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Abstract: Traffic prediction has great significance including but not limited to mitigating traffic 

congestion, reducing traffic accidents, and reducing waiting time. At the same time, traffic prediction, 

especially multi-step prediction, faces many difficulties including temporal correlations and spatial 

correlations. We propose a dual-stage attention based spatio-temporal sequence learning for multi-step 

traffic prediction which can not only express temporal correlation and spatial correlation, but also can 

adaptively learn the contribution weights of different related roads and historical moments. More 

specifically, for spatial dependencies, we first generate the input vector for each historical moment 

considering the information of relevant road segments by the method of spatial region of support and 

further add the first-stage attention termed spatial attention to automatically determine the weight of each 

relevant road segment for each historical moment. For temporal dependencies, we use LSTM based 

encoder-decoder networks to fully learn the temporal characteristic and make multi-step prediction 

considering temporal correlation between multi steps. We further add the second-stage attention termed 

temporal attention in the decoder part to automatically learn the contribution of different historical 

moments to each prediction moment. In addition, we consider external factors including weather and 

holidays and characterize their impacts using fully connected networks. Finally, the effectiveness of the 

proposed method is evaluated using traffic data in Hangzhou, China. 

Keywords: multi-step traffic prediction, attention mechanism, sequence learning, spatial correlation, 

temporal correlation. 



1. INTRODUCTION 

With the increment of global population and the acceleration 

of urbanization, the number of road networks and the number 

of motor vehicles have continued to increase, and traffic 

congestion has become a more and more serious problem. At 

the same time, traffic congestion directly leads to an increase 

in people's travel time, and it also leads to an increase in the 

time cost on work and a decline in the productivity of the 

whole society.  

In order to effectively alleviate the above problems, research 

on traffic prediction has gained increasing attention. As early 

as the 1980s, many scholars began to explore the use of 

statistical learning methods for short-term traffic prediction. 

Typical examples include the History Average Model, the 

Time Series Analysis Model, etc. Smith and Demetsky (1994) 

compared several traffic flow prediction algorithms including 

the historical average model. Williams used an exponential 

smoothing algorithm to optimize the historical average model 

when predicting traffic flow on urban highways. The time 

series data prediction methods can be used for traffic 

prediction. G. Box et al. (2010) analyzed the application of 

Auto-Regressive Integrated Moving Average (ARIMA) in 

time series forecasting and control. The model are relatively 

simple, which generally have low precision and cannot fit 

complex traffic flow relationships. An empirical models and 

frequency-band separation based method (Zhao et al., 2014) 

is proposed to make online time series prediction which does 

not need to adjust model parameters when predicting future 

data for other subjects. Another prediction model which 

allows incremental learning and can be migrated to new 

subjects is proposed for time series prediction (Luo and Zhao, 

2019), which, however, can not well represent complex 

characteristics of traffic data since the base model is linear. 

Recently, more and more research has applied machine 

learning including deep learning in the field of traffic 

prediction. A traffic flow forecasting method based on 

Support Vector Regression and Particle Swarm Optimization 

(PSO) is proposed (Hu et al., 2015). Lv et al. (2015) proposed 

a deep learning based method which is the first time that a 

deep architecture model is applied using auto encoders as 

building blocks to represent traffic flow features for 

prediction. However, the above methods only consider the 

values of adjacent moments before the predicted time, 

ignoring the influence of longer time scales and the spatial 

correlation. The deep learning model represented by the 

recurrent neural network (RNN) and the convolutional neural 

network (CNN) has been used by more and more scholars in 

traffic prediction in recent years. Zhang et al.(2016) proposed 

CNN based prediction model and its improved version ST-

ResNet (Zhang et al., 2017) which used the advantages of 

CNN network to fully express the spatial correlation of traffic 

flow, but the temporal characteristics are not fully expressed 
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and the grid region has no actual physical meaning in real 

world. The LC-RNN model (Lv et al., 2018) effectively 

integrates RNN and CNN, and has the advantage that RNN is 

good at capturing timing characteristics and CNN is good at 

capturing spatial characteristics. An encoder-decoder 

networks for traffic speed prediction is proposed which 

considered temporal correlation and spatial correlation and 

can make multi-step prediction (Liao et al. 2018). In addition 

to deep learning, a spatio-temporal broad learning networks 

for traffic speed prediction (ST-BLN) (Cui and Zhao, 2019) 

is proposed which can make one-step traffic prediction faster 

and more accuracy. And the method of spatial region of 

support and temporal region of support is also proposed in 

this paper to effectively select related road segments and 

historical moments. But all of the above work did not 

consider the contribution of different historical moments and 

the contribution of different related sections.  

The traffic prediction problem is a very complicated problem, 

and there are still areas for improvement. In this paper, we 

propose dual-stage attention based spatio-temporal sequence 

learning for multi-step traffic prediction. Specifically, we 

utilize Long Short Term Memory (LSTM) based encoder-

decoder networks to express the temporal dependencies and 

timing characteristics. To deal with the spatial correlations, 

we generate the input vector for each historical moment 

considering the information of relevant road segments using 

the method of spatial region of support. And we further add 

the first-step attention to the input vector to automatically 

determine the weight of each relevant road segment for each 

moment. Then the information of multiple historical 

moments is sequentially input to the encoder part for 

encoding. In the decoding part, we also add the attention 

mechanism to to adaptively select relevant encoder hidden 

states across all time steps, i.e., the second-stage attention in 

the proposed method. Thus, when the decoder part decodes at 

each prediction moment, it will comprehensively consider the 

information of all the moments of the encoder part and 

automatically learn to determine the weight of the 

information of different historical moments. The outputs of 

the decoder at each moment would be further combined with 

external factors including weather and holidays into a fully 

connected network and finally outputs the prediction results 

of multiple time steps in the future. Our proposed method can 

not only express temporal dependencies and spatial 

dependencies, but also automatically determine the 

importance of different relevant road segments and different 

historical moments. In addition, it fully considers external 

factors and can perform multi-step prediction. 

Our contributions are three-fold:  

 Considering different contribution of different related 

road segments to the target road segment, we add the 

first-stage attention, termed spatial attention, to the input 

vectors. It can automatically learn the weights of various 

relevant road segments to obtain a new weighted input 

vector for each moment.  

 Considering the different impacts of different historical 

moments on the forecasting moment, we add the 

second-stage attention, termed temporal attention, in the 

decoder part. It can automatically learn the contribution 

weights of different historical moments to each 

prediction moment.  

 We utilize the architecture of encoder decoder to make 

multi-step prediction and utilize fully connected 

networks to express the influence of external factors, 

including weather and special events etc. 

The rest of this paper is structured as follows. We briefly 

introduce the attention mechanism in Section 2. The 

architecture of the proposal method is introduced in Section 3. 

The effectiveness of the proposed method is evaluated in 

Section 4. Finally, the conclusion is summarized in Section 5. 

2. PRELIMINARY 

In this section, we briefly introduce LSTM which has been 

widely used in time series prediction. LSTM is an improved 

method based on RNN which can solve the problem of 

gradient disappearance in long-term dependencies by 

introducing three sigmoid gates, forget gate, input gate and 

output gate. 

Given the input sequence 1 1( , ,..., )TX x x x  with n

t x , 

where n is the dimension of  exogenous series. The forget 

gate tf , input gate ti and output gate to are defined and 

updated as follows. 

 
1( [ ; ] )t f t t f  f W h x b   (1) 

 1( [ ; ] )t i t t i  i W h x b   (2) 

 1( [ ; ] )t o t t o  o W h x b   (3) 

where 1[ ; ]t th x  is a concatenation of the previous hidden 

state 1th  and the current input tx . , ,f i oW W W  and 

, ,f i ob b b are parameters to learn.  is a logistic sigmoid 

function. 

Then the current cell state and hidden state are calculated as 

follows 

 1 1tanh( [ ; ] )t t t t s t t s   s f s i W h x b   (4) 

 tanh( )t t th o s   (5) 

where sW , sb are parameters to learn,  is an elementwise 

multiplication. 

The core concept of LSTM is the state of the cell and the gate 

structure. Cell state can be seen as the memory of the 

network. The state of the cell is able to pass on important 

information in the sequence. Therefore, even information of 

an earlier time step can be carried into cells of a later time 

step, which overcomes the effects of short-term memory. The 

addition and removal of information is achieved through the 

gate structure, which learns what information to save or 

forget during the training process. 
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3. METHODOLOGY 

In this section, the details of the proposed dual-stage attention 

based spatio-temporal sequence learning for multi-step traffic 

prediction will be introduced. Traffic flow has strong 

temporal dependences and spatial dependences. More 

specifically, traffic at historical moments will have an impact 

on current prediction moment, and the impact of different 

historical moments is different. At the same time, Traffic on a 

single road segment is affected by some relevant road 

segments in the road network, the contribution of each 

relevant road segment is also different. In addition, some 

external factors such as weather, holidays also affect the 

traffic. In response to the above points, we design a model to 

solve these problems well. The architecture of our method is 

shown as Fig. 1. 

 

Fig. 1. Architecture of dual-stage attention based spatio-

temporal sequence learning for multi-step traffic prediction 

The encoder-decoder model is utilized as the base in which 

both of the encoder part and decoder part are composed of 

some LSTM units. LSTM can fully extract the timing 

characteristics of time series data and avoid gradient 

disappearance in long-term dependency problems. First, the 

method of spatial region of support is used to filter out the 

top k relevant road segments of the target road segment. Thus 

we get a k-dimensional input vector at each moment of m 

historical intervals. And we add the first-stage attention to 

learn and automatically determine the weight of each relevant 

road segment at each historical moment. After the first-stage 

attention, a new input vector is generated and sent to the 

LSTM unit in encoder part. In decoder part, for each time 

interval in multiple prediction intervals, we add the second-

stage attention to learn the weights of all the encoder 

information of hidden states and get a weighted sum of these 

hidden states as the information of hidden layer for the 

current prediction moment. Then the output of the current 

LSTM unit will be combined with external discrete 

information and sent to a fully connected network. target

tx  is 

the final prediction result at t moment of the target road 

segment. Next, we will introduce the encoder part and the 

first-stage attention and the decoder part and the second-stage 

attention separately. 

3.1 The Encoder Part and First-stage Attention 

In encoder part, there are m LSTM units each of which 

represents one historical interval where m is the size of the 

historical time window.  Define 
pt  as the first prediction time 

interval, for the ith historical interval 

( , ,...,1 1p p pi t t tm m     ), there is a raw input vector 

1 2[ , ,..., ]k

i i i ix x x x  generated by the method of spatial region 

of support. Where k is the dimension which represents the 

number of related road segments used in our model and each 

dimension represents the traffic flow or speed of a related 

road segment at ith historical interval. We do not send the 

raw input vector to the encoder networks because there are k 

related road segments which are not equally important to the 

target road. Instead, we add the first-stage attention called 

spatial attention to the input vector in order to learn the 

weights of these related road segments. The spatial attention 

mechanism computes the attention weights for input series 

conditioned on the previous hidden state and cell state in the 

encoder and then feeds the newly weighted input vector into 

the encoder LSTM unit.  

The computation process of ith input moment is as follows. 

First, we generate the score, which can be represented as 

follows 

 
1 1tanh( [ ; ] )j T j

i e e i i ee   v W h s U x   (6) 

where 1, 2,...,j k ,
1

f

i h and 
1

f

i s are the previous 

hidden state and the cell state in the encoder LSTM unit, j
x  

is the jth dimension of input 

series, 2, ,m m f m m

e e e

   v W U  are parameters to 

learn.  

Next we convert the score into a probability distribution by 

normalization as follows. 

 
1

exp( ) / exp( )
k

j j g

i i i

g

e e


    (7) 

Finally we get a newly computed input as follows 

 1 1 2 2ˆ ˆ ˆ ˆ[ , ,..., ]k k

i i i i i i i  x x x x   (8) 

In this way, we emphasize the weight of different road 

segments at different times. Thus our method can express the 

spatial correlation closer to the reality then others. The LSTM 

units can be updated as (4) and (5) above and all of the 
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hidden states of encoder LSTM units will be used in decoder 

part. 

3.2 The Decoder Part and Second-stage Attention  

Another LSTM based networks is used to predict the result in 

decoder part. Temporal dependences are significant in traffic 

prediction because historical traffic information is related to 

the current moment. Traditional decoder with LSTM units 

only uses the hidden layer information at the last moment of 

the encoder, so the information of early moments deteriorates 

rapidly as the length of the input sequence increases. At the 

same time, the information of historical moments play a 

important role to the prediction and different historical 

moments have different effects on the forecasting moment 

which should be reflected in our model. To solve the 

problems, we add the second-stage attention to the decoder 

part to adaptively select relevant encoder hidden states across 

all time steps.  

The implementation process is as follows. Define t as the 

current prediction moment, first we generate the score 

conditioned on the previous hidden state and cell state in the 

decoder and each hidden state in encoder which can be 

represented as follows 

 ' '

1 1tanh( [ ; ] ),  1i T

t d d t t d il h s i m    v W U h   (9) 

where '

1th 
and '

1ts 
 are respectively the previous hidden state 

and cell state of the prediction LSTM unit, ih is the hidden 

state of the ith LSTM unit of encoder, m is the number of 

LSTM units in encoder part, , ,d d dv W U are parameters to 

learn. 

The second step is to convert the score into a probability 

distribution by normalization as follows 

 
1

exp( ) / exp( )
m

i i j

t t t

j

l l


    (10) 

Then the weighted sum of m encoder hidden states is 

calculated as follows 

 
1

m
i

t t i

i




c h   (11) 

We concatenate tc  with the previous prediction result 1ty   to 

generate a new input vector for moment t in decoder. 

 1[ ; ]t t ty x c   (12) 

Then we can update the LSTM units in decoder as (4) and (5) 

mentioned above. In this way, when making prediction at the 

current time, we not only make full use of the information of 

historical moments, but also take into account the differences 

in the influence of different historical moments on the current 

moment. Thus we fully express the temporal dependences in 

traffic prediction. At the same time, the network structure can 

naturally perform multi-step prediction and maintain timing 

correlation for each prediction step. 

3.3 External Factors 

In addition to the spatio-temporal dependences, we also take 

the external factors including weather condition, holidays and 

weekends into consideration. When predicting the traffic at t 

moment, we concatenate the output of decoder and the 

discrete vector composed of external factors and feed them to 

a fully-connected network as follows 

 ( [ ; ] )t t t t ty y b W d   (13) 

where ty  is the output of decoder, td is external discrete 

vector, tW and tb are parameters to learn. 

4.  EXPERIMENTS AND RESULTS 

In this section, experiment is conducted on a real world 

traffic speed prediction case to evaluate the effectiveness of 

the proposed method. 

4.1 Dataset 

The experimental data used in this paper is derived from 

Hangzhou taxi GPS data. Hangzhou taxis are equipped with 

GPS, so we can get their location information, including 

longitude and latitude and instantaneous speed. At the same 

time, some external factors, such as weather, holidays and 

other events also affect traffic conditions, so we have also 

collected them. The details of the data set and processing 

method are as follows. 

Data of 8000 taxis in Hangzhou, China from October 1, 2013 

to January 31, 2014 is consisted in this traffic dataset. Each 

record contains the instantaneous speed, the corresponding 

latitude and longitude coordinate. The road network in 

Hangzhou is roughly divided into many road segments. 

Without loss of generality, we randomly choose 200 road 

sections for analysis. 

The external factors that we consider in this paper include 

weather and holidays. The weather dataset is obtained from 

Chinese Weather Report Net, which contains information on 

precipitation, temperature, and wind speed from October 1, 

2013 to January 31, 2014. The weather information is 

updated once per hour. The weather states are divided into 3 

kinds, depending on the precipitation because the pavement 

humidity has a direct influence on people’s driving behaviour. 

For special days, dates are divided to three categories 

including working days, weekends and festivals because 

people have different travel rules on dates of different 

categories. 

4.2 Preprocessing 

In order to estimate the speed of the traffic flow, we define 

the average speed of a road segment over a certain time 

interval, that is, for each road segment, calculate the average 

speed (km/h) of all GPS records of the road segment during a 

specific time interval. Due to the large size of the road 

network but the limited number of taxis, we set the time 

interval to one hour to ensure at least one record in each time 
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period. For example, for a road segment, the average speed at 

9 am on November 1 is the expected speed value for all GPS 

records from 9 am to 10 am. At the same time we will 

smooth out the outliers. 

4.3 Settings 

The data from September 1, 2013 to January 31, 2014 is used 

to build and evaluate the ST-BLN methodology. We 

randomly selected 10 road segments to model their traffic 

speed and analyze the results. We utilize 3000 sets of training 

data to predict the future traffic speed, while the other 500 

sets of data are adopted to test the prediction performance. In 

our experiment, the prediction step is set to 3, the size of 

encoder m  is set to 24. The dimension of LSTM hidden state 

is set as 96.  

The proposed method is compared with the previous method 

ST-BLN (Cui and Zhao, 2019), Deep Neural Network (DNN) 

and Support Vector Regression (SVR) (C.Cortes and 

V.Vapnik, 1995). For ST-BLN, the number of enhancement 

nodes is set to 100. For DNN, the depth is set to 3, and every 

layer has 100 neurons. For SVR, we use RBF kernel. 

Because the latter three methods can only predict the one-step 

traffic speed, whose goals are slightly different from our 

model. So on the testing stage, we treat prior prediction as 

observations and use them for next prediction. 

4.4 Evaluation Metric 

We measure our method by Root Mean Square Error (RMSE) 

as 

 2ˆ(1/ ) ( )i i

i

RMSE z x x     (14) 

where x̂  and x  are the predicted value and ground truth, 

respectively, z  is the number of all predicted values. 

4.5 Results and Analysis 

Table 1 shows the RMSE of our proposed method and other 

three methods on 10 randomly selected road segments. It can 

be observed that the proposed method in this paper 

outperforms the other three methods on each road segments 

for each prediction step. The RMSE value of our method is 

1.36% to 2.90% lower than other methods, which is a 

significant improvement of accuracy. Besides, to observe the 

stability of the proposed method, we calculate the standard 

deviation (std) of 10 road segments for each prediction step, 

the results indicate the proposed method is the most stable of 

all the four methods. 

To show results more intuitively, we plot the mean value and 

standard deviation of RMSE of our method and other three 

methods on 10 road segments which is shown in Fig. 2. From 

the figure, we can further verify the validity of the results. In 

addition, we can see that as the prediction step size increases, 

the accuracy of our method drops significantly slower than 

other methods. Our method makes full use of historical time 

information for each prediction step, adaptively adjusts the 

weight of each historical moment, and consider the previous 

prediction value. However, other methods rely too much on 

the previous prediction value and can not adjust the weight of 

information at each historical moment which amplifies the 

Table 1.  RMSE comparing between our method and other methods 

Road 

Seg-

ment 

Our Method ST-BLN DNN SVR 

60 

(min) 

120 

(min) 

180 

(min) 

60 

(min) 

120 

(min) 

180 

(min) 

60 

(min) 

120 

(min) 

180 

(min) 

60 

(min) 

120 

(min) 

180 

(min) 

1 2.754 3.154 3.715 2.773 3.451 4.126 3.042 3.478 4.253 3.014 3.501 4.261 

2 2.613 3.122 3.601 2.649 3.272 4.028 2.837 3.302 4.029 3.191 3.256 4.004 

3 1.729 2.244 2.803 1.753 2.503 3.219 1.763 2.597 3.322 1.774 2.518 3.327 

4 2.816 3.412 4.017 2.842 3.615 4.315 2.888 3.665 4.396 2.893 3.671 4.385 

5 2.350 2.965 3.456 2.357 3.102 3.902 2.352 3.213 3.917 2.427 3.217 3.900 

6 2.083 2.602 3.204 2.109 2.794 3.621 2.251 2.681 3.713 2.532 2.803 3.681 

7 2.362 2.919 3.412 2.378 3.067 3.812 2.520 3.124 3.808 2.490 3.121 3.826 

8 1.815 2.475 2.982 1.902 2.591 3.205 2.001 2.672 3.212 2.107 2.659 3.204 

9 2.798 3.125 3.573 2.903 3.262 3.904 2.924 3.311 3.952 2.910 3.278 3.868 

10 1.812 2.361 2.808 1.825 2.552 3.225 1.887 2.578 3.238 1.854 2.564 3.215 

Mean 2.313 2.838 3.357 2.349 3.021 3.736 2.447 3.062 3.784 2.519 3.059 3.767 

Std 0.431 0.392 0.402 0.435 0.393 0.402 0.467 0.399 0.414 0.491 0.401 0.413 
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error as the time step increases. 

To verify the significant difference of our method comparing 

with others, we do the pair-t test on the RMSE on 10 road 

segments of our method and the other five methods for each 

prediction step with setting the significance level to 0.05. The 

result fully proves that there is a significant difference 

between the RMSE of the proposed method and the other 

three methods. 

 

 

Fig. 2. Mean and std value of RMSE on 10 roads for four 

methods 

5. CONCLUSIONS 

In this paper, a dual-stage attention based spatio-temporal 

sequence learning method is proposed for multi-step traffic 

prediction. In the proposed method, the differences in 

contributions to predictions at different historical moments 

and different road segments are considered, revealing more 

granular spatial and temporal dependences in traffic 

prediction. On the basis of encoder decoder architecture, we 

propose the first attention termed spatial attention to 

adaptively learn the contribution weights of related road 

segments. Further, we add the second attention termed 

temporal attention to the decoder part to adaptively select 

relevant encoder hidden states across all time steps. In 

addition, external factors are also taken into consideration. 

The experiment verifies the effectiveness of the proposed 

method. Besides traffic speed, the method is also applicable 

to other scenes such like traffic flow prediction. 
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