝒌)𝜹𝒙(𝒕𝒌)        (9) 

 

The trajectories of the state 𝑥(𝑡) can be changed by varying 

the control 𝑢(𝑡). Suppose on the time interval [𝑡𝑘−1, 𝑡𝑘], we 
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change 𝑢(𝑡) by 𝛿𝑢(𝑡𝑘−1), then the resulting perturbation in the 

states 𝑥(𝑡𝑛) is given by: 

              𝜹𝒙(𝒕𝒌) =  
𝝏𝒇

𝝏𝒖
(𝒕𝒌−𝟏)𝜹𝒖(𝒕𝒌−𝟏)𝒉𝑲 + 𝑶(𝒉𝑲

𝟐)       (10) 

Therefore: 

    𝜹𝑱 =  ∑ 𝝀𝑻𝑲
𝒌=𝟏 (𝒕𝒌)

𝝏𝒇

𝝏𝒖
(𝒕𝒌−𝟏)𝜹𝒖(𝒕𝒌−𝟏)𝒉𝑲 + 𝑶(𝒉𝑲

𝟐)     (11) 

and taking the limits as 𝐾 →  ∞ results in: 

         𝜹𝑱 =  ∫ 𝝀𝑻𝒕𝒇

𝟎
(𝒕)

𝝏𝒇

𝝏𝒖
(𝒕)𝜹𝒖(𝒕)𝒅𝒕       (12) 

The term 𝜆𝑇(𝑡) 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) is called the Hamiltonian in 

optimal control theory. Thus (13) can be also written as: 

         𝜹𝑱 =  ∫
𝝏𝑯

𝝏𝒖
(𝒕)𝜹𝒖(𝒕)𝒅𝒕

𝒕𝒇

𝟎
        (13) 

Thus, Pontryagin’s Minimum Principle can be used to find the 

optimal control. We see from equation𝜹𝑱= ∫
𝝏𝑯

𝝏𝒖
(𝒕)𝜹𝒖(𝒕)𝒅𝒕

𝒕𝒇

𝟎

        (13) that the cost 𝐽 is guaranteed to 

decrease if 𝑢(𝑡)  is perturbed by: 

       𝜹𝒖(𝒕) =  −�̀�𝒖 𝝀𝑻(𝒕)
𝝏𝒇

𝝏𝒖
(𝒕)           (14) 

where �̀�𝑢 is a small value. The largest step size of the input 

𝑢 possible that can be taken without breaking the linearity 

assumption is taken as per the proposal of (Serkh and Forger, 

2014). This assumes that the fastest time scale of the human 

circadian system is known. At each iteration, �̀�𝑢 is chosen such 

that the maximum shift in the switching time matches 6 

minutes. This value was chosen because the fastest timescale 

of the Kronauer model of the circadian system used here, is in 

the order of 10 minutes (Kronauer et al., 1999); this ensures 

rapid convergence. If the small perturbations are repeatedly 

applied, a minimum point would eventually be reached. 

The control 𝑢(𝑡) is limited to the values 𝑢0 and 𝑢1; this follows 

from Pontryagin’s Minimum Principle which states that the 

optimum control at each time 𝑡 must minimize 𝐻. This means 

that in this problem, an increment in 𝛿𝑢(.) can therefore be 

treated as changing the switching times 𝑑𝑡𝑗, 𝑗 = 1,2 … . . 𝑞 

where 𝑞 is the maximum switching number. Thus the next step 

is to link 𝛿𝑢𝑗 to 𝑑𝑡𝑗; this is because a change in switching time 

is effectively a change in the bang-bang input. The conversion 

can be obtained by re-expressing the integral of 𝛿𝑢(. ) as a sum 

∫ 𝜹𝒖(𝒕)𝒅𝒕 =  ∑ ∆𝒖𝒋𝒅𝒕𝒋
𝒒
𝒋=𝟏

𝒕𝒇

𝟎
       (15) 

where ∆𝑢𝑗 = 𝑢(𝑡𝑗 −) − 𝑢(𝑡𝑗+). Then we utilize the definition 

of 𝛿𝐽          𝜹𝑱=  ∫ 𝝀𝑻𝒕𝒇

𝟎
(𝒕)

𝝏𝒇

𝝏𝒖
(𝒕)𝜹𝒖(𝒕)𝒅𝒕       (12), which 

includes 𝛿𝑢 and 𝑑𝑡 to form a conversion between them. Thus         

𝜹𝑱= ∫ 𝝀𝑻𝒕𝒇

𝟎
(𝒕)

𝝏𝒇

𝝏𝒖
(𝒕)𝜹𝒖(𝒕)𝒅𝒕       (12) becomes:  

𝒅𝑱 =  ∑ (𝝀𝑻 𝝏𝒇

𝝏𝒖
)

𝒕𝒋

𝒒
𝒋=𝟏 ∆𝒖𝒋𝒅𝒕𝒋       (16) 

and: 

𝒅𝒕𝒋 =  −
�̀�𝒖

∆𝒖𝒋
(𝝀𝑻 𝝏𝒇

𝝏𝒖
)

𝒕𝒋

        (17) 

where �̀�𝑢 is calculated as:  

�̀�𝒖 = 𝒕𝒔/𝒎𝒂𝒙𝒋 |
𝟏

∆𝒖𝒋
(𝝀𝑻 𝝏𝒇

𝝏𝒖
)

𝒕𝒋

|      (18) 

where, 𝑡𝑠 is the fastest timescale of the problem. 

 

Finally, the new switching times are: 

𝒕𝒋 = 𝒕𝒋 +  𝒅𝒕𝒋 for 𝒋 = 𝟏, 𝟐 … . 𝒒              (19) 

 

2.1  Algorithmic steps 

The optimization procedure described in this section can be 

summarized into the following algorithm. 

 

Step 1: Guess nominal switching times 𝑡1, 𝑡2 … . . 𝑡𝑞 on the 

range [𝑡0, 𝑡𝑓].  Choose  𝑡𝑓 and the binary values of the control 

𝑢(𝑡), as 𝑢0 and 𝑢1  

Step 2: Integrate the system equations (�̇�1 =  
𝜋

12
(𝑥𝑐 + 𝐵)

         (2) – (�̇� =  𝟔𝟎(𝜶(𝑰)(𝟏 − 𝒏) − 𝜷𝒏)
         (4) forward from 𝑥0 to determine the state 

trajectories 𝑥(𝑡) using these switching times. 

Step 3: Integrate the co-state equation 
𝒅𝝀𝑻

𝒅𝒕
=  −𝝀𝑻(𝒕)

𝝏𝒇

𝝏𝒙
(𝒕)

          (8) backwards from 𝑡𝑓 to determine 𝜆𝑇  

at the switching times. 

Step 4: Determine the optimal perturbations for decreasing the 

cost 𝐽, where �̀�𝑢 is a small perturbation determined according 

to the following equation. 

�̀�𝑢 = 𝑡𝑠/𝑚𝑎𝑥𝑗 |
1

∆𝑢𝑗
(𝜆𝑇 𝜕𝑓

𝜕𝑢
)

𝑡𝑗

|, . 

𝑑𝑡𝑗 =  −
�̀�𝑢

∆𝑢𝑗

(𝜆𝑇
𝜕𝑓

𝜕𝑢
)

𝑡𝑗

 

Step 5: Update the solution with 

𝑡𝑗 = 𝑡𝑗 +  𝑑𝑡𝑗 for 𝑗 = 1,2 … . 𝑞 

Step 6:  If the cost 𝐽 increases, decrease the active number of 

switching times from 𝑡𝑞 𝑡𝑜 𝑡𝑞−1 where the switching time with 

the maximum 𝑑𝑡  is left constant and considered to be 

optimized. This allows the next switching time with the 

greatest influence on 𝐽 to be shifted with 𝑑𝑡 equal to that of 𝑡𝑠. 

Step 7: Return to step 1 with the updated switching times and 

continue the progressive optimization of each switching time 

until 𝑞 = 0. 

The main contribution of this paper is in Step 6, which is the 

critical modification of the method of (Serkh and Forger, 

2014), which ensures that the step size of the maximum 𝑑𝑡 

equals 6 minutes. Due to the way we have formulated the cost 

𝒙𝒕,𝒕=𝒊=𝟏𝑵[(𝒙𝒕𝒊−𝒙𝒕𝒇𝒊)𝟐+ (𝒙𝒄𝒕𝒊−𝒙𝒄𝒕𝒇𝒊)𝟐]  (5), the 

switching times furthest from the final time (𝑡𝑓) have the 

greatest influence on 𝐽; this ensures that the contribution to the 

reduction in 𝐽 from the switching time closest to 𝑡0 is the 

highest. Therefore, while iterating, at some point, the step size 

from the switching time closest to 𝑡0 will overshoot, causing 𝐽 

to increase, at which point we assume this switching time to be 

stable and continue to the next switching time with the highest 
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step size. This progressive optimization ensures that an 

optimal solution is quickly reached.  

 

3. SIMULATION RESULTS 

We tested our algorithm on a numerical-based simulation of 3 

individuals using the model in (Forger et al., 1999). The 

intrinsic circadian period (τ) of each individual were slightly 

different, at values of 24.2, 24.5, and 23.8 respectively. This 

represents the range of variation in the human circadian 

periodicity. All individuals were entrained to a “home” light 

schedule, after which they were subject to a 12-hour shift in 

time-zone from the “home”. The simulation was carried out 

for 30 days after the time-zone shift, during which the 

individuals were subject to optimized light schedules for the 

first four days. As such, our optimization algorithm was set to 

have a set final time (𝑡𝑓) of 96 hours. The initial switching 

time was set such that there are two equally spaced (12 hours) 

switching times every 24 hours (q = 8). We then repeated the 

simulation, without introducing the optimal schedule for the 

four days after the time-zone shift, where the individuals were 

only exposed to slam-shift (sudden shift in the light-dark (LD) 

cycle) light conditions; this serves to differentiate the impact 

of our optimal light schedule on the circadian system.  

These results are presented as actograms in Fig. 1 - Fig. 3, where 

each horizontal bar represents a day. The switching times are 

represented by the intersection of the yellow and black bars. 

The black and yellow bars themselves represent the light and 

dark (LD) periods respectively. The minimum core body 

temperature (CBTmin) is represented by the red squares. 

CBTmin is a key circadian marker that reflects the entrainment 

of the individual to a certain time-zone. When properly 

entrained, the CBTmin occurs slightly after the midpoint of the 

dark region of the LD cycle. In addition to the actograms, the 

process of re-entrainment was also plotted in polar form, 

where both the phase and amplitude of the circadian 

pacemaker is shown as in Fig.  4. These are plotted for the same 

individuals as in Fig. 1 - Fig. 3 for the same light schedules from 

A-G. The results show that compared to a slam-shift (in which 

the individuals are all exposed to a shifted LD cycle), our 

optimized light schedule (in which the individuals are exposed 

to optimal schedules for four days) performed better in terms 

of the time it takes for the circadian clock to re-entrain. The 

optimal schedule is optimized for the three individuals, and 

they achieved re-entrainment much more quickly (on an 

average of 10 days) than the slam shift (which took an average 

of 23 days). This is also observed in Fig.  4 where CBTmin 

moved much faster though the polar phase-amplitude space. 

Furthermore, in the case of all individuals, it can be seen that 

the optimal schedule predicted takes a straighter path from the 

state of the circadian clock before the shift and the state after 

the shift when the schedules were optimized. However when 

it is just a slam-shift schedule, the shift took place with 

minimal shift in the amplitude of the circadian pacemaker for 

all the individuals. The inter-individual differences in the 

“straightness” through the polar plot is most likely due to the 

difference in the intrinsic circadian pacemaker of the three 

individuals. We note that the in the example above, the optimal 

schedules were calculated for 4 days. We did not observe any 

improvement in re-entrainment time after extending the period 

of optimal schedules beyond four days for three individuals as 

shown in Table I. However, the optimized schedule we 

achieved was for an arbitrary input. This is a local minima that 

was achieved and it may be possible to reach a better local 

minima with different initial conditions. This particular 

number of switching time is chosen because it follows the 

natural LD cycle, but it is not necessary to do so. In general, 

higher switching times produce better results. Although, this is 

an aspect of this work that could be further explored. 

Table 1.  Trend of variation of the average time for re-entrainment of the 

circadian clock of three individuals with increase in the period of 
optimization 

Period of optimal schedule  

(days) 

Average time for re-

entrainment of three 

individuals (days) 

0 23 

1 20 

2 17 

3 15 

4 10 

5 10 

6 10 
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Fig. 1. Comparison of light schedules for a 12 hour shift of the light dark cycle 

for one individual. The light yellow bars represent periods of moderate light 

(100 lux) and the dark bars represent darkness (0 lux). The predicted circadian 

phase is indicated by the red squares, which are simulated core body 
temperature minima (CBTmin). It is plotted against a pattern of bright light 

and darkness. A illustrates the schedules of the individual subjected to slam 

shift. B illustrates the same individual subjected to the optimal light schedule 
for four days after the time-zone shift, in which the individual was subjected 

to periods of bright light of 1000 lux and periods of darkness. The timing of 

the entrained core body temperature minimum in the new time zone is 
represented by the dotted line. 

 

Fig. 2. Individual two. 

 

4.  CONCLUSION 

This paper has developed a method (algorithm) for calculating 

optimal light schedules of light exposure and restriction to 

quickly re-entrain the circadian system of multiple individuals 

as quickly as possible. It is a modified switch time 

optimization method in which the number of active switching 

times are reduced as the optimization progresses. This allows 

for one switching time to have the largest step size possible for 

the human circadian system at one time. The modification 

takes advantage of the cost function that was defined for this 

problem wherein the switching time furthest from the final 

time has the largest impact on the cost. The number of 

switching times are dynamic as the iterations progress to 

improve the speed and the optimality of the result. Our results 

demonstrate the efficacy of the developed method. While the 

mathematical model of the circadian we used is experimentally 

validated, it is simple in its representation. Future works can 

benefit from using more advanced models of the circadian 

system where more individual parameters can be adjusted. 

Moreover, the results from this optimization scheme produces 

a light schedule that only cycles between two levels.  

 
Fig. 3. Individual three. 

 
Thus future work may be needed to make the light schedules 

more dynamic. Practical validation of this method is also an 

avenue of work, where the applicability of a bang-bang 

system in a real world environment can be explored by 

applying the predicted light schedules on a tuneable 

luminaire which can then be exposed to individuals, followed 

by investigations on the state of their circadian pacemakers. 
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