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Abstract: Considering the impact of both position and velocity estimate errors on hazard
avoidance, this paper proposes an uneven error ellipsoid-based model predictive control for
planetary landing missions. The uneven error ellipsoid model not only takes into account system
position uncertainty at the moment, but also reflects how fast the system is approaching the
nearby hazard in the position space. By repetitively computing the current space margin and
the most dangerous direction, the system quantifies the threat posed by the environment as
the lander descends to the surface. In order to perform a safe and precise landing, we apply
model predictive control during descent and incorporate a hazard avoidance performance index
into the problem. Then, we validate the proposed method in a Bennu-based asteroid landing
scenario and demonstrate its effectiveness of improving landing safety.

Keywords: Autonomous system; Model predictive control; Hazard avoidance; State
uncertainty; Landing safety

1. BACKGROUND

Performing a safe and precise landing on the planetary
surface is technically challenging. Due to environment dis-
turbances and modeling errors, the actual state of the sys-
tem may not strictly follow the trajectory planned under
nominal conditions. Besides, large boulders and rocks on
the surface may pose collision threats to the lander when
it gets close to the target Cui et al. (2018). To ensure land-
ing safety, future planetary exploration missions favor an
enhanced onboard autonomy for generating reliable real-
time trajectories on the basis of current state estimates
and environment measurements Ge et al. (2019).

For constrained planetary safe landing problems, model
predictive control (MPC) makes a promising methodol-
ogy to be applied, as it is able to handle both control
objectives and hard constraints in a unified framework
Liao-McPherson et al. (2016); Reynolds and Mesbahi
(2017). One of the most important objectives to be ac-
counted in the landing process is hazard avoidance. To
this end, methods that incorporate exclusion constraints
or glide-slope constraints into trajectory optimization are
discussed in the literature Lee and Mesbahi (2017). In
Park et al. (2016), the spacecraft realizes hazard avoid-
ance by incorporating rotating and fixed hyperplane con-
straints into receding horizon optimization problems. It
is proved that directly implementing nonlinear avoidance
constraints would lead to an improved performance with
regard to time or fuel-consumption, compared to the case
with approximated convex constraints. It, however, may
bring difficulties in problem solving and solution conver-
gence Jewison et al. (2015). Considering the influence
of non-convex constraints on problem solving efficiency,

techniques of linearization, affine approximation, lossless
convexification, and successive convexification are devel-
oped Reynolds and Mesbahi (2017); Szmuk et al. (2016).
Nevertheless, these available hazard avoidance methods
are mainly developed on the basis of accurate system
state estimates. In real missions, the onboard navigation
outputs may not be consistent with the actual system
states due to modeling errors and measurement noises
Lindner et al. (2010). To account for navigation uncer-
tainties in trajectory design, Yuan et al. (2018) proposes
a probability-based hazard avoidance guidance method.
By minimizing the obstacle collision probability posed by
position uncertainties, the method derives an analytical
guidance law using Lyapunov’s theorem.

Apart from position uncertainties, the velocity that the
system is approaching the hazard also matters in hazard
avoidance. For example, for a fixed distance to the hazard,
system safety is more challenged if the lander is moving at
a higher speed. Motivated by this, the paper incorporates
system velocity and its estimate errors in trajectory op-
timization and proposes an uneven error ellipsoid-based
hazard avoidance method.

2. PROBLEM STATEMENT

Assume that the system dynamics can be approximated by
a linear time-invariant system around the current system
state through dynamic state feedback

x(k + 1) = Ax(k) +Bu(k) + d(k) (1)

where x ∈ X is the system state, u ∈ U is the control
action, and d ∈ D is the modeling error resulted from en-
vironment disturbances and dynamics linearization. Given
the initial state x0 and the targeted state xf , a physically

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14955



feasible trajectory is to be planned to deliver the lander
from the current position to the assigned landing site.
Denote the hazard set by O. For landing safety, the system
should keep a safe distance away from these hazards.

During descent, the system makes onboard decisions based
on real-time state estimates. Denote the actual system
state as xa = [rTa ,v

T
a ]T , and the estimated system state as

xe = [rTe ,v
T
e ]T . Here, we assume that both position and

velocity estimates generated from the navigation module
follow Gaussian distribution. The mean value of system
position estimate is µr and its covariance is Cr. The mean
value of system velocity estimate is µv and its covariance is
Cv. Hence, it holds that re = µr,ve = µv. Considering the
impact of state estimate errors on hazard avoidance and
landing performance, we formulate the following problem

Problem 1: Let the system dynamics be governed by Eq. 1.
Let the initial and terminal state x0,xf ∈ X , the feasible
control set U , and the detected hazard set O be given.
Assume that the system position and velocity estimates
satisfy re ∼ N(µr, Cr),ve ∼ N(µv, Cv). Let T > 0 be the
duration of the landing process. For a designated landing
error ε, find a control signal u∗ : [0, T ] → U that satisfies
the following conditions for all t ∈ [0, T ]:
(1) ‖xa(T )− xf‖ ≤ ε;
(2) the actual system position ra(t) 6∈ O.

3. METHODOLOGY

3.1 Uneven error ellipsoid model

According to the navigation results, we use a 3σ position
error ellipsoid around µr to bound the actual position of
the system. Define the ellipsoid coordinate system (c.s.)
centered around µr as FE . The axes of the coordinate
system coincide with the three axes of the 3σ position error
ellipsoid. We can then transform the covariance matrix Cr

from the target-fixed c.s. F to the ellipsoid c.s. FE by

UT
ECrUE = D (2)

where D is a diagonal matrix whose non-zero elements are
the eigenvalues of matrix Cr. The orthogonal matrix UE is
the transformation matrix from the target-fixed c.s. F to
the ellipsoid c.s. FE , whose columns are the eigenvectors
of matrix Cr. Denote the system’s position vector in the
target-fixed c.s. as r and in the ellipsoid c.s. as rE . It holds
that

rE = UT
E (r − re) (3)

and the actual position of the system

1

9
(rE)TD−1rE ≤ 1 (4)

Here, we sample Mr points from the position space that
satisfies inequality (4), which constitute set Sr

Sr = {ri|
1

9
(rEi )TD−1rEi ≤ 1, i = 1, ...,Mr} (5)

Note that the number of sample points should not be too
small to represent the position distribution characteristics,
nor should it be too large to go beyond system online
processing ability.

Then, we expand the ellipsoid according to the velocity
estimate errors. Based on the velocity estimate covariance
matrix Cv, we obtain the variance at each direction

diag(Cv) =

σ2
vx 0 0
0 σ2

vy 0
0 0 σ2

vz

 (6)

where σv = [σvx, σvy, σvz]T are the standard deviations
of the velocity estimate in the target-fixed c.s. F . Here
we consider the distance that the system can reach when
no control is applied in ∆T . Although a more robust
formulation could be established by taking all possible
control actions into account, we focus on predictions
without control in this paper and discuss the case with
control in future work. Similarly, we take Mv sample
points that follow Gaussian distribution N(µv,σv). For
any vi ∼ N(µv,σv), i = 1, ...,Mv, compute

∆ri = vi∆T (7)

The distance increment of each sample constitutes set Sv
Sv = {r|∆r1, ...,∆rMv

} (8)

Then, we obtain the uneven error ellipsoid set SE by
conducting a Minkowski sum of the established sets

SE = Sr ⊕ Sv (9)

By defining the boundary of position uncertainty and
predicting the range that the system would travel, the
model reflects both position and velocity estimate errors
in the position space for collision risk assessment.

3.2 Real-time trajectory generation

During descent, the system obtains environment measure-
ments from onboard sensors such as optical camera and
Lidar Dunham et al. (2002). Here, we use a circumscribed
sphere of every hazard to describe the areas that the
system is not allowed to enter. Denote the detected hazard
set by

H = {[xh1, yh1, zh1, Rh1], ..., [xhk, yhk, zhk, Rhk], ...}
where [xhk, yhk, zhk] is the center of the sphere and Rhk is
its radius. In the following, we focus on landing scenarios
with a single hazard, i.e., H = {[xh, yh, zh, Rh]}, and
discuss possible extensions to multi-hazard scenarios.

We adopt two variables for evaluating the actual threat
that the environment poses to the lander, that is, the cur-
rent space margin and the most dangerous direction. We
denote the current space margin by d and use it to quantify
the dynamically changing distance from the system to the
nearest hazard under state uncertainties. Then, we denote
the most dangerous direction by d0, which indicates the
direction that system safety is most challenged. Based
on the established uneven error ellipsoid model, we can
update these variables as the lander descends to the target.
As illustrated in Fig. 1, in the uneven error ellipsoid SE ,
assume that point p is the point closest to the hazard. By
searching point p’s position rp on the uneven error ellipsoid
surface, we calculate the current space margin by

d = ‖rh − rp‖ −Rh (10)

where rh = [xh, yh, zh]T is the center of the hazard sphere
and Rh is the radius. When there is more than one
hazard to be considered, we compute the distance from
the uneven error ellipsoid surface to every nearby hazard
and find point p that has the minimal distance. Denote the
corresponding hazard by [x∗h, y

∗
h, z
∗
h, R

∗
h], and we obtain the

current space margin from

d = ‖r∗h − rp‖ −R∗h (11)
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Fig. 1. Current space margin d and the most dangerous
direction d0.

The most dangerous direction d0 is then the direction of
the current space margin, which points from p to the center
of the hazard sphere

d0 =
rh − rp
‖rh − rp‖

(12)

or

d0 =
r∗h − rp
‖r∗h − rp‖

(13)

in the multi-hazard scenario.

Note that there is no need to perform avoidance maneuvers
when the system is far away from the hazard. Hence,
we set an effective interval for the current space margin,
i.e., only when d ∈ [ε, ε], the system executes hazard
avoidance control actions. The lower bound ε > 0 depends
on the minimal distance that the system requires to
turn around in the worst case, that is, approaching the
hazard with full speed. The upper bound, on the other
hand, reflects system sensitivity to the environment, as
it determines when the system should apply avoidance
maneuvers. As soon as the system enters the effective
interval, a straightforward way of avoiding collision is to
drag the system to the upper bound ε. This maneuver
becomes urgent as the current space margin d decreases.
To this end, we set a safe target state xsafe and realize
hazard avoidance by steering the system towards the state.
Define the safe target velocity as

vsafe = − ε
d
vmaxd0 (14)

where vmax is the maximal allowable velocity during de-
scent. When d = ε, vsafe = −vmaxd0. The safe target
position is set as

rsafe = rh − εd0 (15)

Then, we obtain the safe target state

xsafe = [rxsafe, r
y
safe, r

z
safe, v

x
safe, v

y
safe, v

z
safe]

T (16)

and formulate a hazard avoidance performance index

Jh =

N−1∑
k=0

(x(k)− xsafe)
TQ′(x(k)− xsafe) (17)

Considering the effective interval of hazard avoidance, we
set the weighting matrix as

Q′ = (1− d− ε̂√
1 + (d− ε̂)2

)I6 (18)

where ε̂ = (ε+ ε)/2.

By integrating the hazard avoidance performance index
into model predictive control, we solve the following opti-
mization problem on the receding horizon

min (x(N)−xf )
TP (x(N)− xf ) +

N−1∑
k=0

[(x(k)− xf )
TQ(x(k)− xf )

+ (x(k)− xsafe)
TQ′(x(k)− xsafe) + u(k)TRu(k)]

s.t. x(k + 1) = Adx(k) +Bdu(k) +Cdg

x(0) = x0 = [rT
0 ,vT

0 ]T ,

x(tf ) = xf = [rT
f ,vT

f ]T ,

x(k) ∈ X ,u(k) ∈ U ,x(N) ∈ Xf .

(19)

where N is the length of the finite horizon, the weighting
matrices Q,R are pre-selected constants, the terminal
state weighting matrix P is calculated from

AT [P − PB(BTPB +R)−1BTP ]A+Q− P = 0, (20)

x0 is the current system state, xf is the desired terminal
state, and Xf ⊂ X is the control invariant set of the
system. The polyhedral invariant set Xf is solved off-line
on the basis of state feedback control Xi et al. (2009).
By solving the above problem, the system applies only
the first control action of the obtained optimal control
sequence. Then, it recomputes the current space margin
and the most dangerous direction, and updates the initial
state. Whenever the system enters the effective interval of
a nearby hazard, it temporarily alters its control objective
from precise landing to hazard avoidance through an
automatic tuning of the hazard avoidance performance
index weight. By repetitively solving the optimization
problem, the system drives itself along a physically feasible
trajectory to the target landing site.

4. SIMULATION

To verify the proposed method, we establish a Bennu-
based asteroid landing scenario according to the OSIRIS-
REx mission. Assume that the rotational speed ω =
4.0679 × 10−4 rad/s and the density of the asteroid ρ =

1.26 × 103 kg/m
3
. When the descent phase commences,

the lander is at r0 = [100,−80, 380]T m with an intial

velocity v0 = [−1, 0, 0]T m/s
2
. The target landing site is

at rf = [−26, 0, 243]T m and the desired terminal velocity
is vf = [0, 0, 0]T m/s. For simplicity, we employ a constant
estimate error covariance during descent by setting

Cr =

[
16 −2 0
−2 16 1
0 1 9

]
, Cv =

[
0.01 −0.005 −0.00012
−0.005 0.0001 0.001
−0.00012 0.001 0.09

]
The initial mean values of position estimate and velocity
estimate are µr = [92.1505,−80.1792, 378.8226]T m, µv =
[−0.8596,−0.0022,−0.0855]T m/s.

First, we determine the boundary of the actual system
position from the 3σ error ellipsoid, whose center is at µr
and the lengths of the three semi-axes are 4 m, 4 m, 3 m
respectively. According to Eq. (5), we take Mr = 50
samples and obtain set Sr. Then, we consider the range
that the lander can reach in the position space when no
control is applied in ∆T = 3 s. We sample Mv = 50 points
that followN(µv,σv) for prediction and obtain the uneven
error ellipsoid set SE from Eq. (9).

In the simulated landing scenario, we set a semi-spherical
hazard at rh = [14,−23, 250]T m with a radius of Rh =
15 m. In the uneven error ellipsoid set, we search for point
p that is closest to the hazard and obtain the current space
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Fig. 2. Landing trajectory without hazard avoidance.

Fig. 3. Landing trajectory with hazard avoidance.

margin d = 133.9537m and the most dangerous direction
d0 = [−0.4722, 0.3633,−0.8031]T at the initial time. In
model predictive control, we set the receding horizon
length N = 8, the weighting matrices Q = I6, R = I3,
the time step as 1.5 s, and use the YALMIP toolbox to
solve the optimization problem.

For comparison, we first remove the hazard avoidance
performance index from the optimization problem and
compute the landing trajectory. In Fig. 2, the blue dotted
line refers to the optimal trajectory and the red arrows
are the most dangerous directions pointing from point
p to the hazard center. The black triangle is the target
landing site. The blue semi-sphere is the designed hazard
and the yellow ellipsoid is the 3σ position error ellipsoid
at the termination time. As can be seen, the position error
ellipsoid overlaps with the hazard and the landing process
terminates prematurely. This indicates that the system
predicts a potential collision with the hazard given the
state estimates. For safety concerns, it stops and requires
further hazard avoidance maneuvers. Then we incorporate
the hazard avoidance performance index into trajectory
optimization and set ε = 20m, ε = 2m. The generated
trajectory is shown in Fig. 3. This time, the system keeps
approaching the surface and the process terminates when
the lander makes a touchdown in the neighborhood of the
target landing site. No collision threat is predicted as the
system keeps at least ε away from the hazard.

5. CONCLUSION

In this paper, we propose an uneven error ellipsoid-based
model predictive control for improving planetary landing
safety under state uncertainties. Specifically, we consider
the impact of position and velocity estimate errors and

quantify collision threats through computations of the cur-
rent space margin and the most dangerous direction. By
solving the trajectory optimization problem on a receding
horizon, we generate a safe and physically feasible landing
trajectory in a real-time manner. At last, we validate the
method in a Bennu-based landing scenario and prove its
effectiveness of guaranteeing system safety during descent.
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