
Output Tracking Control Based on
Output Feedback with Adaptive PFC

for Discrete-Time Systems

Seiya Fujii ∗ Ikuro Mizumoto ∗∗ Toru Yamamoto ∗∗∗

∗ Graduate School of Engineering, Hiroshima University,
Hiroshima, Japan (e-mail: fujii-seiya@hiroshima-u.ac.jp).

∗∗ Faculty of Advanced Science and Technology, Kumamoto University,
Kumamoto, Japan (e-mail: ikuro@gpo.kumamoto-u.ac.jp)
∗∗∗ Graduate School of Engineering, Hiroshima University,

Hiroshima, Japan (e-mail: yama@hiroshima-u.ac.jp)

Abstract: This paper provides an output tracking control system design strategy based on an
output feedback control with an adaptive parallel feedforward compensator (PFC) for discrete-
time systems. In the proposed method, a PFC is introduced for non-almost strictly positive real
(ASPR) systems in order to guarantee the stability of the designed adaptive control system. The
PFC parameters are adaptively adjusted to remain the ASPR-ness of the resulting augmented
system with the PFC. Moreover, in order to attain output tracking, a two-degree-of-freedom
output feedback control system with an adaptive neural network (NN) feedforward control is
designed. The stability of the resulting adaptive control system is analyzed theoretically and
the effectiveness of the proposed method is confirmed through numerical simulations.

Keywords: Output tracking, Adaptive control, Output feedback control, ASPR, Parallel
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1. INTRODUCTION

Adaptive controls can keep the high control performance
by automatically adjusting the controller parameters ac-
cording to unknown and variable parameters of the con-
trolled system (Landau (1979); Goodwin and Sin (1984);
Narendra and Annaswamy (1989)). In particular, adaptive
output feedback controls based on almost strictly positive
realness (ASPR-ness) of the system including simple adap-
tive control (SAC) have a simple structure compared with
the conventional adaptive controls (Mizumoto and Iwai
(1996); Kaufman et al. (1997)). These adaptive control
methods can design the controller without the knowledge
of the order of the controlled system and reduce the num-
ber of adjusting parameters. Moreover, these methods are
applied to process and diesel combustion systems (Mizu-
moto et al. (2015); Fujii et al. (2019)).

The system is called ASPR if there exists a static output
feedback such that the resulting closed-loop system is
strictly positive real (SPR)(Kaufman et al. (1997)). The
conditions for the discrete-time systems to be ASPR have
been provided as follows: (1) the system is minimum-
phase, (2) the system has a relative degree of 0, (3) the
high-frequency gain of the system is positive. Unfortu-
nately, since the most practical systems do not satisfy
these conditions, these conditions for the system to be
ASPR impose a severe restriction to practical applications
of the ASPR based adaptive controls. One simple method
to solve the issue of the conditions imposed on the con-
trolled system is the introduction of a parallel feedforward
compensator (PFC) (Bar-Kana (1987); Iwai and Mizu-

moto (1994); Fradkov (1996)). In this method, the PFC
is introduced in parallel with the non-ASPR controlled
system so as to render the resulting augmented system
ASPR. Most of the existing PFC design methods provide
the static PFC. Therefore, in the case where the property
of the controlled system changes during operation, it is
difficult to maintain the ASPR-ness of the augmented
system with the static PFC. Moreover, in the conventional
PFC design methods, some kind or another information of
the controlled system such as a nominal model are required
to design the PFC.

With this in mind, adaptive-type PFC design schemes
have been proposed for continuous-time and discrete-time
systems (Takagi and Mizumoto (2015); Fujii and Mizu-
moto (2018)). In these methods, the PFC parameters are
adaptively adjusted by using only input/output data of
the controlled system. Thus, these PFC design methods do
not require the detail information of the controlled system
and can maintain the ASPR-ness of the augmented system
even when the property of the controlled system changes.
However, in the ASPR based output feedback control sys-
tem using the PFC, the tracking performance degenerates
since the control system is designed for the augmented
system with the PFC instead of the original controlled
system. The result shown in Takagi and Mizumoto (2015);
Fujii and Mizumoto (2018) are only for the stabilization
problem of the resulting control system and the influence
of the PFC output causes the degradation of the control
performance. Therefore, for continuous-time systems, the
output tracking control system with the adaptive PFC
has been investigated and the tracking performance is
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improved (Mizumoto et al. (2018)). However, for discrete-
time systems, the tracking performance of the control
system with the adaptive PFC has not been studied.

In this paper, an output tracking control system design
scheme based on the output feedback with adaptively
adjusted PFC is proposed for discrete-time systems. In
the adaptive PFC design method in Fujii and Mizumoto
(2018), the number of the adjusted parameters is redun-
dant, and the structure of the adaptive PFC is compli-
cated. In this paper, the number of the PFC parameters to
be estimated is reduced and the adaptive PFC which has a
simple structure is proposed. Moreover, in order to attain
the output tracking of the original controlled system, a
feedforward control system is added, and a two-degree-
of-freedom output feedback control system is designed.
In the feedforward control system, an adaptive neural
network (NN) control input is designed in this paper (Ge
et al. (2002); Mizumoto et al. (2010)). The stability of
the resulting adaptive control system is analyzed and the
effectiveness of the proposed method is verified through
numerical simulations.

2. PROBLEM STATEMENT

Let us consider a n-th order SISO discrete-time linear
system with the state-space representation:

x(k + 1) = Ax(k) + bu(k)
y(k) = cTx(k)

(1)

where x(k) ∈ Rn is the state vector, y(k), u(k) ∈ R are the
output and the input of the system. The transfer function
of (1) is denoted by G(z).

A PFC: H(z) is introduced in parallel with the system
G(z) as seen in Fig. 1 and the PFC denoted by H(z,ρ, d)
is parameterized by ρ and d. Suppose that the PFC pa-
rameterized by ρ and d satisfies the following assumption.

Assumption 1. H(z,ρ, d) = d with ρ = 0

The augmented system denoted by Ga(z) can be given by

Ga(z,ρ, d) = G(z) +H(z,ρ, d). (2)

If the augmented system with the PFC is ASPR, one can
design stable output feedback control systems based on
the ASPR-ness of the considered system. However, in the
case where the controlled system is unknown and/or is
changing during operation, designing the static PFC which
maintains the ASPR-ness of the resulting augmented sys-
tem is difficult. The first objective in this paper is to
design an adaptive and simpler PFC so as to match the
designed augmented system to the given desired ASPR
model G∗

a(z).

To design an adaptive NN feedforward control system, we
impose the following assumptions.

Assumption 2. A reference signal yr(k) which the output
y(k) of the controlled system is required to track is
generated by the following neural stable exosystem:

ω(k + 1) = p(ω(k))
yr(k) = q(ω(k))

(3)

G(z)

H(z,�,d)

y

yf

yau
++

Ga (z,�,d)
Fig. 1. Augmented system with PFC

where ω(k)∈Rnω is the state vector and p(0)=0, q(0)=0.

Assumption 3. There exist an ideal state vector x∗(k) and
an ideal input v∗(k) which attain perfect tracking such
that

x∗(k + 1) = Ax∗(k) + bv∗(k)
y(k) = cTx∗(k) ≡ yr(k)

(4)

and they are given by the functions of ω(k) such as
x∗(k) = π(ω(k)) and v∗(k) = c(ω(k)).

The second objective in this paper is to design a two-
degree-of-freedom output feedback control system with the
adaptive NN feedforward control.

3. CONTROL SYSTEM DESIGN

3.1 Ideal PFC

Define the ideal output of the desired ASPR model: G∗
a(z)

with any input u(k) by

y∗a(k) = G∗
a(z)[u(k)] (5)

where the notation of y(k) = W (z)[u(k)] denotes the
output of the system W (z) with the input u(k).

Then the ideal output of the PFC can be obtained by

y∗f (k) = y∗a(k)− y(k) (6)

using the available output of the controlled system.

Suppose that the nh-th order ideal PFC model is expressed
by the following transfer function:

H∗(z) =
d∗znh + b∗nh

znh−1 + · · ·+ b∗2z + b∗1
znh + a∗nh

znh−1 + · · ·+ a∗2z + a∗1
. (7)

Moreover, a parametric representation of the ideal PFC
can be represented by

y∗f (k) =H∗(z)[u(k)]

= ρ∗Tz(k) + d∗u(k) (8)

where

ρ∗ =
[
−a∗nh

· · · −a∗1 b∗nh
· · · b∗1

]T
(9)

z(k) =
[
y∗f (k − 1) · · · y∗f (k − nh)

u(k − 1) · · · u(k − nh) ]
T
. (10)

In the method in Fujii and Mizumoto (2018), ρ∗ and d∗

are adaptively estimated. However, the parameter d∗ of
the direct input feedthrough term is the same as that
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of the desired ASPR model. Therefore, since the desired
ASPR model is given by the controller designer, d∗ is
known. In the following, the PFC parameter ρ∗ will be
adaptively estimated without adjusting d∗ to design the
simpler adaptive PFC.

3.2 Approximation of Ideal Input by RBF NN

Under Assumption 2 and 3, the ideal feedforward control
input can be approximated based on the Radial Basis
Function (RBF) neural network (NN) by

vnn(k) = WTS(ω(k)) (11)

where W = [w1, · · · , wl]
T ∈ Rl is the weight vector, l is

the NN node number, and S(ω) = [s1(ω), · · · , sl(ω)]T is
the basis function vector. The commonly used RBFs are
the Gaussian functions as follows:

si(ω) = exp

[
− (ω − µi)

T (ω − µi)

η2i

]
(12)

i = 1, 2, · · · , l

where µi = [µi1, · · · , µinω ]
T is the center of the receptive

field and ηi is the width of the Gaussian function.

There exists an ideal weight vector W ∗ such that

W ∗ ≜ arg min
W∈Rl

{ sup
ω∈Ωω

|v∗ −WTS(ω)|} (13)

for a sufficiently large NN node number l and a compact
set Ωω ⊂ Rnω (Ge et al. (2002)).

Then, the ideal input v∗(k) can be approximated by

v∗(k) = W ∗TS(ω) + ε(ω), |ε(ω)| ≤ ε∗ (14)

where ε(ω) is the NN approximation error.

Here, we impose the following assumption.

Assumption 4. For a given NN node number l, there exists
an ideal weight vectorW ∗ that satisfies (13) for all ω ∈ Ωω.

In the following, we will adaptively adjust the ideal weight
vector W ∗.

3.3 Ideal Control System

Define a PFC output signal with a parameter ρ by

yf (k,ρ, d
∗) =H(z,ρ, d∗)[u(k)]

= ρTz(k) + d∗u(k). (15)

It follows from (8) that yf (k,ρ
∗, d∗) = y∗f (k) with ρ = ρ∗.

Moreover, define a PFC output with a parameter ρ and a
feedforward input v(k) by

yfv(k,ρ, d
∗) =H(z,ρ, d∗)[v(k)]

= ρTzv(k) + d∗v(k) (16)

zv(k) = [ yfv(k − 1) · · · yfv(k − nh)

v(k − 1) · · · v(k − nh) ]
T
. (17)

It follows that yfv(k,ρ
∗, d∗) = y∗fv(k).

Then, the ideal PFC output with a feedback input ue(k) =
u(k)− v(k) can be expressed by

ȳ∗f (k) =H(z,ρ∗, d∗)[ue(k)]

= yf (k,ρ
∗, d∗)− yfv(k,ρ

∗, d∗)

= y∗f (k)− y∗fv(k). (18)

In the case where the ideal PFC parameter ρ∗ is known,
the ideal two-degree-of-freedom controller which attain
output tracking can be designed as follows:

u∗(k) = u∗
e(k) + v∗(k) (19)

u∗
e(k) =−θ∗ē∗a(k)

where ē∗a(k) = ȳ∗a(k)−yr(k), ȳ
∗
a(k) = y(k)+ȳ∗f (k), and θ∗ is

the ideal feedback gain such that the resulting closed-loop
system is SPR.

However, since the controlled system is unknown, the
ideal PFC parameter ρ∗ and the ideal feedforward control
input v∗(k) are unknown. In the following, we propose an
adaptive controller in which ρ∗ and v∗(k) are adaptively
adjusted.

3.4 Adaptive Control System

Define the following signals based on the PFC outputs
defined in (8) and (16) by using a ASPR model G∗

a(z):

yf (k) =G∗
a(z)[ρ(k)

T z̄(k)] + d∗u(k) (20)

z̄(k) =G∗
a(z)

−1[z(k)]

and

yfv(k) =G∗
a(z)[ρ(k)

T z̄v(k)] + d∗v(k) (21)

z̄v(k) =G∗
a(z)

−1[zv(k)]

where ρ(k) is an adaptively adjusted parameter vector of
ρ∗.

Then, design the following output signal as the adaptive
PFC output:

ȳf (k) = yf (k)− yfv(k). (22)

Using these signals, the adaptive control system with the
adaptive PFC and the adaptive NN feedforward control is
designed as follows (See Fig. 2):

u(k) = ue(k) + v(k) (23)

ue(k) =−θēa(k)− ρz∥z̄v(k)∥2ēa(k)− ρeēa(k) (24)

ēa(k) = ȳa(k)− yr(k), ȳa(k) = y(k) + ȳf (k)

v(k) =


vmin (Ŵ (k)TS(ω(k)) < vmin)

Ŵ (k)TS(ω(k))

(vmin≤Ŵ (k)TS(ω(k))≤vmax)

vmax (vmax < Ŵ (k)TS(ω(k))

(25)

where θ is a large feedback gain such that the resulting
closed-loop system is SPR and Ŵ (k) is the adaptively
adjusted NN weight vector of W ∗ in (14). The second
and third terms in (24) are additional feedback terms of
maintaining the stability of the obtained adaptive control
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Fig. 2. Block diagram of adaptive control system

system. vmax and vmin are maximum and minimun values
of the feedforward control input saturation constraint.
ρ(k) and Ŵ (k) are adaptively adjusted by the following
parameter adjusting laws:

ρ(k) = σ̄ρρ(k − 1)− σ̄ρΓρ (z̄(k)− z̄v(k)) ēa(k) (26)

σ̄ρ =
1

1 + σρ
, σρ > 0, Γρ = ΓT

ρ > 0

Ŵ (k) = σ̄W Ŵ (k − 1)− σ̄WΓWS(ω(k))ēa(k) (27)

σ̄W =
1

1 + σW
, σW > 0, ΓW = ΓT

W > 0.

As for the feedback control input, the practicable equiva-
lent input can be obtained without the causality problem
as follows:

ue(k) =− θ̄(k)

1 + θ̄(k)d∗
(
y(k) +G∗

a(z)[ρ(k)
T z̄(k)]

−G∗
a(z)[ρ(k)

T z̄v(k)]− yr(k)
)

(28)

where θ̄(k) = θ + ρz∥z̄v(k)∥2 + ρe.

It should be noted that, the augmented error signal ēa(k)
can be equivalenty obtained by using the available signals
without the causality problem.

3.5 Analysis of Obtained Control System

Concerning the boundedness of all signals in the proposed
adaptive control system, we have the following theorem.

Theorem Under Assumptions 1 to 4, all signals in the
resulting control system with control inputs given in (23)
to (25) with the parameter adjusting laws given in (26)
and (27) are bounded.

Proof We first derive an error system of the obtained
control system. The adaptive PFC output ȳf (k) can be
represented by

ȳf (k) = ȳf (k)− ȳ∗f (k) + ȳ∗f (k)

= (yf (k)− yfv(k))−
(
y∗f (k)− y∗fv(k)

)
+ ȳ∗f (k)

=G∗
a(z)[∆ρ(k)T z̄(k)]−G∗

a(z)[ρ(k)
T z̄v(k)]

−d∗v(k) + y∗f (k) (29)

where ∆ρ(k) = ρ(k) − ρ∗. Therefore, the augmented
output ȳa(k) can be obtained by

ȳa(k) = y(k) + ȳf (k)

= y∗a(k)− y∗f (k) + ȳf (k)

=G∗
a(z)[ue(k)] +G∗

a(z)[v(k)− v∗(k)] +G(z)[v∗(k)]

+H∗(z)[v∗(k)] +G∗
a(z)[∆ρ(k)T z̄(k)]

−G∗
a(z)[ρ(k)

T z̄v(k)]− d∗v(k) (30)

where G∗
a(z) = G(z)+H∗(z). Define the new PFC output

as follows:

y∗∗fv(k) =H∗(z)[v∗(k)] = ρ∗Tz∗∗
v (k) + d∗v∗(k). (31)

Then, the augmented output ȳa(k) can be expressed by

ȳa(k) =G∗
a(z)[ue(k)] +G∗

a(z)[v(k)− v∗(k)]

+G(z)[v∗(k)] +G∗
a(z)[∆ρ(k)T z̄(k)]

+ρ∗T (z∗∗
v (k)− zv(k)) + d∗v∗(k)

−G∗
a(z)[∆ρ(k)T z̄v(k)]− d∗v(k). (32)

Taking into account the fact that G(z)[v∗(k)] = yr(k), the
error system is obtained as follows:

ēa(k) = ȳa(k)− yr(k)

=G∗
a(z)[ue(k) + ∆W (k)TS(ω(k)) + ε(ω(k))

+∆ρ(k)T (z̄(k)− z̄v(k)) + ρ∗T (z̄∗∗
v (k)− z̄v(k))

+d∗∆v̄(k)] (33)

where ∆W (k) = Ŵ (k) − W ∗, z̄∗∗
v (k) = G∗

a(z)
−1[z∗∗

v (k)],
∆v̄(k) = G∗−1

a (z)[∆v(k)], ∆v(k) = v∗(k)− v(k).

Since the closed-loop system with the control input given
in (24) for G∗

a(z) is SPR, the error system can be repre-
sented by

ēa(k) =Gs(z)[−ρz∥z̄v(k)∥2ēa(k)− ρeēa(k)

+∆W (k)TS(ω(k)) + ε(ω(k))

+∆ρ(k)T (z̄(k)− z̄v(k))

+ρ∗T (z̄∗∗
v (k)− z̄v(k)) + d∗∆v̄(k)] (34)

where Gs(z) =
θG∗

a(z)
1+θG∗

a(z)
is a SPR system.

Define a realization of Gs(z) by (As, bs, cs, ds), the state
space representation of the error system is expressed by

xs(k + 1) =Asxs(k) + bsus(k) (35)

ēa(k) = cTs xs(k) + dsus(k) (36)

where us(k)=−
(
ρz∥z̄v(k)∥2+ρe

)
ēa(k)+∆W (k)TS(ω(k))

+ε(ω(k))+∆ρ(k)T (z̄(k)− z̄v(k)) +ρ∗T (z̄∗∗
v (k)− z̄v(k))

+d∗∆v̄(k).

Since Gs(z) is SPR, there exist symmetric positive definite
matrices P = PT > 0, Q = QT > 0, an appropriate
vector l, and a scalar w such that the following Kalman-
Yakubovich-Popov (KYP) lemma is satisfied.

AT
s PAs − P = −Q− llT

AT
s Pbs = cs − lw (37)

bTs Pbs = 2ds − w2

Now, consider the following positive definite function
V (k):
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V (k) = V1(k) + V2(k) + V3(k) (38)

V1(k) = xs(k)
TPxs(k)

V2(k) = σ̄ρ∆ρ(k − 1)TΓ−1
ρ ∆ρ(k − 1)

V3(k) = σ̄W∆W (k − 1)TΓ−1
W ∆W (k − 1).

Define the difference of V (k) by ∆V (k) = V (k)−V (k−1).
The difference of V1(k) can be evaluated using the KYP
lemma by

∆V1(k)≤−xs(k − 1)TQxs(k − 1)

−2ρz∥z̄v(k − 1)∥2ēa(k − 1)2 − 2ρeēa(k − 1)2

+2ēa(k − 1)∆ρ(k)T (z̄(k−1)− z̄v(k−1))

+2ēa(k − 1)∆W (k − 1)TS(ω(k − 1))

+2ēa(k − 1)ρ∗T (z̄∗∗
v (k−1)− z̄v(k−1))

+2ēa(k − 1) (d∗∆v̄(k − 1)+ε(ω((k − 1))).(39)

The differences of V2(k) and V3(k) can be obtained as
follows with any positive constans δ1 and δ2.

∆V2(k)≤−
(
σ̄−1
ρ − σ̄ρ − δ1

)
∆ρ(k−1)TΓ−1

ρ ∆ρ(k−1)

−2ēa(k−1)∆ρ(k−1)T (z̄(k−1)−z̄v(k−1))

+
σ2
ρ

δ1
ρ∗TΓ−1

ρ ρ∗ (40)

∆V3(k)≤−
(
σ̄−1
W − σ̄W − δ2

)
∆W (k − 1)TΓ−1

W ∆W (k − 1)

−2ēa(k − 1)∆W (k − 1)TS(ω(k − 1))

+
σ2
W

δ2
W ∗TΓ−1

W W ∗. (41)

Finally, the difference of V (k) can be evaluated by

∆V (k)≤−xs(k − 1)TQxs(k − 1)

−
(
σ̄−1
ρ − σ̄ρ − δ1

)
∆ρ(k−1)TΓ−1

ρ ∆ρ(k−1)

−
(
σ̄−1
W − σ̄W − δ2

)
∆W (k − 1)TΓ−1

W ∆W (k − 1)

− (2ρz − δ3) ∥z̄v(k − 1)∥2|ēa(k − 1)|2

− (2ρe − δ4 − δ5) |ēa(k − 1)|2

+
σ2
ρ

δ1
ρ∗TΓ−1

ρ ρ∗ +
σ2
W

δ2
W ∗TΓ−1

W W ∗ +
1

δ3
∥ρ∗∥2

+
1

δ4
∥ρ∗∥2z̄∗∗2

v,max +
1

δ5
(d∗|∆v̄|max + |ε∗|)2 (42)

where ∥z̄∗∗
v (k − 1)∥ ≤ z̄∗∗

v,max and δ3 to δ5 are any
positive constants. Since the desired ASPR model G∗

a(z)
has stable zeros, G∗−1

a (z) is stable. Therefore, ∆v̄(k) is
bounded under the input saturation constraint and it
follows |∆v̄(k−1)| ≤ |∆v̄|max. Under Assumption 3 and 4,
the maximum NN approximation error |ε∗| is a constant
value.

Consequently, considering positive constants δ1 to δ5 such
that σ̄−1

ρ − σ̄ρ − δ1 > 0, σ̄−1
W − σ̄W − δ2 > 0，2ρz − δ3 > 0,

2ρe − δ4 − δ5 > 0, it follows that there exist appropriate
design parameters σρ, σW , ρz, ρe such that all the signals
in the control system are bounded.

G(z)
yu

f (·)
u

Fig. 3. Hammerstein nonlinear system

4. VALIDATION THROUGH NUMERICAL
SIMULATIONS

The effectiveness of the proposed scheme is verified
through the following numerical simulations. A controlled
object is given by the Hammerstein nonlinear system as
depicted in Fig. 3. The linear dynamics system G(z) is
given as

G(z) =
3.179× 10−5z + 3.159× 10−5

z2 − 1.981z + 0.981
,

and the static nonlinearity f(·) is given as follows:

ū(k) = u(k) + 0.5u2(k) + 0.25u3(k).

For this system, the design parameters for the output
feedback control system with the adaptive PFC are given
by

G∗
a(z) =

0.5z

z − 0.5
, θ + ρe = 1.0× 105, ρz = 1.0× 104

Γρ = diag[0.02, 0.02, 0.02, 0.02], σρ = 1.0−4.

The order of the designed PFC is 2. The reference signal
yr(k) which the output of the controlled system is required
to follow is given by the output of the following exo-system:

ω(k + 1) = ω(k), ω(0) = 1

yr(k) = Gref (z)[αω]

Gref (z) =
0.00995

z − 0.99

α =


5 (100 ≤ k < 3100)
10 (3100 ≤ k < 6100)
5 (6100 ≤ k < 7500)
15 (9100 ≤ k < 12000).

The design parameters for the adaptive NN feedforward
control system are applied as follows:

l=1, µ1=0, η1=10, ΓW =4.0× 102, σW =1.0× 10−5

vmin = −10, vmax = 10.

The initial values of the estimated parameters in the
proposed control system are set by ρ(0) = 0, Ŵ (0) = 0.

Fig. 4 shows the results with only the output feedback
control method with the adaptive PFC. The augmented
output tracked the reference signal and the designed
adaptive control system with the adaptive PFC could
maintain the stability even when the static property of
the controlled system changed. Designing the proposed
adaptive PFC can reduce the information of the controlled
system for designing the control system compared with
the conventional PFC design methods which provide the
static PFC. Moreover, the proposed method can design
the stable control system easily with a simple structure.
However, in the control result of the original controlled
system, the degeneration of the tracking performance was
caused by the PFC.
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Fig. 4. Simulation results with only feedback control
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Fig. 5. Simulation results with proposed method
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Fig. 6. Ajusted parameters (ρ(k) and Ŵ (k))

Fig. 5 and Fig. 6 show the results with the proposed two-
degree-of-freedom control method. The obtained adaptive
control system was stable. Moreover, the output of the
original controlled system tracked the reference signal ac-
curately. Therefore, the tracking performance can be im-
proved by designing the proposed adaptive control system
with the adaptive NN feedforward control.

5. CONCLUSIONS

An output tracking control system design scheme based on
the ASPR based output feedback control with the adap-
tive PFC was proposed for discrete-time systems. In the
proposed method, in order to guarantee the stability of the
control system based on the ASPR-ness, the adaptive PFC
which has s simpler structure was designed. Moreover, in
order to attain output tracking, the two-degree-of-freedom
control system with the adaptive feedforward control sys-
tem based on the RBF NN was designed. The stability of
the resulting adaptive control system was analyzed and the
effectiveness of the proposed scheme was verified through
numerical simulations.
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