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Abstract: Optimal control for Water Distribution Networks (WDN) is subject to complex
system models. Typically, detailed models are not available or the implementation is too
expensive for small utilities. Reinforcement Learning (RL) methods are well known techniques
for model-free control. This paper proposes a model-free controller for WDNs based on RL
methods and presents experimental evidence of the practicality of the design.
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1. INTRODUCTION

Water Supply Systems (WSS) are critical infrastructures
which deliver water from a source to a number of end-
users. These systems consist of the following main parts:
water sources, treatment plant and storage, transmission
stations and distribution network. The WSS studied in
this paper consists of the infrastructure after the water
treatment plant, where drinking water is transported long
distances through a distribution network to the consumer
districts. The system overview is illustrated in Fig. 1.
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Fig. 1. Illustration of a simplified water distribution net-
work with a pumping station and a storage tank where
a city district is supplied through a ring topology
network.

The elevated reservoirs (ER) play an important role in a
water distribution network. The ER contribute to the pres-
sure regulation of the network, additionally these storage
units provide extra water capacity to meet demands in
different scenarios such as peak demand periods, service
works or emergency situations. Having certain storage
capacity combined with proper control strategies, provides
the system a suitable framework for energy efficient man-
agement as shown in many studies Leirens et al. [2010],
Wang et al. [2017], most of them in the Model Predictive
Control (MPC) framework.

Efficient management of these infrastructures requires
complex control algorithms and detailed network models.
This requirement increases the commissioning cost of these
controllers and makes these strategies unaffordable for
most of small utilities. Therefore, plug & play techniques
are proposed to give a control solution which adapts to
the network complexity, Kallesøe et al. [2017] Jensen et al.
[2018].
Reinforcement learning (RL) is a type of machine learn-
ing used in multiple disciplines including control of sys-
tems. RL methods are employed to find optimal control
policies despite of model uncertainties Sutton and Barto
[2018], Bertsekas [2007]. Hence, control RL (model-free)
approaches can provide a great advantage when imple-
menting a control solution in large-scale systems. Promis-
ing results are presented in Ertin et al. [2001], Castelletti
et al. [2002] and Ochoa et al. [2019] using RL methods
as hierarchical control strategy for other water systems
applications.
When dealing with large-scale continuous systems, the
amount of state-action pairs required to map values of
the system must be considered. RL techniques where the
values are stored can become computationally expensive.
Instead, function approximation methods evaluate at ev-
ery step the state-action pair, leading to a compact repre-
sentation and efficient use of the data samples Lagoudakis
and Parr [2003].
Lewis and Vamvoudakis [2011] and Lewis et al. [2012]
present Q-learning algorithms that converge to an optimal
controller by using function approximations. These meth-
ods find an approximate value function which replaces the
complete mapping of the enormous state-action space.

This paper presents an online control solution that uses a
Q-Learning algorithm for a system with unknown dynam-
ics. Additionally, this paper presents a novel reformulation
of the state space for including an integral control action
on the controller response. Part of the RL algorithm is
based on the Linear Quadratic Tracking (LQT) controller
presented in Kiumarsi et al. [2014]. This approach assumes
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that a full state feedback is available and the reference
signal is given by a linear function. In order to validate
that this optimal control solution is able to adapt to
different network structures and scenarios, the algorithm is
tested in a laboratory testbed which emulates a reference
WDN. This reference model is based on a realistic network
structure which can be typically found in small utilities
like Bjerringbro in Denmark. It consists of a single pump-
ing station, a storage tank and the different consumers
are interconnected in a ring topology network. Numeri-
cal results are obtained in a simulation of Bjerringbro’s
WDN. Subsequently, experimental results are obtained at
the Smart Water Infrastructure (SWI) laboratory at Aal-
borg University. This modular testbed allows to replicate
real infrastructures in a smaller scale. The laboratory is
adapted to qualitatively emulate the particular study case.

The rest of this paper is organised as follows. Section 2
recapitulates LQR formulation using Bellman equation.
Section 3 describes the model of the WDN. Section 4
reviews the control algorithm design. Section 5 presents
the simulation and experimental results as well as an
overview of the testbed used. Section 6 sums up the
contributions of the work and relevant ideas for future
work.

2. PRELIMINARIES

The work presented in the following section is based on
the contribution of Lewis and Vamvoudakis [2011] and
Lewis et al. [2012] on optimal control and RL. First, a
LQR problem is reformulated with the Bellman function.
Then, a Q-learning approach is considered to address a
LQR problem without knowledge of the system dynamics.
Although the following control approach is considered
model-free, the problem structure developed in Section 2.1
is used as reference.

2.1 Bellman function based LQR problem

Consider the following linear discrete-time system in the
state-space form

xk+1 = Axk +Buk,

yk = Cxk,
(1)

where xk ∈ Rna are the system states, uk ∈ Rma are the
control inputs, and yk ∈ Rpa are the system outputs and
A,B and C are constant matrices with compatible dimen-
sions. The reward function is formulated as a quadratic
function of the states as follows

V (xk) =
1

2

∞∑
i=k

γi−kρ(xi, ui) =
1

2

∞∑
i=k

γi−k
[
xTi Qxi + uTi Rui

]
,

(2)
where Q>0, R>0 are weights of the cost function ρ(x, u)
and 0 < γ < 1 represents a discount factor that reduces
the weight of the cost obtained further in the future. Then,
the feedback control policy is given by the linear controller

uk = π(xk) = −Kxk (3)

The optimal control policy is found by solving the Linear
Quadratic Regulator (LQR) problem by minimising (2)
over infinite horizon

V ∗(xk) =
1

2
min
u

∞∑
i=k

γi−k
[
xTi Qxi + uTi Rui

]
, (4)

using the given state feedback policy uk, the solution to
the Algebraic Riccati Equation (ARE) gives the matrix P
such that

V ∗(xk) =
1

2
xTk Pxk, P = PT > 0 (5)

Alternatively, a formulation of this problem can be
described by the Bellman equation

V (xk) =
1

2
ρk(xk,Kxk) + γV (xk+1), (6)

where V (xk+1) is the cost of the policy K evaluated at the
next time step. This paper uses a similar version of (6),
a q-function where the state xk and control action uk are
explicitly expressed:

q(xk, uk) =
1

2
ρk(xk, uk) + γV (xk+1) (7)

By introducing the associated cost function from the LQR
problem and (5), the q-function can be expressed as

q(xk, uk) =
1

2
(xTkQxk + uTkRuk) + γxTk+1Pxk+1

= xTkQxk + uTkRuk + γ(Axk +Buk)TP (Axk +Buk)
(8)

Then, (8) can be expressed in a matrix form as follows

q(xk, uk) =
1

2

[
xk
uk

]T [
γATPA+Q γATPB
γBTPA γBTPB +R

] [
xk
uk

]
(9)

Rearranging (9) in a compact form yields

q(xk, uk) =
1

2

[
xk
uk

]T [
Hxx Hxu

Hux Huu

] [
xk
uk

]
,

1

2
zTkHzk (10)

where z(xk, uk) = [xk, uk]
T

. Subsequently, the optimal
control policy is given by

u∗k = argmin
u

q(xk, uk) = −H−1uuHuxxk (11)

This is the optimal control action when the system dy-
namics is completely known and full state feedback xk is
available.

2.2 Q-learning for LQR

In this section, the system dynamics is unknown. Then,
the Bellman optimality principle is applied to formulate
the q-function (7) in a recursive form.
First, by introducing the Bellman optimality equation
V ∗k (xk) = minu qk(xk, uk) into the q-function (7) leads

qk+1(xk, uk) = ρk(xk, uk) + γqk(xk+1,K
∗xk+1), (12)

where K∗ is the optimal policy. In the future the next
state is denoted as x′ = xk+1.
Then, the q-function expression (12) is rearranged based
on the RL Temporal Difference (TD) method for predic-
tion proposed in Sutton and Barto [2018]

qk+1(xk, uk) =qk(xk, uk)

+α
[
ρ(xk, uk) + γmin

u
qk(x′, u)− qk(xk, uk)

]
,

(13)
where α represents the learning rate. Finally, the expres-

sion (13) is reformulated to obtain the update law which
gives the q value.

qk+1(xk, uk) =

(1− α)qk(xk, uk) + α [ρ(xk, uk) + γqk(x′, u′)]
(14)
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where u′ represents the optimal control action with u′ =
π∗(x).

3. SYSTEM MODEL

A WDN consists of a pipe network with different elements
such as valves, pumps and elevated reservoirs. The distri-
bution network is divided into several districts - Pressure
Zones (PZ), see Fig. 1. The end-users water consumption
(demands) are generally an unknown input or disturbance
to the system.

3.1 Network Model

The studied network model is restricted to a ring topology
which is a structure typically found in small water utilities.
This model can be simplified by unifying the end-users
(nodes) that are geographically close because the pressure
loss due to pipe resistance is relatively low between them
Maschler and Savic [1999]. Fig. 1 shows a standard ring
network where the multiple end-user demands are repre-
sented by aggregated demands from the main pipes dj , the
controlled inflow from the pumping station is denoted by
d0 and the tank inflow by dn+1. Due to mass conservation
in the network, the relation between supply flow d0, the
reservoir flow dn+1 and the end-user water consumption
dj can be denoted as

d0 + dn+1 = −
n∑
j=1

dj , (15)

where dj ≤ 0 and n is the number of end-user demands.
Then, by assuming that the distribution of daily water
consumption between the end-users is alike, the demand
profile for all the consumers can be described by

dj = βjd ∀j = 1, . . . , n (16)

where βj is a constant describing the distribution,∑n
j=1 βj = 1 and d is the total district demand in a PZ.

The pressure at the reservoir node pn+1 is given by the
level h in the reservoir and the geodesic level h0.

pn+1 = µ(h+ h0) (17)

where µ is a constant scaling the water level and pressure
unit and h is the tank level that belongs to an interval
restricted by the height of the reservoir. The reservoir level
rate depends on the flows leaving the reservoir (dn+1 and
dn+2)

Atḣ = −dn+1 − dn+2, (18)

where At is the constant cross sectional area of the
elevated reservoir and the outflow to other PZs dn+2. For
simplicity, in the laboratory test this outflow is not further
considered.

4. CONTROL

The management of WDNs must ensure the supply of
water to the end-users with sufficient pressure head and
quality, this task must be performed while considering
multiple objectives during the daily operation. Some stud-
ies performed in Ocampo-Martinez et al. [2013] state some
control objectives: economic, safety, smoothness and water
quality.

In this paper only safety is considered in the control strat-
egy, this means that the operational goal is to guarantee
the water supply to the end-users. This control task is
challenging due to the uncertainty of the water consump-
tion. Therefore, storage tanks must contain enough water
to meet future stochastic demands.

4.1 Internal Model Principle

One of the contributions of Kiumarsi et al. [2014] is the
solution to the LQT problem and quadratic form of the
LQT value function where the problem is formulated
as a quadratic form in terms of the system states x
and trajectory reference r. In this paper, an additional
extension of the state space is proposed for introducing an
integral action ξ which rejects the constant disturbances -
demands. The augmented system model is built as follows.
First, the physical model above (18) is expressed in a state
space form for the control design

ḣ = Ach+Bcu+Wcd

yc = Cch,
(19)

where h ∈ R represents the tank level, u ∈ R the
controlled inflow d0 and d ∈ R the end-user demand,
with Ac,Bc and Cc constant matrices with compatible
dimensions. Then, a reference trajectory r is defined by
a linear function

ṙ = Lr, (20)

where r ∈ R, then defining the integral error

ξ̇ = yc − r (21)

Equations (19), (20) and (21) are combined to build the
following augmented state space modelḣṙ

ξ̇

 =

[
Ac 0 0
0 L 0
Cc −I 0

][
h
r
ξ

]
+

[
Bc
0
0

]
[u] +

[
Wc

0
0

]
[d] (22)

Finally, expressing the state space representation (22) in
a more compact form for discrete time

xk+1 = Aexk +Beuk +Wedk
yk = Cexk,

(23)

where x = [h, r, ξ]
T

is the augmented state vector. A cost
(reward) function similar to the previously stated in (2) is
built by using the augmented system output from (23)

V (xk) =
1

2

∞∑
i=k

γi−k
[
yTi Qyi + uTi Rui

]
. (24)

By reformulating (24) with Ce =

[
Cc −1 0
0 0 1

]
, the cost

function includes the tracking error in terms of x and u.

V (xk) =
1

2

∞∑
i=k

γi−k[(Cchi − ri)TQ1(Cchi − ri)

+ ξTi Q2ξi + uTi Rui]

=
1

2

∞∑
i=k

γi−k(xTi Qexi + uTi Rui) =
1

2

∞∑
i=k

γi−kρ(xi, ui)

(25)
with Q1 > 0, Q2 > 0 and R>0 and
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Qe =

CTc Q1Cc −CTc Q1 0
−Q1Cc Q1 0

0 0 Q2

 . (26)

4.2 q-function Approximation using linear architectures

A linear architecture is selected for the approximation
over other black-box methods such as Neural Networks.
Although the latter methods can provide a more gener-
alised solution, a linear architecture is easier to implement
since its behaviour is more transparent, facilitating the
troubleshooting task when the algorithm fails.
The q-function proposed in (10) is linearly approximated
by a set of Basis Functions (BF) φ and the corresponding
coordinate vector θ or weights. The BFs are a combination
of monomial basis. Thus, learning upon the state vector
structure from (10) which is quadratic, a finite set of
monomial basis of 2nd degree polynomials, formed with x
and u, is chosen as follows. For a multi-index a ∈ Zna ≥ 0,
with | a |= a1 + · · ·+ ana

,

q̂(x, u) =
∑
|b|=2

θ(b,0)x
b +

∑
|a|=1

θ(a,1)x
au+ θ(0,2)u

2. (27)

Then, by representing (27) in a vector form

q̂(x, u) = φT (x, u)θ, (28)

where φ is an nb-dimensional column vector of BFs and θ
is an nb-dimensional coordinate vector and nb = mana +
pana +ma

φ = [x21, x1x2, . . . , x
2
na
, xnau, u

2]T (29)

Subsequently, the approximated control law can be de-
scribed as u = π̂(θ, x), where π̂(θ, x) can be computed by

u′k = argmin
u

q̂(xk, uk) = argmin
u

φT (xk, uk)θ (30)

This yields to the feedback control policy given by the
linear controller

u′k = K̂(θ)xk (31)
Alternatively, since (27) is quadratic with respect to x and

u, a moment matrix Ĥ can be formed with the coordinates
of the BFs such that

q̂(xk, uk) = zTk Ĥ(θ)zk, (32)

where zk = [xk, uk]
T

and Ĥ matrix is a symmetric matrix

parametrised with the coordinate vector θ as follows Ĥ =θ1
θ2
2 . . .

θ2
2 θ3 . . .
...

... θl

 where Ĥ ∈ Rnb(nb+1)/2

Note that q-function (10) and approximated q-function
(32) have the same quadratic structure.

4.3 Parameter Update

For the following method, a sample is organised as a tuple
of (xk, uk, ρk, x

′) and a data batch as a set of collected
samples (xls , uls , ρls , x

′
ls
| s = 1, . . . , nl) where nl is the

batch size and the index l is the batch iteration number.
The coordinate vector θ is initially unknown, therefore the
parameters must be recursively learned. For this, the q-
value approximation (28) is introduced into the update
law (13)

φT (xk, uk)θk+1 = (1− α)φT (xk, uk)θk

+ α
[
ρ(xk, uk) + γφT (x′, u′)θk

] (33)

Then, by evaluating (33) recursively, a batch of samples
is obtained. The update law for a batch is denoted as

ΦTl (x, u)θl+1 = (1− α)ΦTl (x, u)θl

+ α
[
Jl(x, u) + γΦTl (x′, u′)θl

] (34)

where Φ ∈ Rnb×nl is a matrix of BFs φ, J ∈ Rnl is
the vector of rewards ρ collected on a batch iteration
l. In order to solve the expression (34), a linear Least-
Squares Temporal Difference (LSTD) method, similar to
Lagoudakis and Parr [2003], is followed to solve the q-
function

θl+1 = (1− α)θl

+ αG−1l Φl(x, u)
[
Jl(x, u) + γΦTl (x′, u′)θl

] (35)

Note that a persistent excitation must be added to the
control signal such that the term Gl = ΦlΦ

T
l is invertible.

The equation (35) is solved by recursively executing the
steps described in Algorithm 1.

Algorithm 1 LSTD for Q-function.

1: Input: γ, α, ns,
2: Approximation mapping of the BFs,
3: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an

admissible policy.
4: repeat at every iteration k = 0,1,2, . . .
5: apply uk = Klxk and measure xk+1

6: Υls ← ρ(xk, uk) + γq̂(xk+1,Klxk+1)
7: if k = (l + 1)ns then
8: θl+1 ← (1− α)θl + αG−1l ΦlΥl

9: π̂(θl+1, x)← argminu ΦTl (x, u)θl+1

10: l← l + 1
11: end if
12: until ‖θl+1 − θl‖ < ε

5. RESULTS

To validate the practicality of the proposed control strat-
egy, algorithm 1 is tested in a computer simulation, then
deployed in the Smart Water Laboratory. In this appli-
cation example the pressure in the network is regulated
by controlling the level in the tank. The pressure at the
node pn+1 is set conservatively enough to meet the flow
demands. The weights of the reward function (24) are set
to prioritise the minimisation of the tracking error over
control action.
The discount factor γ is set close to 1 nearly to the optimal
solution, while the learning rate α is sufficiently small such
that the old information prevails over new information
collected.

5.1 Numerical Results

A simulation environment is developed with the purpose of
verifying the proposed control algorithm and training for
further implementation. This computer simulation repro-
duces the water network model from Bjerringbro, a sim-
plified version of the aforementioned network is illustrated
in Fig. 1.
As shown in Fig. 2, the tank level has an oscillatory
transient where the system dynamics are controlled with
a non-optimal policy. Once the learning is considered sat-
isfactory, the persistent excitation on the control action
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Fig. 2. Simulation Results. Top: Tank Level (blue), refer-
ence level(red) Bottom: Controlled input flow (blue),
Water Demands (red) (yellow)

0 0.5 1 1.5 2 2.5 3
-400

-200

0

200

0 0.5 1 1.5 2 2.5 3
-20

-10

0

10

20

Fig. 3. Simulation Results. Top: Coordinate vector. Bot-
tom: Control Policy

is no longer applied and the tank level stabilises at the
reference target despite of the demands d and dn+2. This
excitation consists of a sum of sines and cosines of different
frequencies. In Fig. 3, the coordinate vector parameters θ
converge to a satisfactory policy.

5.2 Experimental Results

The testbed scheme consists of a set of Laboratory Units
(LU) that can be interconnected to reproduce the de-
sired network. As mentioned earlier, data from Bjerringbro
WDN is used to emulate a real water utility. This WDN
consists of a single pumping station and storage units, see
Fig. 4.
The WDN is built in the laboratory by two aggregated

consumers in the City Districts (CD1 and CD2), a pump-
ing station (Pu1), an Elevated Reservoir (ER) and multi-
ple pipe units to reproduce the network structure. A local
controller ensuring fast flow control is implemented at Pu1.
CD1 and CD2 are equipped with a valve regulating the
water consumption. Different geodesic levels h0 at each
critical node (Pu1, ER, CD1, CD2) are simulated by air-
pressurising the collecting containers with the equivalent
head pressure. The LUs are equipped with multiple sensors
and actuators. Each of them has a soft-PLC in charge
of the data acquisition, local control and communication.
The soft-PLCs at the LUs are interfaced with CODESYS
Control. Furthermore, the LUs are interconnected to a
Central Control Unit (CCU) that can be used for central

management of the modules.
The control algorithm 1 for optimal level control is tested
in the described laboratory setup. An admissible initial
policy is given based on simulation training. As shown in
Fig. 5, the tank level is regulated around the reference
after some adaptation period. A small error is observed in
steady state due to the different accuracy of the flow sen-
sors. Fig. 6 shows the update of the q-function parameters
based on the new data, adapting the optimal policy to the
new system.

6. DISCUSSION AND FUTURE WORK

The q-learning algorithm succeeded in finding an approx-
imated optimal policy. However, the learning process in a
real system is uncertain. This exploration typically leads
to saturation of the control actuators and violation of the
safety boundaries on the testbed. This factor is a limitation
when implementing the controller on systems that have
physical boundaries compared with other solutions such
as MPC.
The integral action successfully rejects disturbances when
the demand profiles are constant. In real scenarios,
stochastic disturbances occur, which must be considered
in the control design. Due to the real system non-linearity
and stochastic disturbances, which are not considered in
this control approach, the algorithm does not reach a
smooth convergence of the parameters. However, it can be
observed that the variation of the controller gains remains
to a stable value during the learning, see Fig. 6.

In the future, in order to improve the applicability to
a high-dimensional system, this control approach can
be improved by considering periodic disturbances in the
control design. Moreover, a controller for WDNs must
include input and output constraints that set the safe
operation boundaries.

7. CONCLUSION

A model-free solution is proposed to regulate the level
in the ER in a WDN. This adaptive-optimal control is
successfully implemented on a small-scale WDN since the
tank level is regulated despite not having the network
model. Furthermore, a novel approach is presented, an
integral action in the control policy that compensates
steady-state constant disturbances. This solution offers an
easy-commissioning tool which can reduce the implemen-
tation costs.
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