
     

Model Based Control with Online Automatic Adaptation by Neural Network  

for Advanced Diesel Combustion 
 

Jianan Cao* Jihoon Kim* Motoki Takahashi* Yudai Yamasaki* 
 

*The University of Tokyo,7-3-1, Hongo Bunkyo-ku, Tokyo, 113-8656, Japan 

(Tel: 03-5841-6430; e-mail: jkim@fiv.t.u-tokyo.ac.jp). 

Abstract: Model based control with physical models are proposed as an alternative to conventional control 

methods to improve engine performance under real driving conditions including various transient condition. 

Even if models are built based on physical rules, the models still have several parameters which is desirable 

to adapt in real time according to driving condition. Therefore, the authors developed an online automatic 

adaptation method for model-based control of diesel engines, which is based on neural networks. The 

predictive accuracy of the adapted model has been evaluated by simulation, and the performance of the 

feed-forward controller based on the model is evaluated by experiment under actual engine. 
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1. INTRODUCTION 

The PCCI (Premixed Charge Compression Ignition) 

combustion method for diesel engines can be described as an 

advanced combustion technology that applies the rapid 

reaction of premixed air and fuel. Due to premixing, the fuel 

density in PCCI combustion is lean, so the combustion 

temperature is kept low. Therefore, it can be expected to 

improve thermal efficiency and suppress NOx, and inhibit the 

generation of PM as it can avoid fuel richness by premixing. 

Although PCCI combustion has the advantages mentioned 

above, its robustness is low due to its high sensitivity to in-

cylinder gas composition and gas state. Therefore, the gas 

state in the cylinder must be considered to stabilize and 

control ignition and combustion. The in-cylinder gas, 

however, consists of fresh air, EGR (Exhaust Gas 

Recirculation) gas, residual gas, etc., and these gasses change 

depending on operating conditions and ambient conditions. In 

order to execute PCCI combustion by current map control 

method based on huge number of experiments, it requires 

enormous man-hours and costs to consider every gas states 

one by one. 

Also, the RDE (Real Driving Emission) test method where 

exhaust gas is measured while actual driving on a public road 

has already been implemented in Europe and other countries 

such as Japan are also considering to adopt it. As the RDE test 

method verifies in more complex driving scenes, the range of 

operation of the engine under evaluation has also been 

expanded. However, current control maps are constructed 

considering specific driving modes, and it is difficult to adapt 

a map that takes into account all actual road driving scenes.  

As an alternative to map control, Model-based control has 

attracted a lot of attention in recent years as a new method of 

engine control, since this method is expected to implement 

advanced combustion technology and enhance the 

performance in various driving scenes. Model-based control 

in the engine calculates control inputs and executes control in 

real time by the control model installed in an ECU (Engine 

Control Unit). As control inputs are calculated in each cycle 

by the control-oriented model considering operating 

condition in real time, adequate control can be performed, and 

improvement of performance in transient operation can 

therefore be expected. 

For the model-based control, the engine control-oriented 

model can be divided into statistical and physical models. In 

general, statistical models are based on statistics or system 

identification (Makowicki et al., 2017), but physical models 

are built on the basis of the laws of physics (Jade et al., 2015), 

making them more versatile than statistical models, enabling 

them to cope with various driving scenes or other engines. 

Since it is assumed that the control-oriented model is installed 

in the ECU, considering the specification of the ECU, a 

control model of a small computational load is required. Ravi 

et al. have proposed a discretized model of the HCCI engine 

that expresses in-cylinder pressure history in one cycle by 

several feature points in one cycle based on physics. This 

model has a light computational load and is used for the 

design of controller (Ravi et al., 2010). The authors have 

developed a discretized model for diesel engines that 

performs multistage injection by applying the cycle 

discretization method (Yamasaki et al., 2019a). Also, based 

on this model, the authors have succeeded in designing and 

controlling multiple input and multiple output feed-forward 

controllers in diesel engines (Yamasaki et al., 2019b). Even 

though the model is based on physics, it has several 

parameters that need to be adapted. In order to improve 

control accuracy, it is necessary to adapt these model 

parameters for each operating condition and engine. 

For this purpose, an automatic adjustment method that 

updates the values of model parameters according to the 

operating conditions during operation has been studied. A 

method for adapting model parameters to different driving 

conditions using a non-linear least square method has been 

proposed (Grasreiner et al., 2017), but its performance in 

transient operation has not been validated and online 

applicability has not been confirmed either. Eguchi et al. 
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performed online feedback error learning of a FF (Feed-

Forward) controller based on a neural network and 

automatically adapts controller parameters (Eguchi et al., 

2018), but the FF controller used is based on neural network 

and not physics, so the versatility of the controller is weak. 

The authors proposed online automatic adaptation method by 

neural network for PCCI combustion control which is based 

on physical-rich combustion model, its availability was only 

conducted in simulation (Cao et al., 2019). In addition, 

recently neural network is paid attention for several 

application, for engine application such as optimal control of 

VGT, EGR systems, etc. (Zarghami, et al., 2017; Hu et al., 

2019) and its utilization is getting wider. 

In this paper, the availability of the model based control 

system for advanced diesel combustion with our automatic 

adaptation algorithm based on neural network is evaluated by 

engine experiment.  

Followings are the main contents of this paper. First, 

experimental set up and control-oriented model for online 

adaptation are explained. Next, online adaptation algorithm 

for the control-oriented model based on our previous research 

is explained and its advantage is validated in simulation. 

Finally, control experiment by FF controller based on the 

control-oriented model with the online adaptation algorithm 

was carried out and its availability was evaluated. 

2. EXPERIMENTAL SETUP 

The experimental system in this study is same as our previous 

research (Takahashi et al., 2018). The overall engine system 

is shown in Fig.1. The engine used in this study is an inline 4-

cylinder diesel engine, its displacement is about 2.8L. A 

common-rail injection system, a variable geometry 

turbocharger (VGT) and an external exhaust gas recirculation 

(EGR) system are equipped. A rapid prototyping system 

(MicroAutoBoxII, dSPACE) with a default ECU is used to 

measure and control the injection condition and the air path 

condition. An in-cylinder pressure sensor and a rotary 

encoder are attached for the analysis of combustion states, and 

the pressure signal is recorded by a combustion analyser 

(DS3000, Onosokki) with the pulse of the rotary encoder. 

 
Fig. 1 Engine system (Takahashi et al., 2018) 

 

3. TARGET ENGINE CONTROL MODEL 

In this chapter, the control-oriented engine model for 

automatic adaptation is described. This model has been 

developed for multiple fuel injections with advanced diesel 

combustion by the authors and the model is based on physics 

while including several static models (Yamasaki et al., 

2019b). In addition, the model was used as a FF controller, to 

design a FB controller, and transient operation control 

succeeded with developed controllers by the test engine. In 

this paper, the FF controller based on the control oriented 

model developed by the same concept as our previous works 

(Yamasaki, et al., 2019 a, b; Takahashi et al., 2019) applying 

automatic adaptation is installed to the test engine and its 

availability is evaluated in experiments. The structure of FF 

controller is shown in chapter 6. 

3.1 Model description 

The combustion modelled in this paper is a premixed 

combustion with an injection amount of less than 30 mm3 per 

cycle for PCCI combustion, because PCCI combustion is 

mainly used in low load condition. Fig. 2 shows the history of 

in-cylinder pressure and heat release rate (HRR) for one cycle 

of the target combustion. Pilot injection, pre injection, and 

main injection are executed in one cycle. First HRR peak is 

the pre HRR peak that appears after pilot injection and pre 

injection. Second one is the main HRR peak after the main 

injection. In this type of premixed combustion, high EGR rate 

results in a long ignition delay, then fuel and air is well mixed 

before ignition. In addition, when two heat releases, of which 

interval and peak values, are well controlled, such heat release 

profiles realize low combustion noise while maintaining high 

thermal efficiency as well as low emission (Fuyuto et al., 

2014). 

Instead of predicting a complete histories of in-cylinder 

pressure and/or heat release rate, only a few features are 

calculated in the control-oriented engine model. Those feature 

points are shown as red dots plotted in Fig. 2, and the 

abbreviation of definitions for the feature points are shown in 

Table 1. 

 

Fig. 2 History of in-cylinder pressure and heat release rate 

(black lines) and discretized points of the combustion model 

(red points) (Takahashi et al., 2019) 

3.2 Calculation method 

This section introduced the calculation method of the control-

oriented engine model, especially in ignition and combustion. 

The mixture gas consisting of intake air, residual gas, and 

EGR gas is compressed at first, and this process is defined as 

the polytropic change. Next, ignition and combustion process 

are calculated considering fuel spray formation, ignition of 

premixed gas and combustion reaction. Then, expansion 
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process is also described as the polytropic change. Finally, 

gas state at the end of the cycle is taken over as the residual 

gas to the next cycle, and the gas state at the start of next cycle 

is predicted in the gas exchange process.  

Here, outline of the ignition and the combustion calculation 

processes are described. The processes include fuel injection, 

ignition, and combustion reactions and are expressed using a 

combination of the spray shape model (Reitz and Bracco, 

1979), the ignition model (Livengood and Wu, 1955), and the 

chemical reaction model. In the spray shape model, the spray 

is considered as a cone shape and its length and angle are 

expressed as (1) and (2), where, 𝐿𝑆𝑝𝑟𝑎𝑦 is the fuel penetration 

distance, 𝜑𝑆𝑝𝑟𝑎𝑦  is the spray angle, ∆𝑃  is the gap between 

fuel injection pressure and in-cylinder gas pressure, 𝜌𝐹𝑢𝑒𝑙 and 

𝜌𝐺𝑎𝑠 are the density of fuel and in-cylinder gas, 𝑑𝐻𝑜𝑙𝑒  is the 

nozzle hole diameter, 𝑡𝑆𝑝𝑟𝑎𝑦  is the injection duration and 

𝐿𝑁𝑜𝑧𝑧𝑙𝑒  is the injector nozzle length.  

𝐿𝑆𝑝𝑟𝑎𝑦 = 2.95 (
∆𝑃

𝜌𝐹𝑢𝑒𝑙
)

0.25

√𝑑𝐻𝑜𝑙𝑒𝑡𝑆𝑝𝑟𝑎𝑦 (1) 

tan(𝜑𝑆𝑝𝑟𝑎𝑦) = {3.0 + 0.28 (
𝐿𝑁𝑜𝑧𝑧𝑙𝑒

𝑑𝐻𝑜𝑙𝑒
)}

−1

4𝜋√
𝜌𝐺𝑎𝑠

𝜌𝐹𝑢𝑒𝑙

√3

6
 (2) 

 

The fuel concentration used in the ignition model and the 

chemical reaction model can be obtained from the spray shape 

and amount of injected fuel. 

In the ignition model, the ignition delay time is calculated 

from (3) and (4), which is simplified Livengood and Wu 

integration for the feature points. Here 𝐾𝐴, 𝐵, 𝐶 and 𝐸  are 

model parameters to adapt, and ∆𝑡𝐷𝑒𝑙𝑎𝑦  is the ignition delay 

time. 

 

The combustion process of the premixed combustion assumes 

mainly depending on the chemical reaction and the fuel 

consumption rate is expressed by the Arrhenius equation 

shown in (5), where,𝛼, 𝛽, 𝛾, and 𝜀 are also model parameters, 

and  𝑟  is the fuel consumption rate. The gas state of each 

feature point is calculated by the law of energy conservation. 

Once the ignition timing is determined, the HRR peak timing 

is predicted by statistical formulas, and the fuel consumption 

rate is used to calculate the HRR peak value, which are shown 

in (6), (7). 

𝑟

𝑉𝐹𝑢𝑒𝑙
= 𝛼exp (−

𝜀

𝑅𝑇(𝑡𝐼𝐺𝑁)
) [𝐹𝑢𝑒𝑙(𝑡𝐼𝐺𝑁)]𝛽[𝑂2(𝑡𝐼𝐺𝑁)]𝛾 (5) 

∆𝑡𝑃𝑒𝑎𝑘

= 𝑎0 + 𝑏0 ∗ ∆𝑡𝐷𝑒𝑙𝑎𝑦 + 𝑐0 ∗
𝑛𝐹𝑢𝑒𝑙

𝑟
+ 𝑑0 ∗ 𝑃𝑟𝑎𝑖𝑙 + 𝑒0 ∗ 𝑟𝐸𝐺𝑅 

(6) 

𝑑𝑄

𝑑𝜃𝑃𝑒𝑎𝑘
= 𝑎1 + 𝑏1 ∗ 𝑟𝑄𝐿𝐻𝑉 (7) 

 

4. AUTOMATIC ADAPTATION METHOD 

4.1 Target sub-models 

As described in the previous section, model parameters exist 

in the pre-ignition model and the pre-combustion speed model. 

In the previous authors' study (Yamasaki et al., 2019a, b), 

such model parameters were determined by a multiple 

regression analysis based on data from several steady-state 

operations, and the results of transient mode control test are 

shown in Fig. 3. In Fig. 3, black dashed line shows the 

experimental value, and the blue line shows the prediction 

result of the model. The prediction accuracy of the 

combustion model was decreased in the transient operating 

𝐾 = ∫
1

𝜏𝐼𝐺𝑁(𝑡)
𝑑𝑡

𝐼𝐺𝑁

𝐼𝑁𝐽

=
1

𝜏𝐼𝐺𝑁(𝑡𝐼𝑁𝐽)
∆𝑡𝐷𝑒𝑙𝑎𝑦

= 𝐴[𝐹𝑢𝑒𝑙(𝑡𝐼𝑁𝐽)]
𝐵

[𝑂2(𝑡𝐼𝑁𝐽)]
𝐶

exp (−
𝐸

𝑅𝑇(𝑡𝐼𝑁𝐽)
) ∆𝑡𝐷𝑒𝑙𝑎𝑦 

(3) 

∆𝑡𝐷𝑒𝑙𝑎𝑦

= 𝐾𝐴−1[𝐹𝑢𝑒𝑙(𝑡𝐼𝑁𝐽)]
−𝐵

[𝑂2(𝑡𝐼𝑁𝐽)]
−𝐶

exp (
𝐸

𝑅𝑇(𝑡𝐼𝑁𝐽)
) 

(4)  

Fig. 3 Driving condition and the prediction result in 

transient mode 

Table 1 Definition of discretized feature points 

Discretized point Definition 

IVO Intake valve open 

IVC Intake valve closing 

PILOT INJ Pilot injection 

PRE INJ Pre injection 

PRE IGN Pre ignition 

PRE HRR PEAK Pre heat release rate peak 

MAIN INJ Main injection 

MAIN IGN Main ignition 

MAIN HRR PEAK Main heat release rate peak 

EOC End of combustion 

EVO Exhaust valve open 

EVC Exhaust valve closing 
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test. Therefore, it is necessary to adapt the model parameters 

according to each operating condition. So, in this paper, the 

model and the pre-combustion speed model are adjusted by 

automatic adaptation method. 

4.2 Automatic adaptation algorithm 

Automatic adaptation adjusts model parameter values so that 

the error between the prediction result and the measured value 

of pre HRR peak becomes zero. As the prediction accuracy of 

the model gets better, it is expected that the performance of 

the FF controller based on the model can be improved. In this 

study, model parameters such as α, β, γ and ε according to the 

driving conditions are adjusted by neural networks 

(hereinafter referred to as NN) as automatic adaptation 

algorithm. By setting driving conditions and model 

parameters as inputs and outputs of NN, NN becomes a 

function that represents multiple sets of model parameters as 

the driving conditions at that time is inputted. 

Fig. 4 shows the automatic adaptation flow. First, the driving 

condition of the cycle is inputted into the NN to update the 

model parameters. Next, the engine combustion model 

predicts the state of in-cylinder gas and calculate prediction 

error. Then, predictive error and loss function is calculated as 

defined below. Here, 𝜃𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘  is pre HRR peak timing 

and 
𝑑𝑄

𝑑𝜃𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘
 is value of pre HRR peak. 

𝐽 =
1

2
𝒖𝑭𝑩,𝒒

𝟐  (8) 

𝒖𝑭𝑩,𝒒 𝟏 = 𝜃𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘 (𝑚𝑜𝑑𝑒𝑙) − 𝜃𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘 (𝑒𝑥𝑝.) (9) 

𝒖𝑭𝑩,𝒒 𝟐 =
𝑑𝑄

𝑑𝜃 𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘 (𝑚𝑜𝑑𝑒𝑙)
−

𝑑𝑄

𝑑𝜃 𝑃𝑟𝑒 𝐻𝑅𝑅 𝑃𝑒𝑎𝑘 (𝑒𝑥𝑝.)
 (10) 

 

Finally, the weight and bias to reduce the loss function by the 

BP (Back Propagation) method is adjust. Such calculations 

are performed cycle-by-cycle, so model parameters are 

updated according to driving conditions in real time. Fig. 5 

shows the structure of one node in the NN. Weight and bias 

are the internal variables of NN. Calculations can be divided 

into forward and reverse directions. The forward calculation 

is to get the output from the input and it is written as (11). By 

applying the BP method, which is written as (12), (13), the 

prediction error is minimized and the NN weights and biases, 

and the output, change automatically towards smaller errors. 

𝑝𝑖,𝑗 = 𝐹𝑖(𝑤𝑖,𝑗𝑝𝑖−1 + 𝑏𝑖,𝑗), 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝑛𝑖 (11) 

∆𝑏𝐿 =
1

𝑛
∑ ∆𝑏𝐿,𝑖

𝑛

𝑖=1

=
1

𝑛
∑

𝜕𝐽𝑖

𝜕𝑏𝐿

𝑛

𝑖=1

=
1

𝑛
∑

𝜕𝐽𝑖

𝜕𝑝𝐿,𝑖

𝜕𝑝𝐿,𝑖

𝜕𝑏𝐿

𝑛

𝑖=1

 

        =
1

𝑛
∑ 𝑊𝑜𝑢𝑡

T ∆𝑏𝑜𝑢𝑡⨀𝑓𝐿(𝑊𝐿𝑝𝐿−1,𝑖 + 𝑏𝐿)

𝑛

𝑖=1

 

(12) 

 ∆𝑊𝐿 =
1

𝑛
∑ ∆𝑊

𝑛

𝑖=1

=
1

𝑛
∑

𝜕𝐽𝑖

𝜕𝑊𝐿

𝑛

𝑖=1

=
1

𝑛
∑

𝜕𝐽𝑖

𝜕𝑝𝐿,𝑖

𝜕𝑝𝐿,𝑖

𝜕𝑊𝐿

𝑛

𝑖=1

 

=
1

𝑛
∑{𝑊𝑜𝑢𝑡

T ∆𝑏𝑜𝑢𝑡⨀𝑓𝐿(𝑊𝐿𝑝𝐿−1,𝑖 + 𝑏𝐿)}𝑝𝐿−1,𝑖
T

𝑛

𝑖=1

=
1

𝑛
∑ ∆𝑏𝐿,𝑖𝑝𝐿−1,𝑖

T

𝑛

𝑖=1

 

(13) 

 

In this paper, two NNs were built and the structure of the 

neural networks were modified from the previous research 

(Cao, J. et al., 2019) to improve simulation and control 

performance. First, the number of hidden layers were changed 

from two to one. This is because in the case of two hidden 

layers, the vanishing gradient problem has occurred in the NN. 

Moreover, the training speed was faster and the predictive 

accuracy was higher for one hidden layer than for two hidden 

layers in the simulation results. Second, the output layer 

activation function of the pre-ignition model has been 

changed from a linear activation function to a standard 

sigmoid function considering expressivity. By changing the 

activation function, the simulation results improved and were 

also stable in the control test. Their specifications of NNs are 

shown in Table 2. Since the premixed fuel and air conditions 

have significant effect on combustion, the engine speed, total 

fuel injection quantity, supercharging pressure, and EGR rate 

 
Fig. 4 Automatic adaptation flow (Cao et al., 2019) 

 

 
Fig. 5 The outline of the neural network 

Table 2 Specifications of neural networks 

Object 

model 
Input Output 

Number 

of nodes 

Activation 

function 

Pre  

Ignition 

Model 
𝑁𝐸𝑛𝑔𝑖𝑛𝑒 

𝑄𝑇𝑜𝑡𝑎𝑙 

𝑃𝐵𝑜𝑜𝑠𝑡 

𝑟𝐸𝐺𝑅 

(𝐾𝐴)𝑃𝑅𝐸 

𝐵𝑃𝑅𝐸  

𝐶𝑃𝑅𝐸  

𝐸𝑃𝑅𝐸  
[4,20,4] 

Sigmoid 

function Pre 

Combustion 

Speed 

Model 

𝛼𝑃𝑅𝐸  

𝛽𝑃𝑅𝐸  

𝛾𝑃𝑅𝐸  

𝜀𝑃𝑅𝐸 
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are used as NN inputs. Both NNs are 4-input 4-output NN 

with one hidden layer, and there are 20 nodes in a hidden layer. 

NNs are used to adapt the pre-ignition model and pre-

combustion speed model. A standard sigmoid function is the 

activation function of the hidden and output layers. 

5. AUTOMATIC ADAPATION IN SIMULATION 

In this chapter, the automatic adaptation of the control-

oriented model is performed in simulation before applying the 

model to the real engine as a FF controller. The automatic 

adaptation simulation is implemented with experimental data 

which is collected under the driving condition which is shown 

in Fig. 6. The simulation environment is MATLAB® and 

Simulink® (MathWorks, Inc. registered trademark). In the 

simulation, experimental values of pre HRR timing and pre 

HRR value were given to NN cycle by cycle. The process of 

sequentially applying the data from the beginning to the end 

of this driving pattern to the NN is defined as one time of 

learning. Before the learning begins, the weight and bias of 

the NNs is adjusted so that the NNs can output model 

parameters whose value is close to the conventional ones 

derived by multiple regression analysis. Fig. 7 shows the 

prediction result of the models after 500 learnings. The black 

dashed line is the measured value from the actual engine, 

which is the target value of the automatic adaptation 

algorithm. The blue solid line shows the result of using fixed 

model parameters adapted by multiple regression analysis. 

The red solid line indicates the result when automatic 

adaptation is applied. The model with automatic adaptation 

performs better in both predictions compared to the 

conventional model, particularly in accelerating operation in 

about 160~580th cycle. In steady state driving in 1~160th 

cycle and 580~700th cycle, the conventional model predicts 

pre HRR timing slightly better than the automatic adaptation 

model, but in the prediction of pre HRR value, the accuracy 

of the automatic adaptation model is better. However, there 

are some cycles where the prediction results are bad. In 

around 150~160th cycle, the red line goes the opposite of the 

black dashed line in both two predictions. This is because the 

data of the transient in 150~160th cycle is quite little 

compared to other driving condition. Also the in-cylinder gas 

state of the transient in 150~160th cycle should be pretty 

different with other cycle, considering it is immediately after 

a significant increase of injection quantity. For these reasons, 

the data in 150~160th cycle is not fully learned, hence the 

accuracy drops. 

Fig. 8 shows the model's prediction accuracy (RMSE) for the 

learning time. The horizontal axis indicates the time of 

learnings, and the vertical axis indicates the RMSE of the 

prediction result. In every 50 times of learnings, RMSE is 

calculated with the same driving pattern. This figure shows 

that the prediction accuracy of the automatic adaptation 

model gets better than the conventional model after 50 times’ 

learning, and it continues to improve as the number of 

 

Fig. 6 Driving condition for automatic adaptation in 

simulation 

 

Fig. 7 Prediction result of the models after 500 learnings 

 

Fig. 8 Prediction accuracy of the automatic adaptation 

model in simulation 

 

Fig. 9 History of the model parameters in simulation 
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learning increases. The history of model parameter is shown 

in Fig. 9. The blue dashed lines are the fixed model 

parameters adapted by multiple regression analysis, and black 

and red lines are values of parameters after 100 and 300 times 

of learning. Fig. 9 shows model parameters changing 

according to the operating conditions in real time. 

6. CONTROL EXPERIMENT 

In this chapter, the result of the control experiment is 

introduced. First, the design of the (FF) controller is described. 

Next, the FF controller with automatic adaptation algorithm 

is installed to the rapid prototyping and control experiment 

was carried out. 

6.1 The design of the FF controller 

By using the model introduced in chapter 3, the feed-forward 

(FF) controller is designed and the control system is shown in 

Fig. 10. The FF controller consists of two parts, an inverse 

model and a compensator for errors produced by linearization. 

As the model is made up of many equations, it is difficult to 

obtain an inverse model analytically. Linearization procedure 

using relation between perturbed input and output is 

introduced. After the model parameters are updated, the 

calculation is executed several times when the input is 

perturbed under the current operating condition 𝐮𝐝 . The 

calculation is performed three times for each input, so the 

number of calculations is 3n, where n is the amount of input 

and output. The linear model 𝐲 = 𝐀𝐮 + 𝐁 can be obtained 

from the output response, and the inverse model is derived by 

multiplying 𝐀−𝟏. In addition, since the combustion model has 

nonlinearity, an error may arise from the above linearization 

method and the compensator for occurred error is set. The 

control input 𝐮𝐛 (in this study, the timing and the quantity of 

pre injection) derived from the inverse model is inputted 

again into the original combustion model and the predicted 

result 𝐲𝐛 (in this study, pre HRR peak timing and value) is 

calculated. The difference between the predicted result 𝐲𝐛 and 

the target value 𝐲𝐫𝐞𝐟  is multiplied by the inverse model 

coefficient matrix 𝐀−𝟏  to obtain the input correction. The 

above process is executed in every cycle. 

6.2 Control experiment result 

We noticed that the model parameters are very sensitive 

because they are power or exponential in the target models. 

Although it is desirable to set limit or saturation to ensure the 

stability of the control system, in this research, it is difficult 

because like the model parameter value, the value of limit or 

saturation cannot be found in physical way. To solve this 

problem, while keeping the driving condition the same as 

shown in Fig. 6, we collect data where various pre injection 

patterns, including the lower and the upper limit of pre 

injection timing and quantity, are applied. In that way, the 

over-learning can be avoided, which means the accuracy of 

the model could be improved in not only just one certain 

injection pattern but also various conditions, hence the 

stability of the controller is improved. 

The control experiment is performed with the model 

parameter obtained in simulation using the data mentioned in 

last paragraph. The test condition and the result are shown in 

Fig. 11. In this test, online learning is not conducted while 

 

Fig. 11 Driving condition and result in the control test 

without online learning 

 

Fig. 10 Block diagram of feed-forward control system 

 
Fig. 12 Driving condition and result in the control test with online learning 
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executing control. The black line refers to the control target, 

the blue line is the result of the conventional controller which 

model parameters are adapted by multiple regression analysis, 

and the red line is the result of the automatic adaptation 

controller. The figure shows that the control accuracy of the 

automatic adaptation controller cannot be better than the 

conventional one by only using the model parameters 

obtained from simulation. Next, the control experiment is 

executed while the learning is being conducted. The driving 

pattern shown in Fig. 11 is repeated for eight times, and how 

control accuracy changes as the time of repetition increases is 

observed, which is shown in Fig. 12. The black dashed line 

refers to the target of control, the red line is the result of the 

automatic adaptation controller. The control accuracy 

expressed by RMSE is shown in Fig. 13. Overall, as the 

learning time of the repetition increases, the control accuracy 

gets better and better. The control accuracy of pre HRR 

timing gets a little worse in the 5th and the 8th repetition, 

which is considered to be caused by the fluctuation of the 

weight and bias of the NN.  

7. CONCLUSIONS 

In this paper, the authors developed an online automatic 

adaptation method for model-based control of diesel engines. 

An automatic adaptation method based on neural networks 

has been developed to adapt the model parameters existing in 

a control-oriented physically rich combustion model. The 

prediction accuracy of the automatic adaptation model was 

evaluated by simulation. In addition, availability of the 

automatic adaptation model as the FF controller was 

evaluated by experiment. The proposed method is able to 

improve the prediction accuracy of the engine control model, 

then improve the control accuracy of the FF controller based 

on the model. Also, the calculation load of the controller is 

light enough to conduct on actual engine with the rapid 

prototyping system. However, the stability of the control 

system still needs improvement as the future work. 

ACKNOWLEDGEMENTS 

This paper is the result of a collaborative research program 

with the Research association of Automotive Internal 

Combustion Engines (AICE) for fiscal year 2019-2020. The 

authors gratefully acknowledge the concerned personnel. 

REFERENCES 

Cao, J., Takahashi, M., Yamasaki, Y., and Kaneko, S. (2019). 

Online automatic adaptation for model-based control of 

diesel engine. Powertrains, Fuels & Lubricants, 

JSAE20199184 / SAE2019-01-2320. 

Eguchi, M., Mengxing, Q., Ohmori, H., Yamasaki, Y., and 

Kaneko, S. (2018). Diesel engine combustion control 

using feedback error learning with artificial intelligence 

feedforward controller. Transactions of Society of 

Automotive Engineers of Japan, 49(2), 230-234. 

Fuyuto, T., Taki, M., Ueda, R., Hattori, Y., Kuzuyama, H., 

and Umehara, T. (2014). Noise and Emissions Reduction 

by Second Injection in Diesel PCCI Combustion with 

Split Injection. SAE International Journal of Engines, 

7(4), 1900-1910. 

Grasreiner, S., Neumann, J., Wensing, M., and Hasse, C. 

(2017). Model-based virtual engine calibration with the 

help of phenomenological methods for spark-ignited 

engines. Applied Thermal Engineering, 121, 190-199. 

Hu, B., Yang, J., Li, J., Li, S. and Bai, H. (2019). Intelligent 

Control Strategy for Transient Response of a Variable 

Geometry Turbocharger System Based on Deep 

Reinforcement Learning. Processes, 7(9), 601. 

Jade, S., Larimore, J., Hellström, E., Stefanopoulou, A. G., 

and Jiang, L. (2015). Controlled Load and Speed 

Transitions in a Multi cylinder Recompression HCCI 

Engine. IEEE Transactions on Control Systems 

Technology, 23(3), 868-881. 

Livengood, J. C. and Wu, P. C. (1955). Correlation of 

autoignition phenomena in internal combustion engines 

and rapid compression machines. Symposium 

(International) on Combustion, 5(1), 347-355. 

Makowicki, T., Bitzer, M., Grodde, S., and Graichen, K. 

(2017). Cycle-by-Cycle Optimization of the Combustion 

during Transient Engine Operation. IFAC-PapersOnLine, 

50(1), 11046-11051. 

Ravi, N., Jungkunz, A. F., Roelle, M. J. and Gerdes, J. C. 

(2010). Model-based control of HCCI engines using 

exhaust recompression. IEEE Transactions on Control 

Systems Technology, 18(6), 1289-1302. 

Reitz, R.D, and Bracco, F.B. (1979). On the dependence of 

spray parameters on nozzle design and operating 

conditions. SAE technical paper 790494. 

Takahashi M., Yamasaki Y., Kaneko S., Koizumi J., Hayashi 

T. and Hirata M. (2018). Model-Based Control System 

for Air Path and Premixed Combustion of Diesel Engine. 

IFAC-PapersOnLine, 51(31), 522-528. 

Takahashi M., Yamasaki Y., Kaneko S., Fujii S., Mizumoto 

I., Hayashi T. and Hirata M. (2019). Model-based control 

system for a diesel engine. IFAC-PapersOnLine, 52(5), 

171-177. 

Yamasaki, Y., Ikemura, R., Shimizu, F., and Kaneko, S. 

(2019a). Simple combustion model for a diesel engine 

with multiple fuel injections. International Journal of 

Engine Research, 20(2), 167-180. 

Yamasaki, Y., Ikemura, R., Takahashi, M., Kaneko, S., and 

Uemichi, A. (2019b). Multiple-input multiple-output 

control of diesel combustion using a control-oriented 

model. International Journal of Engine Research, 20(10), 

1005-1016. 

Zarghami, M., Hosseinnia, S. H. and Babazadeh, M. (2017). 

Optimal Control of EGR System in Gasoline Engine 

Based on Gaussian Process. IFAC-PapersOnLine, 50(1), 

3750-3755. 

 

Fig. 13 Prediction accuracy of the automatic adaptation 

controller in control test 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14243


