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Abstract: This paper reports on experimental testing that was carried out on a prototype adaptive structure designed to 
counteract the effect of loading through controlled large shape changes. The prototype is 6.6 m truss equipped with 12 linear 
actuators which has been designed through a method that combines geometry optimization and non-linear shape control. The 
structure is designed to adapt into target shapes that are optimal under each load case. Shape adaptation is achieved through 
controlled length changes of linear actuators that strategically replace some of the structure elements. The actuator placement 
is optimized to control the structure into the required target shapes. This way, material utilization is maximized and thus material 
energy embodied is reduced. Experimental testing is carried out to verify numerical findings and investigate the feasibility of 
the design method. The applied load is inferred through a classification model based on supervised learning. A control 
algorithm based on a linear-sequential form of geometry optimization is proposed. Experimental results show that this method 
successfully allows for real-time shape adaptation to achieve stress homogenization under various loading conditions. 
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1. INTRODUCTION 

Civil structures are designed to satisfy strength and deformation 
criteria for extreme and thus rarely occurring loads.  Consequently, 
the structural capacity is underutilized for most of the structure 
service life. However, the building sector is globally responsible 
for 40% of the energy use (European Commission, 2016) and 50% 
of the material consumption (OECD, 2019), and therefore it has 
become important to minimize environmental impacts of load-
bearing structures. 

Smart and adaptive structures that can react to loading through 
sensing and actuation offer a potential solution to significantly 
reduce the embodied impacts of load-bearing structures. Adaptive 
structures are equipped with sensors and actuators to maintain 
optimal performance through active control against changing 
loading conditions (Soong, 1988). Structural adaptation has been 
studied as a means to reduce the structure dynamic response under 
strong loading events (e.g. earthquakes, strong winds) (Reinhorn, 
et al., 1993; Soong & Cimellaro, 2009; Wagner, et al., 2018) as 
well as to improve structural performance by maximizing material 
utilization (Sobek & Teuffel, 2001; Weidner, et al., 2018). 
Senatore et al. introduce a new method to design optimal adaptive 
structures through minimization of the ‘whole-life’ energy 
(Senatore, et al., 2019). The whole-life energy comprises an 
embodied part in the material for extraction, fabrication an 
construction (Hammond & Jones, 2008) as well as an operational 
part for structural adaptation. Because actuation is employed to 
counteract the effect of rarely occurring loads, material embodied 
energy is significantly reduced at a cost of a small increase in 
control operational energy (Senatore, et al., 2018a). 

Load-bearing capacity can be greatly improved though shape 
optimization. Shape optimization involves large modifications of 
nodal positions, to an extent that force distribution can be 
manipulated significantly (Descamps & Coelho, 2013). However, 
the geometry obtained through this method cannot adapt and 
hence structural capacity is not fully utilized under peak loads. 
Actively controlled large shape changes have been studied for 

deployable and tensegrity structures (Rhode-Barbarigos, et al., 
2012; Sychterz & Smith, 2018). In this context, geometry 
reconfigurations were achieved through mechanisms based on 
moving parts. However, this often results in increased weight of 
the joints and control complexity (Hasse & Campanile, 2009). 
Shape control of reticular structures, which relies mostly on 
flexibility, has not been extensively studied theoretically and 
experimentally. Although shape and force control of an adaptive 
truss structure has been successfully tested (Senatore, et al., 
2018b), geometric nonlinearity was not addressed.  

Previous work has shown that a significant stress homogenization 
can be achieved through controlled large shape changes, such that 
extreme loads with long return periods are not governing the 
design (Reksowardojo, et al., 2020). This way, material utilization 
is maximized. Numerical studies have shown that a significant 
amount of material embodied energy can be saved with respect to 
structures that adapt through small shape changes. This paper 
presents an experimental study on a full-scale prototype adaptive 
structure designed through the method given in (Reksowardojo, et 
al., 2020).  

2. DESIGN METHOD 

The method employed to design the prototype adaptive structure 
described in the following combines shape optimization with non-
linear shape control. Figure 1 shows a flowchart of the design 
process, which comprises two main stages. Note that the structure 
used in Figure 1 is shown for illustration purposes only. In stage 1, 
the objective is minimization of the energy embodied in the 
material through optimization of element sizing and geometry. 
The structure is designed to have an optimal shape under each load 
case. Upon occurrence of a strong loading event, a change of shape 
takes place to homogenize stresses, and thus material utilization 
can be maximized since the design is no longer dominated by peak 
demands. 

In stage 2, the actuator placement is optimized so that the structure 
can be controlled into the target shapes obtained in stage 1. A 
geometric non-linear force method is employed to obtain 
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appropriate control commands. It is assumed the structure is 
subjected to slow varying loads and therefore dynamic effects are 
not be compensated by active means. In addition, since shape 
adaptation is only necessary under rarely occurring loads, it is 
assumed that fatigue is not a critical limit state. 

Input geometry

Optimal element cross-section areas + 
target shapes Actuator layout

Controlled shapes

np th live load case

2nd live load case

1st live load case

Permanent load case

np th live load case

2nd live load case

1st live load case

Force and shape control

 

Figure 1. Design method flowchart; element stress is indicated by 
color shading, blue for compression and red for tension  

3.  DESCRIPTION OF THE PROTOTYPE 

The prototype structure is a 6.6 × 1 × 0.16 m simply supported 
truss, which comprises 6 bays. The structure is very slender with a 
span-to-depth ratio of 44/1. It consists of 54en   elements 
connected to 20nn   nodes. Two nodes at one end are pinned 
while at the other end two nodes are supported by roller bearings 
as shown in Figure 2. The structure has a degree of static 
indeterminacy of 4. All nodes except for the supports (node #1, 7, 
8, 14) are controlled. 

The structure is designed to support permanent and live load. The 
permanent load consists of self-weight (SW) and a dead load (DL) 
which is distributed on the top chord nodes. As shown in Figure 3, 
there are seven live load (LL) cases. LL1 is a uniformly distributed 
load applied to the top chord. LL2~LL5 represent a moving load 
applied in the middle of each bay. LL6 and LL7 are loads applied 
on each side of the truss in turn thus causing torsion. Load 
magnitudes are indicated in Figure 3. The structural elements are 
sized to meet Ultimate Limit State (ULS) requirements under the 
load cases indicated in Table 1. All elements have a hollow 
circular section and are made of grade S235JR steel. Element 
diameter variation is represented by line thickness in Figure 2. 
Elements #3, 4, 9, 50~54 have a maximum diameter of 42 mm and 
wall thickness of 1.6 mm. Elements #1, 6, 7, 12, 13~19, 26~49 
have a minimum diameter of 22 mm and wall thickness of 1 mm. 
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Figure 2. Dimensions, numbering and boundary conditions 

Table 1. Load combinations 

Load Case Load combination 

LC0 1.35 (SW+DL) 

LC1 to LC7 1.35 (SW+DL) + 1.5 (LL1 to LL7) 

Since structural adaptation allows to homogenize the stress under 
strong loading events, material mass (and thus embodied energy) 
could be reduced by 39% with respect to an equivalent weight-
optimized passive structure, which is designed to meet deflection 
limits set to span/1000 = 6 mm. The structure is built using a 
MERO modular truss system with ball-type nodes made of grade 
C45 steel. Due to the high slenderness of the structure, the 
minimum angle between adjacent elements is 12°. Each tube 
element is connected to nodes through an M12 bolt which is 
tighten by means of a hexagonal sleeve. 
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Figure 3. Dead load and live load (kN). The top chord nodes in 
foreground (#1~#7) and background (#8~#14) are subjected to 

load unless specified otherwise. 

The decking system consists of frames made of four aluminum 
angle profiles. These frames house acrylic panels that provide a 
walking surface. The aluminum frames are fixed to the nodes on 
one side and they are free to slide longitudinally on the other side 
through a pin-slot mechanism. This way the load is not taken by 
the decking system which, therefore, does not contribute to the 
structure stiffness. The supports are designed to be significantly 
more rigid than the primary structure. Pin-bracket systems 
constrain the end nodes. At one of the ends, the pin-brackets are 
mounted on a linear guide rail system.  

4. CONTROL SYSTEM 

The control system is designed to monitor internal forces and node 
positions. This information in combination with the actuator 
stroke-length feedback is processed in real-time to infer location 
and magnitude of the external load. Geometry optimization is then 
carried out to compute the target shape under the inferred load. An 
inverse problem is solved to obtain the actuator commands in 
order control the structure into the target shape. 

All 54 elements are instrumented with strain sensors. For each 
element, four strain gauges are placed in a full-bridge type III 
configuration to measure axial strains. The analogue signals from 
all strain sensors are converted to into digital signals at a rate of 1 
kHz. The nodal positions are monitored through an optical 
tracking system consisting of eight infrared cameras and retro-
reflective markers that are attached to the nodes. Through 
coordinate reconstruction, all node positions are tracked at a rate 
of 120 Hz within a ±0.025 mm precision. 

As mentioned in Section 2, the actuator locations are determined 
through an optimization process given in (Reksowardojo, et al., 
2020). The resulting layout consists of 12actn   actuators fitted 
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in some of the bracing elements as shown by magenta lines in 
Figure 2. Actuators are connected via a Controller Area Network 
(CAN) bus which allows a two-way data transmission between 
multiple actuators and the control unit using SAE J1939 
communication protocol. The CAN bus is capable of transmitting 
data frames at a rate of 3 kHz. A single frame contains information 
that includes control commands and stroke positions feedback. 

The control unit consists of: an Intel Core i7, 2.60 GHz quad-core 
processor as the main computational unit; 54-channel data 
acquisition system for the strain sensors; 8-channel Ethernet 
switch for the optical tracking; 2-channel CAN interface for the 
actuators; 4 24V, DC main power converters each supplying three 
actuators; a 10V, DC auxiliary power converter and electrical 
circuitries for the actuator emergency-stop system. 

5. CONTROL ALGORITHM 

5.1. Load inference 

The external load applied to the structure has to be known in order 
to compute the corresponding target shape through optimization. 
The structure is modelled as a pin-jointed truss. Therefore, each 
node has 3 degrees of freedom. The number of degrees of freedom 
is denoted by dn . There are 3 60d nn n   . When the shape 
and the internal forces of the structure are known through data 
acquisition, the external loads  dnp  can be inferred through 
force equilibrium ,Af p where 

d en nA  is the equilibrium 
matrix containing the element cosine directions, which is updated 
in real-time based on the measured node positions and enf   is 
the vector of internal forces obtained through the strain sensors.  
Since the structure undergoes large shape changes, it is important 
to update A based on the measured node positions. Due to non-
linear effects caused by joint fixity which is not modelled (the 
structure is modelled as a pin-jointed truss), the error on the 
inferred load through force equilibrium is not negligible. For a 
statically-determinate small-scale prototype (Reksowardojo, et al., 
2019), it was sufficient to compensate for the error using a simple 
linear regression model. However, in this case linear regression 
was not sufficient to detect accurately location and magnitude of 
the load. Instead, a classification approach through supervised 
learning has been implemented. A loading event p  is reduced to 
a discrete two dimensional metric 2p   containing indices that 
correspond to a predetermined set of load locations (i.e. top chord 
node positions) as well as load magnitudes. This way p becomes 
a vector-scalar product: 

1 2
.p pp P   (1)

dnP   is a vector containing 0 1kP   denoting the location 
of the nodes onto which the load is applied. The scalar   denotes 
the magnitude of the applied load. There are 50 load location 
classes and 3 load magnitude classes (0.8, 1.6 and 2 kN). 
Classification of the load magnitude was carried out through a 
model based on support vector machines (SVM). SVM has been 
successfully employed in a variety of classification applications 
with small to moderate number of classes (Vapnik, 2013). Since 
there is a large number of load location classes, classification of 
the load position was carried out through a model based on a 
shallow neural network comprising of 2 hidden layers with 50 
neurons each. Training the same model using SVM would have 
been computationally inefficient since it requires a one-versus-all 

approach whereby a binary classifier is trained for each class 
(Erfani, et al., 2016). The training dataset was collected by 
applying loads for all location and magnitude classes. For each 
pair of location and magnitude, the load was fixed and the structure 
was controlled to the corresponding target shape. Data acquisition 
was carried out with a sampling frequency of 5 Hz. For the load 
location classification, the independent variables are the element 
internal forces and the actuator stroke length feedback. For the 
load magnitude classification, the independent variables are the 
internal forces of some select elements to reduce the dimension of 
the dataset. In total, 153000 observations are collected for the 
training dataset.  

5.2. Computation of target shape 

The shape optimization employed in the control algorithm is 
formulated similarly to that adopted for the design of the structure 
(Reksowardojo, et al., 2020). However, instead of minimizing the 
embodied energy (and thus material mass), the objective function 
(2) in this context is the minimization of the total length change of 
the elements 

en l  subject to constraints that include force 
equilibrium (3), element stability and  admissible stress (4) as well 
as bounds on the node positions (5) to avoid unfeasible shape 
changes.  

min ,T 
x

l l  s.t., (2)

,t Af p  (3)

 2 2 ;    max , ,       t t
i i i i i i i if f EI l  (4)

.l t u    d d d  (5)

The optimization variables are [ ]  t Tx f d , where the 

superscript t stands for target. et nf   are the target internal 
forces in equilibrium (4) with the external load p , which are 

constrained to avoid element buckling as well as a stress higher 
than the admissible value (4). +,  ,  ,   and E I     are the 
Young’s modulus, the second moment of area, admissible tensile 
and compressive stress, respectively. dt n d   is the difference 
between the node positions of the shape before control 0 dnd   

and those of the target shape td . The objective function ( )o x  in 

(2) can be expanded as:  

    0
2

2
1 2

1
,

2

e

t initial
i

T

i
i

n

o


     x l l C d d C d  (6)

where dinitial nd   is the undeformed shape (no applied load). 
 d dn n

iC  is the connectivity matrix for the ith element. This 
matrix contains all zero except for the rows corresponding to the 
degrees of freedom of the ith element ends which are set to +1 and 
−1 (Achtziger, 2007). The optimization problem in (2)~(6) is 
nonlinear and nonconvex, therefore it requires significant 
computational resources to be solved to local optimality. Since the 
aim is to employ this method within a real-time control process, 
linearization has been formulated.  

Linearization implies that the shape optimization problem given in 
(2)~(6) is carried out as series of small shape changes. In each step 
the operating point 0x  is set to 0 0[ ] Tx f 0  where 0f  are the 
internal forces before a shape update. 0d  is set to zero because 
optimization is carried out sequentially by updating the shape 0d
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. The objective of this process is to obtain a new point 
[ ] t t Tx f d  for next shape update. The equality constraint on 

force equilibrium (3) and the inequality constraint for element 
buckling (4) are expressed as explicit functions of the optimization 
variables:  

  , tq x Af p  (7)

,    ei n
A A A

 
 

0

0

2

2
 


 

t
i

i t
i

C d d
A

C d d
 (8)

and: 

 
 

 2
0

2

2

2
,  1, , .


    

 
cr t ei

i

i i
t

EI
r f i n

dC
x

d
 (9)

Expanding  o x ,  q x  and  crr x  around 0x , the linear 
approximation of the shape optimization problem is: 

  ,m  in
  

 t t
o

dx d 0
0 x  s.t., (10)

0; =
  ,

   
     t tt t td0f d d 0 f f

q q x p  (11)

  ,
   

    t tt

r
c

c
rd d 0d 0

I x fr  (12)

,   tfα α  (13)

.    l t ud d d  (14)

The computational cost of each iteration is low because the 
linearized optimization can be solved efficiently using the simplex 
method. 

5.3. Computation of control commands 

The control commands 
actc n l   to cause the change of node 

positions td  obtained from solving (10)~(14) are computed 
through constrained least square optimization:  

2
min   , s.t.

 .

c

c
f

c t
d




  
l

S l

S l d
 (15)

Table 2. Pseudocode of the control algorithm 

1 infer load p through classification 

2 set as starting point d0 and f0 (the measured state) 

3 while true do 

4 
 

Estimate target shape change Δdt through shape optimization in 
(10)~(14) 

5  if the change of the objective function (10) between two successive 
steps is less than a set tolerance then break 

6 
 

compute Δlc through (15) 

7 
 

update d0 and f0 based on the inferred load p and control 
commands Δlc; 0 0( , ) ( , )c p l f d  

8 end while 

The model in (15) implies a small strain assumption within an 
iteration. The control commands  cl  obtained from (15) cause the 
required change of node positions  td  and a minimal change of 
forces within an iteration. The force 

e actn n
fS  and shape 


d actn n

dS  influence matrices have been obtained by 
computing the effect of a unitary length change of each actuator in 
turn on forces and node positions (Senatore, et al., 2019). Once the 
control command  cl is obtained, a nonlinear geometric force 
method (Luo & Lu, 2006) is employed  to update 0f  and 0d  for 

next iteration of the shape optimization process. The process is 
stopped when the change of objective function is smaller than a set 
tolerance. In this work, the tolerance is set to one, which means 
that the process stops when the squared sum of all element length 
changes is equal or less than 1 mm2. Table 2 gives the pseudocode 
of the control algorithm. 

6. EXPERIMENTAL RESULTS 

Experimental testing was carried out to: 1) validate the 
classification-based load inference model; 2) evaluate the 
computational performance of the linearized shape optimization 
model as part of a real-time control process and 3) assess the 
feasibility of stress homogenization through controlled large-
shape changes. 

The performance of the classification-based load inference model 
was evaluated by applying loads for each location and magnitude 
class. In each case, the load was fixed and the structure was 
controlled to the target shape. All load locations and magnitudes 
were tested and data was acquired with a sampling rate of 5 Hz. In 
total, 11575 observations were generated. Figure 4 is the bar chart 
plot of the confusion matrix indicating the accuracy of the load 
location classification. The diagonal values (blue bars) indicate the 
number of correctly classified observations. The off-diagonal 
values (red bars) show the number of misclassified observations. 
In the worst case, 76 observations (0.7% of total) were 
misclassified. Overall 275 observations were misclassified, which 
is 2.3% of total observations and thus the load location 
classification model had a 97.7% accuracy. 
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Figure 4. Plot of the confusion matrix showing the accuracy of 
the load location classification 

Table 3 indicate accuracy of the load magnitude classification. In 
total 161 observations were misclassified, which is 1.4% of the 
total observations and thus the load magnitude classification 
model had a 98.6% accuracy. 

Table 3. Load magnitude classification accuracy 

True 
class 

Predicted class 

1 2 3 

1 3598 (31.1%) 29 (0.3%) 3 

2 53 (0.8%) 5384 (46.5%) 42 (0.3%) 

3 11 23 (0.2%) 2432 (21%) 
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The computational efficiency of the linearized shape optimization 
formulation (10)~(14) was evaluated through a benchmark against 
the nonlinear formulation (2)~(6). The design load combination 
cases were considered (Table 1). Nodal positions were measured 
after shape control, and compared with the target shape computed 
through the linear shape optimization formulation as well as with 
the non-linear formulation. For brevity, among all tested load 
cases (Table 1), only results for LC4 and LC6 are discussed. 

The solution of the nonlinear formulation for LC6 took 12 s using 
sequential quadratic programming (SQP). By providing the 
analytical Jacobian and Hessian matrices, the same problem took 
6 s to solve using the interior point method (IPM). Instead, the 
sequential-linear shape optimization took only 20 ms. Figure 5 
shows the plot of the convergence for the three approaches. 
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Figure 5. Shape optimization convergence under LC6 in terms of 
(a) objective function and (b) Euclidean distance with respect to 

the minimizer 

Figure 5a shows the plot of ( )ko x  which is the value of the 

objective function at the kth iteration. The linear-sequential 
approach reached convergence faster than the nonlinear 
approaches. Only four iterations were necessary to reach a 
minimizer *x  via the linear-sequential approach. Whereas 31 and 
30 iterations were necessary using SQP and IPM, respectively. 
Figure 5b shows *

2
kx x , the Euclidean distance between an 

iterate kx  and the minimizer *x . Through inspection of Figure 5a, 
the value of the objective function using SQP appears to converge 
after only five iterations. As shown in Figure 5b however, the fifth 
iteration is still at a significant distance to the minimizer *x . On 
the other hand, the second iteration is significantly closer to *x  
through the linear-sequential approach. At the worst case, a full 
cycle of data acquisition, control algorithm execution, and control 
command transmission took approximately 30 ms. 

The target shapes obtained through the nonlinear approaches (SQP 
and IPM) are almost identical, the norm difference 

, ,
2

t SQP t IPM  d d  is 41.3 10  mm. Assuming that 

, , ,t nonlin t SQP t IPM    d d d , Table 4 gives the norm difference 
between  , t nonlind  & , t lind  and the maximum Euclidean distance 
between the node positions  ,t nonlind  & ,t lind . In addition, Table 4 
gives the norm difference and maximum difference between the 
internal forces  ,t nonlinf  and ,t linf . The target shapes obtained 
through linear-sequential approach are very close those obtained 
through the nonlinear ones. There is a maximum difference of 3.42 
mm for node 18 between ,t nonlind  and ,t lind  and 3.55 kN for 
element 13 between ,t nonlinf  and ,t linf  under LC4. 

Table 4. Comparison between shape optimization through 
nonlinear and linear-sequential approach 

(a) Nodal positions   

Load case LC4 LC6 

, ,

2

t nlin t lin  d d  (mm) 8.16 2.94 

Max. node distance (mm) 3.42 1.59 

(b) Internal forces   

Load case LC4 LC6 

, ,

2

t nlin t linf f  (kN) 5.39 5.05 

Max. difference (kN) 3.55 3.12 

The linear-sequential approach was employed in the control 
algorithm, hence ,  t t lind d .Table 5 gives the norm difference 
between the nodes of   td  and  cd  (target shapes and measured 
controlled shapes) as well as the maximum Euclidean distance 
between the nodes of td  and cd . Figure 6a and b show the change 
of shape of the structure loaded by two persons before and after 
control. 

Table 5. Discrepancy between target and controlled shapes 

Load case LC4 LC6 

2

t c  d d  (mm) 52.69 40.68 

Max. node distance (mm) 19.09 17.17 

Figure 7a and b show the bar chart of the element stress before and 
after shape control – tensile and compressive stress are indicated 
in red and blue, respectively. A horizontal dashed line indicates the 
mean. Stress variability is quantified through standard deviation, 
which is indicated by the width of the shaded band. The maximum 
mean reduction for tensile and compressive stress is 23% and 
22%, respectively (both in LC6). Stress homogenization can be 
appreciated the most in LC6 since stress variability under shape 
control is the smallest. There is a significant reduction of the stress 
for elements 1~12, 29, 47, 51, 52 and 53. The stress for some of 
the other elements have reversed and increased, namely elements 
14~17. The maximum variability reduction for tensile and 
compressive stress is 24% and 33% respectively in LC6.  

 

  
(a) (b) 

Figure 6. Shape control LC6: (a) deformed shape, (b) controlled shape 
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Figure 7. Element stress (a) without and (b) with shape control 

7.  CONCLUSIONS 

The results of this study lead to the following conclusions: 
 Accurate detection of the applied load is necessary for 

structural adaptation. A classification model obtained through 
supervised learning can be employed to detect the applied load 
effectively allowing to implement a simple structural model. 
The structure was modelled as a pin jointed truss; joint fixity 
has not been taken into account. 

 The linearized shape optimization formulation offers a 
computationally efficient method for real-time control of 
reticular structures under quasi-static loading. The optimal 
shapes obtained through the linear-sequential approach are in 
good accordance with those obtained through nonlinear 
approaches. 

 Experimental study on a large-scale prototype has shown that 
stress homogenization through large-shape changes is 
significant. This enables an adaptive structure to operate closer 
to design limits thus maximizing material utilization and 
material embodied energy. 

Limitations of the method proposed in this paper are: 
 The objective of the shape optimization is not based on an 

explicit minimization of the control energy. 
 Considerable discrepancies between target and control shapes 

are observed. 
Future work will look into a reformulation of the method 
proposed in this paper to minimize the control energy for shape 
adaptation as well as data-driven compensation to improve 
control accuracy.  
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